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1. Equação não homogênea.

2. Método dos coeficientes indeterminados.

3. Exemplos.

4. Exercícios.

- Equações algébricas.
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Equação não 
homogênea



Seja a equação não homogênea:
𝑦′′ + 𝑝 𝑡 𝑦′ + 𝑞 𝑡 𝑦 = 𝑔 𝑡

Seja a equação não homogênea:
𝑦′′ + 𝑝 𝑡 𝑦′ + 𝑞 𝑡 𝑦 = 𝑔 𝑡



Seja a equação não homogênea:
𝑦′′ + 𝑝 𝑡 𝑦′ + 𝑞 𝑡 𝑦 = 𝑔 𝑡

A solução geral desta equação pode ser escrita na forma:
𝑦 = 𝑐1𝑦1 𝑡 + 𝑐2𝑦2 𝑡 + 𝑦𝑝(𝑡)

Seja a equação não homogênea:
𝑦′′ + 𝑝 𝑡 𝑦′ + 𝑞 𝑡 𝑦 = 𝑔 𝑡

A solução geral desta equação pode ser escrita na forma:
𝑦 = 𝑐1𝑦1 𝑡 + 𝑐2𝑦2 𝑡 + 𝑦𝑝(𝑡)



Seja a equação não homogênea:
𝑦′′ + 𝑝 𝑡 𝑦′ + 𝑞 𝑡 𝑦 = 𝑔 𝑡

A solução geral desta equação pode ser escrita na forma:
𝑦 = 𝑐1𝑦1 𝑡 + 𝑐2𝑦2 𝑡 + 𝑦𝑝(𝑡)

Onde 𝑦1 e 𝑦2 formam um conjunto fundamental de
soluções da equação homogênea associada; 𝑐1 e 𝑐2 são
constantes arbitrárias e 𝑦𝑝é uma solução particular da

equação não homogênea.

Seja a equação não homogênea:
𝑦′′ + 𝑝 𝑡 𝑦′ + 𝑞 𝑡 𝑦 = 𝑔 𝑡

A solução geral desta equação pode ser escrita na forma:
𝑦 = 𝑐1𝑦1 𝑡 + 𝑐2𝑦2 𝑡 + 𝑦𝑝(𝑡)

Onde 𝑦1 e 𝑦2 formam um conjunto fundamental de
soluções da equação homogênea associada; 𝑐1 e 𝑐2 são
constantes arbitrárias e 𝑦𝑝é uma solução particular da

equação não homogênea.



Seja a equação não homogênea:
𝑦′′ + 𝑝 𝑡 𝑦′ + 𝑞 𝑡 𝑦 = 𝑔 𝑡

A solução geral desta equação pode ser escrita na forma:
𝑦 = 𝑐1𝑦1 𝑡 + 𝑐2𝑦2 𝑡 + 𝑦𝑝(𝑡)

Onde 𝑦1 e 𝑦2 formam um conjunto fundamental de
soluções da equação homogênea associada; 𝑐1 e 𝑐2 são
constantes arbitrárias e 𝑦𝑝é uma solução particular da

equação não homogênea.

Seja a equação não homogênea:
𝑦′′ + 𝑝 𝑡 𝑦′ + 𝑞 𝑡 𝑦 = 𝑔 𝑡

A solução geral desta equação pode ser escrita na forma:
𝑦 = 𝑐1𝑦1 𝑡 + 𝑐2𝑦2 𝑡 + 𝑦𝑝(𝑡)

Onde 𝑦1 e 𝑦2 formam um conjunto fundamental de
soluções da equação homogênea associada; 𝑐1 e 𝑐2 são
constantes arbitrárias e 𝑦𝑝é uma solução particular da

equação não homogênea.

➢ Encontrar o conjunto solução da homogênea.
➢ Encontrar uma solução particular da não homogênea.
➢ Somar as duas funções encontradas.

O teorema afirma que para resolver a eq. deve-se:



➢ Discutimos anteriormente como solucionar a eq. dif.
homogênea de 2ª ordem a coeficientes constantes.

prof. Henrique A M Faria



➢ Discutimos anteriormente como solucionar a eq. dif.
homogênea de 2ª ordem a coeficientes constantes.

➢ Para equação a coeficientes não constantes há
possibilidade de utilizar a redução de ordem para
alguns casos.
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➢ Discutimos anteriormente como solucionar a eq. dif.
homogênea de 2ª ordem a coeficientes constantes.

➢ Para equação a coeficientes não constantes há
possibilidade de utilizar a redução de ordem para
alguns casos.

