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2. Etapas de construção.

3. Exemplo da mistura.

4. Exercício proposto.

- Diferenciação e Integração de funções.
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Modelagem com 
Eq. Dif. de 1ª ordem



➢ A modelagem matemática e a experimentação têm
papéis complementares na investigação científica.

➢ As análises matemáticas podem sugerir direções
mais promissoras para exploração experimental.
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➢ A modelagem matemática e a experimentação têm
papéis complementares na investigação científica.

➢ As análises matemáticas podem sugerir direções
mais promissoras para exploração experimental.

➢ Independentemente do campo de aplicação,
existem três etapas sempre presentes na
modelagem matemática.

➢ A seguir serão relacionados os principais itens
dessas etapas fundamentais da modelagem.
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Etapas de construção 
de um modelo



prof. Henrique A M Faria



1. Tradução do fenômeno para expressões
matemáticas.
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1. Tradução do fenômeno para expressões
matemáticas.

2. A equação diferencial será o modelo do processo.

3. Inicialmente, essa equação dará uma descrição
aproximada do processo real.

4. Algumas vezes a modelagem envolve substituir
conceitualmente um processo discreto por um
processo contínuo.
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1. Caso seja possível, resolver a eq. dif. analiticamente.

2. A segunda alternativa é utilizar métodos numéricos
para resolução.

3. Uma terceira via consiste em analisar as
propriedades da solução, sem resolver a eq. dif.

4. O conhecimento da área em estudo permite sugerir
aproximações razoáveis para tornar a resolução
viável.

5. O jogo entre a compreensão do fenômeno e o
conhecimento das limitações técnicas é
característico da Matemática Aplicada.
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1. Interpretar a solução no contexto do problema.

2. Calcular os valores da solução em pontos específicos,
comparando-os com os valores observados
experimentalmente.

3. Avaliar o comportamento da solução para tempos
longos.

4. O fato da solução matemática existir e parecer
razoável não garante que esteja correta.

5. Caso as previsões do modelo estejam inconsistentes
com o fenômeno ele deve ser corrigido ou refeito.
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Exemplo da
mistura



Exemplo 1 Dissolução de sal em um reator tanque com
agitação contínua (CSTR).
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Exemplo 1 Dissolução de sal em um reator tanque com
agitação contínua (CSTR).

𝒓
𝑔𝑎𝑙

𝑚𝑖𝑛
,
1

4
 𝑙𝑏/𝑔𝑎𝑙

𝒓
𝑔𝑎𝑙

𝑚𝑖𝑛

✓ Em 𝑡 = 0 , um tanque
contém 𝑄𝑜 libras de sal
em 100 galões de água.

✓ 𝒓: galões por minuto.
✓ 𝑸(𝒕): quantidade de sal?

a) Escrever o PVI.

b) Encontrar a expressão
para 𝑄(𝑡).

c) Qual a quantidade
limite 𝑄𝐿 quando 𝑡 →
∞.

d) Se 𝑟 = 3 e 𝑄𝑜 = 2𝑄𝐿

encontrar 𝑇 para o
nível de sal a 2% de 𝑄𝐿.

e) Determinar 𝑟 para 𝑡 =
45 min.

Questões

Dados
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entrada e saída.
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=

𝑟

4
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3. A equação diferencial dará uma descrição
aproximada do processo real.
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3. A equação diferencial dará uma descrição
aproximada do processo real.

4. O processo neste caso é contínuo.
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𝑑𝑄

𝑑𝑡
+

𝑟𝑄

100
=

𝑟

4
𝑄 𝑜 = 𝑄𝑜 (condição inicial)✓ a) PVI:

1. Neste caso é possível resolver o PVI analiticamente.

• Eq. Dif. ordinária de 1ª ordem.

• Resolução pelo método do fator integrante.

