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1. Teoremas de existéncia e unicidade.

2. Exemplos.

- Diferenciacao e Integracao de funcoes.
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» Foram estudados até o momento os problemas de
valor inicial com equacoes diferenciais de 12 ordem.

» Foi visto que nem toda equacao diferencial tem
solucao analitica.
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Foram estudados até o momento os problemas de
valor inicial com equacoes diferenciais de 12 ordem.

Foi visto que nem toda equacao diferencial tem
solucao analitica.

Entao, antes de resolver um PVI analiticamente, nao
seria interessante saber se existe solucao?

Além disso, verificar se a solucao sera unica?

O teorema seguinte responde estas duas perguntas.



Teorema 2.4.1 (Ref. Boyce 92 ed.)

Se as fun¢des p e g sao continuas em um intervalo
aberto I, contendo o ponto t = ¢,,

Entdo, existe uma unica fungdao y = ¢(t) que satisfaz
a equacao:

y' +p(t)y = g(t)

E a condicao inicial y(t,) = y, para cadat em [.
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Entdo, existe uma unica fungdao y = ¢(t) que satisfaz
a equacao:

y' +p©)y = g(t)
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O teorema diz que:

» O PVI tem solugdo unica se p(t)e g(t) sdo continuas.
» A solucdo existe em qualquer intervalo I, contendo a
condicdo inicial e no qual p(t)e g(t) sdo continuas.
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Teorema 2.4.1 (Ref. Boyce 92 ed.)

Se as fun¢des p e g sao continuas em um intervalo
aberto I, contendo o ponto t = ¢,,

Entdo, existe uma unica fungdao y = ¢(t) que satisfaz
a equacao:

y' +p©)y = g(t)
E a condicao inicial y(t,) = y, para cadat em [.

O teorema diz que:

» O PVI tem solugdo unica se p(t)e g(t) sdo continuas.

» A solucdo existe em qualquer intervalo I, contendo a
condicdo inicial e no qual p(t)e g(t) sdo continuas.

» Poderd haver descontinuidade da solucdo nos pontos
em que p(t)e g(t) forem descontinuas. 11
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Exemplo 1: Encontrar o intervalo no qual o PVI tem
solucao unica.

ty' + 2y = 4t* y(1) =2
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Exemplo 1: Encontrar o intervalo no qual o PVI tem
solucao unica.

ty' + 2y = 4t* y(1) =2
v Colocar a eq. dif. na forma padrio.

2 2
y’+?y=4t, p(t)=? e g(t) =4t

v A eq. dif. é linear, g é continua em R e p é continua
paratodot # 0 (t <0 out > 0). Y t

O >

v Oiintervalo t > 0 contém a condigdo y(1) = 2

v' Ent3o, o Teorema 2.4.1 garante que o PVI tem uma
unica solugao no intervalo (0, +0) para t.
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» Estudar secoes 2.4 e 2.6 do livro texto (Boyce).
» Resolver o exercicio proposto.

» Praticar: exercicios da secdes 2.4 e 2.6 do Boyce.

» Equacoes diferenciais de 22 ordem.
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