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➢ Foram estudados até o momento os problemas de
valor inicial com equações diferenciais de 1ª ordem.

➢ Foi visto que nem toda equação diferencial tem
solução analítica.
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➢ Foram estudados até o momento os problemas de
valor inicial com equações diferenciais de 1ª ordem.

➢ Foi visto que nem toda equação diferencial tem
solução analítica.

➢ Então, antes de resolver um PVI analiticamente, não
seria interessante saber se existe solução?

➢ Além disso, verificar se a solução será única?

➢ O teorema seguinte responde estas duas perguntas.
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Se as funções 𝑝 e 𝑔 são contínuas em um intervalo
aberto 𝐼, contendo o ponto 𝑡 = 𝑡𝑜,

Então, existe uma única função 𝑦 = 𝜙(𝑡) que satisfaz
a equação:

𝑦′ + 𝑝 𝑡 𝑦 = 𝑔(𝑡)

E a condição inicial 𝑦(𝑡𝑜) = 𝑦𝑜 para cada 𝑡 em 𝐼.

Se as funções 𝑝 e 𝑔 são contínuas em um intervalo
aberto 𝐼, contendo o ponto 𝑡 = 𝑡𝑜,

Então, existe uma única função 𝑦 = 𝜙(𝑡) que satisfaz
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Exemplos



Encontrar o intervalo no qual o PVI tem
solução única.
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✓ Então, o Teorema 2.4.1 garante que o PVI tem uma
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➢ Estudar seções 2.4 e 2.6 do livro texto (Boyce).

➢ Resolver o exercício proposto.

➢ Praticar: exercícios da seções 2.4 e 2.6 do Boyce.

➢ Equações diferenciais de 2ª ordem.

prof. Henrique A M Faria



1. BOYCE, W.E.; DIPRIMA, R.C. Equações 
Diferenciais Elementares e Problemas de Valores 
de Contorno. 9. ed. Rio de Janeiro: LTC, 2010.

Numeração dos exercícios 

com base na 9ª ed.    ►

BOYCE, W.E.; DIPRIMA, R.C. Equações Diferenciais 
Elementares e Problemas de Valores de Contorno. 
11. ed. Rio de Janeiro: LTC, 2020.
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