• 𝑸(𝒕) é a função incógnita e 𝒑 𝒕 = 𝒓/𝟏𝟎𝟎.
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100
solução particular 

do PVI



prof. Henrique A M Faria

✓ Quantidade de sal limite 𝑄𝐿 para 𝑡 → ∞:



prof. Henrique A M Faria

✓ Quantidade de sal limite 𝑄𝐿 para 𝑡 → ∞:

lim
𝑡→∞

𝑄 = lim
𝑡→∞

25 + lim
𝑡→∞

(𝑄𝑜 − 25)𝑒−
𝑟𝑡

100



prof. Henrique A M Faria

✓ Quantidade de sal limite 𝑄𝐿 para 𝑡 → ∞:

lim
𝑡→∞

𝑄 = lim
𝑡→∞

25 + lim
𝑡→∞

(𝑄𝑜 − 25)𝑒−
𝑟𝑡

100

lim
𝑡→∞

𝑄 = 25 +  (𝑄𝑜 − 25) lim
𝑡→∞

𝑒−
𝑟𝑡

100



prof. Henrique A M Faria

✓ Quantidade de sal limite 𝑄𝐿 para 𝑡 → ∞:

lim
𝑡→∞

𝑄 = lim
𝑡→∞

25 + lim
𝑡→∞

(𝑄𝑜 − 25)𝑒−
𝑟𝑡

100

= 0

lim
𝑡→∞

𝑄 = 25 +  (𝑄𝑜 − 25) lim
𝑡→∞

𝑒−
𝑟𝑡

100



prof. Henrique A M Faria

✓ Quantidade de sal limite 𝑄𝐿 para 𝑡 → ∞:

✓ c) Quantidade sal:

lim
𝑡→∞

𝑄 = lim
𝑡→∞

25 + lim
𝑡→∞

(𝑄𝑜 − 25)𝑒−
𝑟𝑡

100

= 0

lim
𝑡→∞

𝑄 = 25 +  (𝑄𝑜 − 25) lim
𝑡→∞

𝑒−
𝑟𝑡

100

𝑄𝐿 = 25 [𝑙𝑏]



prof. Henrique A M Faria

✓ Quantidade de sal limite 𝑄𝐿 para 𝑡 → ∞:

✓ c) Quantidade sal:

✓ Valor do tempo 𝑇 para 𝑄(𝑡) a 2% de 𝑄𝐿:

lim
𝑡→∞

𝑄 = lim
𝑡→∞

25 + lim
𝑡→∞

(𝑄𝑜 − 25)𝑒−
𝑟𝑡

100

= 0

lim
𝑡→∞

𝑄 = 25 +  (𝑄𝑜 − 25) lim
𝑡→∞

𝑒−
𝑟𝑡

100

𝑄𝐿 = 25 [𝑙𝑏]



prof. Henrique A M Faria

✓ Quantidade de sal limite 𝑄𝐿 para 𝑡 → ∞:

✓ c) Quantidade sal:

✓ Valor do tempo 𝑇 para 𝑄(𝑡) a 2% de 𝑄𝐿:

lim
𝑡→∞

𝑄 = lim
𝑡→∞

25 + lim
𝑡→∞

(𝑄𝑜 − 25)𝑒−
𝑟𝑡

100

= 0

lim
𝑡→∞

𝑄 = 25 +  (𝑄𝑜 − 25) lim
𝑡→∞

𝑒−
𝑟𝑡

100

𝑄𝐿 = 25 [𝑙𝑏]

𝑟 = 3 𝑔𝑎𝑙/𝑚𝑖𝑛,



prof. Henrique A M Faria

✓ Quantidade de sal limite 𝑄𝐿 para 𝑡 → ∞:

✓ c) Quantidade sal:

✓ Valor do tempo 𝑇 para 𝑄(𝑡) a 2% de 𝑄𝐿:

lim
𝑡→∞

𝑄 = lim
𝑡→∞

25 + lim
𝑡→∞

(𝑄𝑜 − 25)𝑒−
𝑟𝑡

100

= 0

lim
𝑡→∞

𝑄 = 25 +  (𝑄𝑜 − 25) lim
𝑡→∞

𝑒−
𝑟𝑡

100

𝑄𝐿 = 25 [𝑙𝑏]

𝑟 = 3 𝑔𝑎𝑙/𝑚𝑖𝑛, 𝑄𝑜 = 2𝑄𝐿 = 50 𝑙𝑏,



prof. Henrique A M Faria

✓ Quantidade de sal limite 𝑄𝐿 para 𝑡 → ∞:

✓ c) Quantidade sal:

