

Laboratório de Física III **Prática 3**

1. Objetivos

- Aprender a função de um potenciômetro em um circuito;
- Verificar a influência de cargas na tensão e corrente de saída no potenciômetro.

2. Medidas e Organização dos Dados

• Potenciômetro Sem Carga

1. Monte o circuito mostrado na Figura 1, contendo um potenciômetro e um resistor R_1 ;

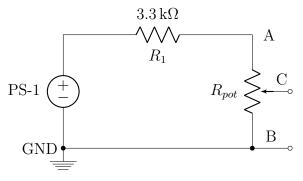


Figura 1

- 2. Meça a resistência total do potenciômetro (R_{pot}) entre os pontos A e B;
- 3. Usando o ohmímetro, ajuste a parte de baixo do potenciômetro (R_{CB}) para uma resistência $(R_{20\%})$ correspondente a 20% da resistência total (gire o knob para alterar o valor da resistência);
- 4. Ligue a placa e ajuste PS-1 para 8,0 V;
- 5. Meça a tensão de saída sem carga, $Vs_{s/c}$, em paralelo com a parte R_{CB} do potenciômetro;
- 6. Meça a corrente de entrada (total) que atravessa o circuito sem nenhuma carga conectada ($Ie_{s/c}$);
- 7. Meça a tensão de saída no potenciômetro e a corrente no circuito sem carga $(Vs_{s/c})$ para outras frações de R_{CB} com relação à resistência total (40%, 60%, 80% e 100%).

• Potenciômetro com Resistor (carga 1)

1. Conecte o resistor R_2 na saída do ponto C do potenciômetro (em paralelo com R_{CB}), como mostrado na Figura 2;

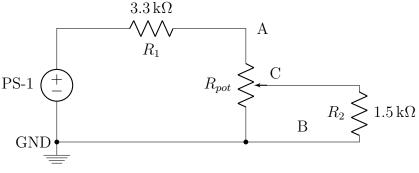


Figura 2

- 2. Sem alterar a tensão fornecida por PS-1, ajuste a parte R_{CB} para 20%;
- 3. Utilize o amperímetro para medir a corrente de entrada com R_2 conectado (Ie_{R2});
- 4. Meça a corrente de saída que passa por R_2 (Is_{R2});
- 5. Meça a tensão de saída, neste caso Vs_{R2} ;
- 6. Repita as medidas dos itens de tensão de saída, corrente de entrada e corrente de saída para outras frações de R_{CB} com relação à resistência total (40%, 60%, 80% e 100%);
- 7. Organize os dados em uma tabela.

• Potenciômetro com LED (carga 2)

1. Utilizando o mesmo circuito da parte anterior, conecte o LED L em paralelo com o potenciômetro (R_{CB}) , como mostrado na Figura 3;

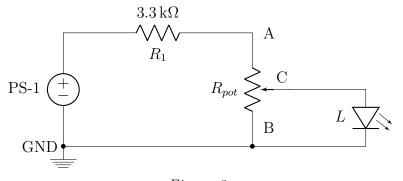


Figura 3

- 2. Mantenha a tensão de PS-1 em 8,0 V e ajuste a parte R_{CB} para 20%;
- 3. Utilize o amperímetro para medir a corrente de entrada com o LED (Ie_L) ;
- 4. Meça novamente a tensão de saída com o LED conectada em paralelo com o potenciômetro Vs_L ;
- 5. Meça a corrente de saída que atravessa o LED;
- 6. Repita as medidas de tensão de saída, corrente de entrada e corrente de saída para outras frações de R_{CB} com relação à resistência total (40%, 60%, 80% e 100%);
- 7. Organize os dados em uma tabela.

3. Análises para o Relatório

- 1. Conhecendo a expressão do divisor de tensões, a tensão de entrada e os valores das resistências nominais, calcule os valores esperados (teóricos) de $Vs_{s/c}$, Vs_{R2} ;
- 2. Compare os valores medidos e calculados de $Vs_{s/c}$ e Vs_{R2} usando o desvio $\Delta V(\%)$;
- 3. Conhecendo a expressão do divisor de correntes, a corrente de entrada e os valores das resistências nominais, calcule os valores esperados (teóricos) de corrente de saída no potenciômetro com a carga resistiva;
- 4. Compare o valor medido e calculado de corrente usando o desvio $\Delta I(\%)$;
- 5. Represente graficamente, em um mesmo gráfico, as tensões $Vs_{s/c}$, Vs_{R2} , Vs_L em função de $R_{20\%}$, $R_{40\%}$, até $R_{100\%}$.
- 6. O que mostra o gráfico anterior? Explique a diferença entre as curvas em função das cargas.
- 7. Explique com argumentos físicos o que acontece com a corrente em função da adição de cargas no circuito.
- 8. O potenciômetro pode ser usado como controle de volume nos rádios. Explique os tipos existentes de potenciômetros e seus princípios de funcionamento.