➢ Então, será necessário desenvolver um método para
encontrar a solução particular da não homogênea.
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➢ Discutimos anteriormente como solucionar a eq. dif.
homogênea de 2ª ordem a coeficientes constantes.

➢ Para equação a coeficientes não constantes há
possibilidade de utilizar a redução de ordem para
alguns casos.

➢ Então, será necessário desenvolver um método para
encontrar a solução particular da não homogênea.

➢ Há duas possibilidades:

1. Método dos coeficientes indeterminados.

2. Método da variação dos parâmetros.
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➢ Discutimos anteriormente como solucionar a eq. dif.
homogênea de 2ª ordem a coeficientes constantes.

➢ Para equação a coeficientes não constantes há
possibilidade de utilizar a redução de ordem para
alguns casos.

➢ Então, será necessário desenvolver um método para
encontrar a solução particular da não homogênea.

➢ Há duas possibilidades:

1. Método dos coeficientes indeterminados.

2. Método da variação dos parâmetros.

➢ Nesta aula veremos o primeiro método.
prof. Henrique A M Faria



Método dos 
coeficientes 

indeterminados



➢ Seja um PVI, não homogêneo da forma:

𝑎, 𝑏, 𝑐: constantes
ቊ

𝑎𝑦′′ + 𝑏𝑦′ + 𝑐𝑦 = 𝑔 𝑡  

𝑦 𝑡0 = 𝑦0 e 𝑦′ 𝑡0 = 𝑦′0



➢ Seja um PVI, não homogêneo da forma:

𝑎, 𝑏, 𝑐: constantes
ቊ

𝑎𝑦′′ + 𝑏𝑦′ + 𝑐𝑦 = 𝑔 𝑡  

𝑦 𝑡0 = 𝑦0 e 𝑦′ 𝑡0 = 𝑦′0

Etapas do método:

1. Encontrar a solução da eq. homogênea associada;



➢ Seja um PVI, não homogêneo da forma:

𝑎, 𝑏, 𝑐: constantes
ቊ

𝑎𝑦′′ + 𝑏𝑦′ + 𝑐𝑦 = 𝑔 𝑡  

𝑦 𝑡0 = 𝑦0 e 𝑦′ 𝑡0 = 𝑦′0

Etapas do método:

1. Encontrar a solução da eq. homogênea associada;

2. Identificar 𝑔(𝑡): 𝑒, 𝑠𝑒n, cos, 𝑝𝑜𝑙𝑖𝑛ô𝑚𝑖𝑜, etc;



➢ Seja um PVI, não homogêneo da forma:

𝑎, 𝑏, 𝑐: constantes
ቊ

𝑎𝑦′′ + 𝑏𝑦′ + 𝑐𝑦 = 𝑔 𝑡  

𝑦 𝑡0 = 𝑦0 e 𝑦′ 𝑡0 = 𝑦′0

Etapas do método:

1. Encontrar a solução da eq. homogênea associada;

2. Identificar 𝑔(𝑡): 𝑒, 𝑠𝑒n, cos, 𝑝𝑜𝑙𝑖𝑛ô𝑚𝑖𝑜, etc;

3. Se 𝑔(𝑡) é uma soma de 𝑛 parcelas formar
𝑛 problemas da forma: 𝑎𝑦′′ + 𝑏𝑦′ + 𝑐𝑦 = 𝑔𝑖 𝑡 ;



➢ Seja um PVI, não homogêneo da forma:

𝑎, 𝑏, 𝑐: constantes
ቊ

𝑎𝑦′′ + 𝑏𝑦′ + 𝑐𝑦 = 𝑔 𝑡  

𝑦 𝑡0 = 𝑦0 e 𝑦′ 𝑡0 = 𝑦′0

Etapas do método:

1. Encontrar a solução da eq. homogênea associada;

2. Identificar 𝑔(𝑡): 𝑒, 𝑠𝑒n, cos, 𝑝𝑜𝑙𝑖𝑛ô𝑚𝑖𝑜, etc;

3. Se 𝑔(𝑡) é uma soma de 𝑛 parcelas formar
𝑛 problemas da forma: 𝑎𝑦′′ + 𝑏𝑦′ + 𝑐𝑦 = 𝑔𝑖 𝑡 ;

4. Para o i-ésimo problema supor uma solução
particular 𝑦𝑝𝑖 apropriada. * Se houver duplicação da

proposta com alguma sol. da homogênea, multiplicá-
la por 𝑡, 𝑡2, 𝑡𝑛 até eliminar a linearidade.