✓ Valor do tempo 𝑇 para 𝑄(𝑡) a 2% de 𝑄𝐿:

lim
𝑡→∞

𝑄 = lim
𝑡→∞

25 + lim
𝑡→∞

(𝑄𝑜 − 25)𝑒−
𝑟𝑡

100

= 0

lim
𝑡→∞

𝑄 = 25 +  (𝑄𝑜 − 25) lim
𝑡→∞

𝑒−
𝑟𝑡

100

𝑄𝐿 = 25 [𝑙𝑏]

𝑟 = 3 𝑔𝑎𝑙/𝑚𝑖𝑛, 𝑄𝑜 = 2𝑄𝐿 = 50 𝑙𝑏, 𝑄 = 𝑄𝐿 + 2%𝑄𝐿



prof. Henrique A M Faria

✓ Quantidade de sal limite 𝑄𝐿 para 𝑡 → ∞:

✓ c) Quantidade sal:

✓ Valor do tempo 𝑇 para 𝑄(𝑡) a 2% de 𝑄𝐿:

lim
𝑡→∞

𝑄 = lim
𝑡→∞

25 + lim
𝑡→∞

(𝑄𝑜 − 25)𝑒−
𝑟𝑡

100

= 0

lim
𝑡→∞

𝑄 = 25 +  (𝑄𝑜 − 25) lim
𝑡→∞

𝑒−
𝑟𝑡

100

𝑄𝐿 = 25 [𝑙𝑏]

𝑟 = 3 𝑔𝑎𝑙/𝑚𝑖𝑛, 𝑄𝑜 = 2𝑄𝐿 = 50 𝑙𝑏,

𝑄 = 25 + (𝑄𝑜 − 25)𝑒−
𝑟𝑡

100

𝑄 = 𝑄𝐿 + 2%𝑄𝐿



prof. Henrique A M Faria

𝑄𝐿 + 2%𝑄𝐿 = 25 + (50 − 25)𝑒−
3𝑇

100



prof. Henrique A M Faria

𝑄𝐿 + 2%𝑄𝐿 = 25 + (50 − 25)𝑒−
3𝑇

100

𝑄𝐿 +
2

100
𝑄𝐿 = 25 + 25𝑒−0,03𝑇



25 + 0,02 × 25 = 25 + 25𝑒−0,03𝑇

prof. Henrique A M Faria

𝑄𝐿 + 2%𝑄𝐿 = 25 + (50 − 25)𝑒−
3𝑇

100

𝑄𝐿 +
2

100
𝑄𝐿 = 25 + 25𝑒−0,03𝑇



25 + 0,02 × 25 = 25 + 25𝑒−0,03𝑇

prof. Henrique A M Faria

𝑄𝐿 + 2%𝑄𝐿 = 25 + (50 − 25)𝑒−
3𝑇

100

𝑄𝐿 +
2

100
𝑄𝐿 = 25 + 25𝑒−0,03𝑇



25 + 0,02 × 25 = 25 + 25𝑒−0,03𝑇

prof. Henrique A M Faria

⇒

𝑄𝐿 + 2%𝑄𝐿 = 25 + (50 − 25)𝑒−
3𝑇

100

𝑄𝐿 +
2

100
𝑄𝐿 = 25 + 25𝑒−0,03𝑇

0,02 = 𝑒−0,03𝑇



25 + 0,02 × 25 = 25 + 25𝑒−0,03𝑇

prof. Henrique A M Faria

⇒

𝑄𝐿 + 2%𝑄𝐿 = 25 + (50 − 25)𝑒−
3𝑇

100

𝑄𝐿 +
2

100
𝑄𝐿 = 25 + 25𝑒−0,03𝑇

0,02 = 𝑒−0,03𝑇

𝑙𝑛0,02 = 𝑙𝑛𝑒−0,03𝑇



25 + 0,02 × 25 = 25 + 25𝑒−0,03𝑇

prof. Henrique A M Faria

⇒

𝑄𝐿 + 2%𝑄𝐿 = 25 + (50 − 25)𝑒−
3𝑇

100

𝑄𝐿 +
2

100
𝑄𝐿 = 25 + 25𝑒−0,03𝑇

0,02 = 𝑒−0,03𝑇

𝑙𝑛0,02 = 𝑙𝑛𝑒−0,03𝑇 ⇒ 𝑙𝑛0,02 = −0,03𝑇 𝑙𝑛𝑒



25 + 0,02 × 25 = 25 + 25𝑒−0,03𝑇

prof. Henrique A M Faria

⇒

𝑄𝐿 + 2%𝑄𝐿 = 25 + (50 − 25)𝑒−
3𝑇

100

𝑄𝐿 +
2

100
𝑄𝐿 = 25 + 25𝑒−0,03𝑇

0,02 = 𝑒−0,03𝑇

𝑙𝑛0,02 = 𝑙𝑛𝑒−0,03𝑇 ⇒ 𝑙𝑛0,02 = −0,03𝑇 𝑙𝑛𝑒

𝑇 =
𝑙𝑛0,02

−0,03
=

−3,91

−0,03
= 130,4



25 + 0,02 × 25 = 25 + 25𝑒−0,03𝑇

prof. Henrique A M Faria

✓ d) tempo: 2% de 𝑄𝐿

⇒

𝑄𝐿 + 2%𝑄𝐿 = 25 + (50 − 25)𝑒−
3𝑇

100

𝑄𝐿 +
2

100
𝑄𝐿 = 25 + 25𝑒−0,03𝑇

0,02 = 𝑒−0,03𝑇

𝑙𝑛0,02 = 𝑙𝑛𝑒−0,03𝑇 ⇒ 𝑙𝑛0,02 = −0,03𝑇 𝑙𝑛𝑒

𝑇 =
𝑙𝑛0,02

−0,03
=

−3,91

−0,03
= 130,4 𝑇 = 130,4 [𝑚𝑖𝑛. ]⇒



prof. Henrique A M Faria

✓ Fluxo de galões (𝑟) para 𝑡 = 45 𝑚𝑖𝑛.



prof. Henrique A M Faria

✓ Fluxo de galões (𝑟) para 𝑡 = 45 𝑚𝑖𝑛.

✓ Considerando o nível de sal a 2% de 𝑄𝐿.

𝑄 = 𝑄𝐿 + 2%𝑄𝐿



prof. Henrique A M Faria

✓ Fluxo de galões (𝑟) para 𝑡 = 45 𝑚𝑖𝑛.

✓ Considerando o nível de sal a 2% de 𝑄𝐿.

𝑄 = 𝑄𝐿 + 2%𝑄𝐿 = 1,02𝑄𝐿



prof. Henrique A M Faria

✓ Fluxo de galões (𝑟) para 𝑡 = 45 𝑚𝑖𝑛.

✓ Considerando o nível de sal a 2% de 𝑄𝐿.

𝑄 = 𝑄𝐿 + 2%𝑄𝐿 = 1,02𝑄𝐿 = 25,5 𝑙𝑏



prof. Henrique A M Faria

✓ Fluxo de galões (𝑟) para 𝑡 = 45 𝑚𝑖𝑛.

✓ Considerando o nível de sal a 2% de 𝑄𝐿.

𝑡 = 45 𝑚𝑖𝑛, 𝑄𝑜 = 2𝑄𝐿 = 50 𝑙𝑏,

𝑄 = 𝑄𝐿 + 2%𝑄𝐿 = 1,02𝑄𝐿 = 25,5 𝑙𝑏



prof. Henrique A M Faria

✓ Fluxo de galões (𝑟) para 𝑡 = 45 𝑚𝑖𝑛.

✓ Considerando o nível de sal a 2% de 𝑄𝐿.

𝑡 = 45 𝑚𝑖𝑛, 𝑄𝑜 = 2𝑄𝐿 = 50 𝑙𝑏,

𝑄 = 25 + (𝑄𝑜 − 25)𝑒−
𝑟𝑡

100

𝑄 = 𝑄𝐿 + 2%𝑄𝐿 = 1,02𝑄𝐿 = 25,5 𝑙𝑏

✓ Inserindo valores na solução particular.



prof. Henrique A M Faria

✓ Fluxo de galões (𝑟) para 𝑡 = 45 𝑚𝑖𝑛.