Etapas do método (continuação)

5. Encontrar a solução particular 𝑦𝑝𝑖 para cada

problema. A soma destas soluções é a solução
particular da eq. não homogênea;

prof. Henrique A M Faria



Etapas do método (continuação)

5. Encontrar a solução particular 𝑦𝑝𝑖 para cada

problema. A soma destas soluções é a solução
particular da eq. não homogênea;

6. Somar o conjunto solução da homogênea com a
solução particular final;
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Etapas do método (continuação)

5. Encontrar a solução particular 𝑦𝑝𝑖 para cada

problema. A soma destas soluções é a solução
particular da eq. não homogênea;

6. Somar o conjunto solução da homogênea com a
solução particular final;

7. Utilizar as condições iniciais para determinar as
constantes do conjunto solução da homogênea.

prof. Henrique A M Faria



Etapas do método (continuação)

5. Encontrar a solução particular 𝑦𝑝𝑖 para cada

problema. A soma destas soluções é a solução
particular da eq. não homogênea;

6. Somar o conjunto solução da homogênea com a
solução particular final;

7. Utilizar as condições iniciais para determinar as
constantes do conjunto solução da homogênea.

Um sistema de álgebra computacional (SAC) pode 
auxiliar na execução dos cálculos intermediários. 

prof. Henrique A M Faria



Tabela auxiliar para proposta de solução particular:

prof. Henrique A M Faria



Exemplos



Encontrar a solução particular da eq. dif.Exemplo 1:

𝑦′′ − 3𝑦′ − 4𝑦 = 3𝑒2𝑡

prof. Henrique A M Faria



Encontrar a solução particular da eq. dif.Exemplo 1:

𝑦′′ − 3𝑦′ − 4𝑦 = 3𝑒2𝑡

✓ Proposta: 𝑦𝑝 = A𝑒2𝑡, 𝑦𝑝
′ = 2A𝑒2𝑡, 𝑦𝑝

′′ = 4A𝑒2𝑡

prof. Henrique A M Faria



Encontrar a solução particular da eq. dif.Exemplo 1:

𝑦′′ − 3𝑦′ − 4𝑦 = 3𝑒2𝑡

✓ Proposta: 𝑦𝑝 = A𝑒2𝑡, 𝑦𝑝
′ = 2A𝑒2𝑡, 𝑦𝑝

′′ = 4A𝑒2𝑡

✓ Substituindo a proposta na eq. dif.:

4A𝑒2𝑡 − 3 2A𝑒2𝑡 − 4A𝑒2𝑡 = 3𝑒2𝑡

prof. Henrique A M Faria



Encontrar a solução particular da eq. dif.Exemplo 1:

𝑦′′ − 3𝑦′ − 4𝑦 = 3𝑒2𝑡

✓ Proposta: 𝑦𝑝 = A𝑒2𝑡, 𝑦𝑝
′ = 2A𝑒2𝑡, 𝑦𝑝

′′ = 4A𝑒2𝑡

✓ Substituindo a proposta na eq. dif.:

4A𝑒2𝑡 − 3 2A𝑒2𝑡 − 4A𝑒2𝑡 = 3𝑒2𝑡

(4A − 6𝐴 − 4A)𝑒2𝑡 = 3𝑒2𝑡

prof. Henrique A M Faria



Encontrar a solução particular da eq. dif.Exemplo 1:

𝑦′′ − 3𝑦′ − 4𝑦 = 3𝑒2𝑡

✓ Proposta: 𝑦𝑝 = A𝑒2𝑡, 𝑦𝑝
′ = 2A𝑒2𝑡, 𝑦𝑝

′′ = 4A𝑒2𝑡

✓ Substituindo a proposta na eq. dif.:

4A𝑒2𝑡 − 3 2A𝑒2𝑡 − 4A𝑒2𝑡 = 3𝑒2𝑡

(4A − 6𝐴 − 4A)𝑒2𝑡 = 3𝑒2𝑡

−6𝐴 = 3 ⇒ 𝐴 = −1/2

prof. Henrique A M Faria



Encontrar a solução particular da eq. dif.Exemplo 1:

𝑦′′ − 3𝑦′ − 4𝑦 = 3𝑒2𝑡

✓ Proposta: 𝑦𝑝 = A𝑒2𝑡, 𝑦𝑝
′ = 2A𝑒2𝑡, 𝑦𝑝

′′ = 4A𝑒2𝑡

✓ Logo a solução particular é:

✓ Substituindo a proposta na eq. dif.:

4A𝑒2𝑡 − 3 2A𝑒2𝑡 − 4A𝑒2𝑡 = 3𝑒2𝑡

𝑦𝑝 = −
1

2
𝑒2𝑡, 

(4A − 6𝐴 − 4A)𝑒2𝑡 = 3𝑒2𝑡

−6𝐴 = 3 ⇒ 𝐴 = −1/2

prof. Henrique A M Faria



Encontrar a solução particular da eq. dif.Exemplo 2:

𝑦′′ − 3𝑦′ − 4𝑦 = 2𝑒−𝑡

prof. Henrique A M Faria



Encontrar a solução particular da eq. dif.Exemplo 2:

𝑦′′ − 3𝑦′ − 4𝑦 = 2𝑒−𝑡

✓ Proposta: 𝑦𝑝 = A𝑒−𝑡, 𝑦𝑝
′ = −A𝑒−𝑡, 𝑦𝑝

′′ = +A𝑒−𝑡

prof. Henrique A M Faria



Encontrar a solução particular da eq. dif.Exemplo 2:

𝑦′′ − 3𝑦′ − 4𝑦 = 2𝑒−𝑡

✓ Proposta: 𝑦𝑝 = A𝑒−𝑡, 𝑦𝑝
′ = −A𝑒−𝑡, 𝑦𝑝

′′ = +A𝑒−𝑡

✓ Esta proposta não satisfaz a e. dif. porque zera todos
os termos e não é possível determinar 𝐴.

prof. Henrique A M Faria



Encontrar a solução particular da eq. dif.Exemplo 2:

𝑦′′ − 3𝑦′ − 4𝑦 = 2𝑒−𝑡

⇒

✓ Proposta: 𝑦𝑝 = A𝑒−𝑡, 𝑦𝑝
′ = −A𝑒−𝑡, 𝑦𝑝

′′ = +A𝑒−𝑡

✓ Esta proposta não satisfaz a e. dif. porque zera todos
os termos e não é possível determinar 𝐴.

✓ Ao verificar a solução da homogênea, constata-se
que a proposta é igual a uma das soluções:

𝑟2 − 3𝑟 − 4 = 0 (𝑟 + 1)(𝑟 − 4) = 0

prof. Henrique A M Faria



Encontrar a solução particular da eq. dif.Exemplo 2:

𝑦′′ − 3𝑦′ − 4𝑦 = 2𝑒−𝑡

⇒

✓ Proposta: 𝑦𝑝 = A𝑒−𝑡, 𝑦𝑝
′ = −A𝑒−𝑡, 𝑦𝑝

′′ = +A𝑒−𝑡

⇒

✓ Esta proposta não satisfaz a e. dif. porque zera todos
os termos e não é possível determinar 𝐴.

✓ Ao verificar a solução da homogênea, constata-se
que a proposta é igual a uma das soluções:

𝑟2 − 3𝑟 − 4 = 0 (𝑟 + 1)(𝑟 − 4) = 0

𝑟1 = −1 e  𝑟2= 4 𝑦1 = 𝐶1𝑒−𝑡, 𝑦2 = 𝐶2𝑒4𝑡

prof. Henrique A M Faria



Encontrar a solução particular da eq. dif.Exemplo 2:

𝑦′′ − 3𝑦′ − 4𝑦 = 2𝑒−𝑡

✓ Para remover a linearidade entre soluções,
multiplica-se a proposta por 𝑡.

⇒

✓ Proposta: 𝑦𝑝 = A𝑒−𝑡, 𝑦𝑝
′ = −A𝑒−𝑡, 𝑦𝑝

′′ = +A𝑒−𝑡

⇒

✓ Esta proposta não satisfaz a e. dif. porque zera todos
os termos e não é possível determinar 𝐴.

✓ Ao verificar a solução da homogênea, constata-se
que a proposta é igual a uma das soluções:

𝑟2 − 3𝑟 − 4 = 0 (𝑟 + 1)(𝑟 − 4) = 0

𝑟1 = −1 e  𝑟2= 4 𝑦1 = 𝐶1𝑒−𝑡, 𝑦2 = 𝐶2𝑒4𝑡

prof. Henrique A M Faria



Encontrar a solução particular da eq. dif.Exemplo 2:

𝑦′′ − 3𝑦′ − 4𝑦 = 2𝑒−𝑡

✓ Nova proposta: 𝑦𝑝 = A𝑡𝑒−𝑡, 

prof. Henrique A M Faria



Encontrar a solução particular da eq. dif.Exemplo 2:

𝑦′′ − 3𝑦′ − 4𝑦 = 2𝑒−𝑡

✓ Nova proposta: 𝑦𝑝 = A𝑡𝑒−𝑡, 𝑦𝑝
′ = A𝑒−𝑡 − 𝐴𝑡𝑒−𝑡, 

prof. Henrique A M Faria



Encontrar a solução particular da eq. dif.Exemplo 2:

𝑦′′ − 3𝑦′ − 4𝑦 = 2𝑒−𝑡

✓ Nova proposta: 𝑦𝑝 = A𝑡𝑒−𝑡, 𝑦𝑝
′ = A𝑒−𝑡 − 𝐴𝑡𝑒−𝑡, 

𝑦𝑝
′′ = −2A𝑒−𝑡 + 𝐴𝑡𝑒−𝑡

prof. Henrique A M Faria



Encontrar a solução particular da eq. dif.Exemplo 2:

𝑦′′ − 3𝑦′ − 4𝑦 = 2𝑒−𝑡

✓ Nova proposta: 𝑦𝑝 = A𝑡𝑒−𝑡, 𝑦𝑝
′ = A𝑒−𝑡 − 𝐴𝑡𝑒−𝑡, 

𝑦𝑝
′′ = −2A𝑒−𝑡 + 𝐴𝑡𝑒−𝑡

✓ Substituindo a nova proposta na eq. dif.:

−2A + 𝐴𝑡 𝑒−𝑡 − 3 𝐴 − 𝐴𝑡 𝑒−𝑡 − 4𝐴𝑡 𝑒−𝑡 = 2𝑒−𝑡

prof. Henrique A M Faria



Encontrar a solução particular da eq. dif.Exemplo 2:

𝑦′′ − 3𝑦′ − 4𝑦 = 2𝑒−𝑡

⇒

✓ Nova proposta: 𝑦𝑝 = A𝑡𝑒−𝑡, 𝑦𝑝
′ = A𝑒−𝑡 − 𝐴𝑡𝑒−𝑡, 

𝑦𝑝
′′ = −2A𝑒−𝑡 + 𝐴𝑡𝑒−𝑡

✓ Substituindo a nova proposta na eq. dif.:

−2A + 𝐴𝑡 𝑒−𝑡 − 3 𝐴 − 𝐴𝑡 𝑒−𝑡 − 4𝐴𝑡 𝑒−𝑡 = 2𝑒−𝑡

−5A + 𝐴 + 3𝐴 − 4𝐴 𝑡 = 2 A = −2/5

prof. Henrique A M Faria



Encontrar a solução particular da eq. dif.Exemplo 2:

𝑦′′ − 3𝑦′ − 4𝑦 = 2𝑒−𝑡

✓ Logo a solução particular é:

⇒

✓ Nova proposta: 𝑦𝑝 = A𝑡𝑒−𝑡, 𝑦𝑝
′ = A𝑒−𝑡 − 𝐴𝑡𝑒−𝑡, 

𝑦𝑝
′′ = −2A𝑒−𝑡 + 𝐴𝑡𝑒−𝑡

✓ Substituindo a nova proposta na eq. dif.:

−2A + 𝐴𝑡 𝑒−𝑡 − 3 𝐴 − 𝐴𝑡 𝑒−𝑡 − 4𝐴𝑡 𝑒−𝑡 = 2𝑒−𝑡

−5A + 𝐴 + 3𝐴 − 4𝐴 𝑡 = 2 A = −2/5

𝑦𝑝 = −
2

5
𝑡𝑒−𝑡, 

prof. Henrique A M Faria



Exercícios



Encontrar a solução particular da eq. dif.Exercícios

a)    𝑦′′ + 2𝑦′ + 5𝑦 = 3sen2t

b)    𝑦′′ + 9𝑦′ = 𝑡2𝑒3𝑡 + 6

prof. Henrique A M Faria



➢ Estudar seções 3.5 do livro texto (Boyce).

➢ Resolver o exercício proposto.

➢ Praticar: exercícios da seções 3.5 do Boyce.

➢ Método da variação dos parâmetros.

prof. Henrique A M Faria



1. BOYCE, W.E.; DIPRIMA, R.C. Equações 
Diferenciais Elementares e Problemas de Valores 
de Contorno. 9. ed. Rio de Janeiro: LTC, 2010.

Numeração dos exercícios 

com base na 9ª ed.    ►

BOYCE, W.E.; DIPRIMA, R.C. Equações Diferenciais 
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