✓ Considerando o nível de sal a 2% de 𝑄𝐿.

𝑡 = 45 𝑚𝑖𝑛, 𝑄𝑜 = 2𝑄𝐿 = 50 𝑙𝑏,

𝑄 = 25 + (𝑄𝑜 − 25)𝑒−
𝑟𝑡

100

𝑄 = 𝑄𝐿 + 2%𝑄𝐿 = 1,02𝑄𝐿 = 25,5 𝑙𝑏

✓ Inserindo valores na solução particular.

25,5 = 25 + 25𝑒−
𝑟45
100⇒



prof. Henrique A M Faria

✓ Fluxo de galões (𝑟) para 𝑡 = 45 𝑚𝑖𝑛.

✓ Considerando o nível de sal a 2% de 𝑄𝐿.

𝑡 = 45 𝑚𝑖𝑛, 𝑄𝑜 = 2𝑄𝐿 = 50 𝑙𝑏,

𝑄 = 25 + (𝑄𝑜 − 25)𝑒−
𝑟𝑡

100

𝑄 = 𝑄𝐿 + 2%𝑄𝐿 = 1,02𝑄𝐿 = 25,5 𝑙𝑏

✓ Inserindo valores na solução particular.

25,5 = 25 + 25𝑒−
𝑟45
100

1,02 = 1 + 1𝑒−0,45𝑟

⇒



prof. Henrique A M Faria

✓ Fluxo de galões (𝑟) para 𝑡 = 45 𝑚𝑖𝑛.

✓ Considerando o nível de sal a 2% de 𝑄𝐿.

𝑡 = 45 𝑚𝑖𝑛, 𝑄𝑜 = 2𝑄𝐿 = 50 𝑙𝑏,

𝑄 = 25 + (𝑄𝑜 − 25)𝑒−
𝑟𝑡

100

𝑄 = 𝑄𝐿 + 2%𝑄𝐿 = 1,02𝑄𝐿 = 25,5 𝑙𝑏

✓ Inserindo valores na solução particular.

⇒

25,5 = 25 + 25𝑒−
𝑟45
100

1,02 = 1 + 1𝑒−0,45𝑟 0,02 = 𝑒−0,45𝑟

⇒



prof. Henrique A M Faria

✓ Fluxo de galões (𝑟) para 𝑡 = 45 𝑚𝑖𝑛.

✓ Considerando o nível de sal a 2% de 𝑄𝐿.

𝑡 = 45 𝑚𝑖𝑛, 𝑄𝑜 = 2𝑄𝐿 = 50 𝑙𝑏,

𝑄 = 25 + (𝑄𝑜 − 25)𝑒−
𝑟𝑡

100

𝑄 = 𝑄𝐿 + 2%𝑄𝐿 = 1,02𝑄𝐿 = 25,5 𝑙𝑏

✓ Inserindo valores na solução particular.

⇒

25,5 = 25 + 25𝑒−
𝑟45
100

1,02 = 1 + 1𝑒−0,45𝑟 0,02 = 𝑒−0,45𝑟

𝑙𝑛0,02 = 𝑙𝑛𝑒−0,45𝑟

⇒



prof. Henrique A M Faria

✓ Fluxo de galões (𝑟) para 𝑡 = 45 𝑚𝑖𝑛.

✓ e) Galões p/ 𝑡 = 45 𝑚𝑖𝑛

✓ Considerando o nível de sal a 2% de 𝑄𝐿.

𝑡 = 45 𝑚𝑖𝑛, 𝑄𝑜 = 2𝑄𝐿 = 50 𝑙𝑏,

𝑄 = 25 + (𝑄𝑜 − 25)𝑒−
𝑟𝑡

100

𝑄 = 𝑄𝐿 + 2%𝑄𝐿 = 1,02𝑄𝐿 = 25,5 𝑙𝑏

✓ Inserindo valores na solução particular.

⇒

25,5 = 25 + 25𝑒−
𝑟45
100

1,02 = 1 + 1𝑒−0,45𝑟 0,02 = 𝑒−0,45𝑟

𝑙𝑛0,02 = 𝑙𝑛𝑒−0,45𝑟 𝑟 = 8,69 [ ൗ𝑔𝑎𝑙
𝑚𝑖𝑛]⇒

⇒



prof. Henrique A M Faria

✓ Considerando as taxas de fluxo como enunciadas e a
concentração de sal no tanque uniforme.



prof. Henrique A M Faria

✓ Considerando as taxas de fluxo como enunciadas e a
concentração de sal no tanque uniforme.

✓ A equação diferencial é uma descrição precisa do
processo de fluxo.



prof. Henrique A M Faria

✓ Considerando as taxas de fluxo como enunciadas e a
concentração de sal no tanque uniforme.

✓ A equação diferencial é uma descrição precisa do
processo de fluxo.

✓ Modelos desse tipo são também utilizados em
problemas envolvendo poluentes em um lago.



prof. Henrique A M Faria

✓ Considerando as taxas de fluxo como enunciadas e a
concentração de sal no tanque uniforme.

✓ A equação diferencial é uma descrição precisa do
processo de fluxo.

✓ Modelos desse tipo são também utilizados em
problemas envolvendo poluentes em um lago.

✓ A variável incógnita (𝑄) varia no tempo.



prof. Henrique A M Faria

✓ Considerando as taxas de fluxo como enunciadas e a
concentração de sal no tanque uniforme.

✓ A equação diferencial é uma descrição precisa do
processo de fluxo.

✓ Modelos desse tipo são também utilizados em
problemas envolvendo poluentes em um lago.

✓ A variável incógnita (𝑄) varia no tempo.

✓ O parâmetro (𝑟) condição inicial (𝑄𝑜) são ajustados
de acordo com aplicação a ser modelada.



Exercício



Exercício: Produtos químicos em uma lagoa.

Considere uma lagoa que contém, inicialmente, 107 𝑔𝑎𝑙 de água
fresca. Água contendo um produto químico indesejável flui para a
lagoa a uma taxa de 5.106 de 𝑔𝑎𝑙/𝑎𝑛𝑜 e a mistura sai da lagoa à
mesma taxa. A concentração 𝛾(𝑡) do produto químico na água
que entra varia periodicamente com o tempo 𝑡 de acordo com a
expressão 𝛾(𝑡) = 2 + 𝑠𝑒𝑛(2𝑡) 𝑔/𝑔𝑎𝑙 .



Exercício: Produtos químicos em uma lagoa.

Considere uma lagoa que contém, inicialmente, 107 𝑔𝑎𝑙 de água
fresca. Água contendo um produto químico indesejável flui para a
lagoa a uma taxa de 5.106 de 𝑔𝑎𝑙/𝑎𝑛𝑜 e a mistura sai da lagoa à
mesma taxa. A concentração 𝛾(𝑡) do produto químico na água
que entra varia periodicamente com o tempo 𝑡 de acordo com a
expressão 𝛾(𝑡) = 2 + 𝑠𝑒𝑛(2𝑡) 𝑔/𝑔𝑎𝑙 .

Pede-se
a) Construa um modelo matemático desse processo de fluxo.
b) Determine a quantidade 𝑄(𝑡) de produto químico na lagoa 

em qualquer instante. Sugestão: transforme 𝑞 𝑡 = 106𝑄 𝑔 . 
c) Desenhe o gráfico da solução  particular.
d) Descreva o efeito da concentração do produto químico na 

água da lagoa para 𝑡 = 0, 𝑡 = 1, 𝑡 = 10 𝑒 𝑡 → ∞.



➢ Estudar seções 2.3 do livro texto (Boyce).

➢ Resolver o exercício proposto.

➢ Praticar: exercícios da seções 2.3 do Boyce.

➢ Teoremas de existência e unicidade.

➢ Equações exatas e fator integrante.

prof. Henrique A M Faria



1. BOYCE, W.E.; DIPRIMA, R.C. Equações 
Diferenciais Elementares e Problemas de Valores 
de Contorno. 9. ed. Rio de Janeiro: LTC, 2010.

Numeração dos exercícios 

com base na 9ª ed.    ►

BOYCE, W.E.; DIPRIMA, R.C. Equações Diferenciais 
Elementares e Problemas de Valores de Contorno. 
11. ed. Rio de Janeiro: LTC, 2020.

prof. Henrique A M Faria
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