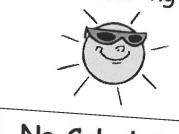
Grade 6

Entering


Grade 7

Summer Math Packet

WAREL

Summer Math Packet

Review of Number Sense Skills for Students Entering Math 7

No Calculators!

- The purpose of this summer math packet is to provide you with notes and practice problems to help you review what you learned in sixth grade math.
- The summer math packet will NOT be graded. However, you are responsible
- Within the first few days of Math 7, you will be assessed on the math skills reviewed in this summer math packet. The assessment will count as a quiz grade in the first marking period.

Materials Required for Math 7:

- hole-punched spiral notebook
- binder with dividers (this binder may be shared with other classes)
- scientific calculator (TI-30XIIS from Texas Instruments is preferred)
- many, many sharpened pencils with erasers (additional eraser would be useful)
- correcting pen (NOT dark blue or black ink, please)

Review Topics Covered in the Summer Math Packet

- 1. Order of Operations
- 2. Place Value of Decimals
- 3. Different Forms of Writing Numbers
- 4. Rounding Decimals
- 5. Comparing and Ordering Decimals
- 6. Adding and Subtracting Decimals
- 7. Multiplying Decimals
- 8. Dividing Decimals
- 9. Fractions, Mixed Numbers, and Improper Fractions
- 10. Equivalent Fractions
- 11. Reducing or Simplifying Fractions
- 12. Comparing and Ordering Fractions
- 13. Adding and Subtracting Fractions
- 14. Multiplying Fractions
- 15. Dividing Fractions
- 16. Equivalent Fractions, Decimals, and Percents
- 17. Finding the Percent of a Number
- 18. Converting within the Metric System
- 19. Converting within the Customary System of Measurement

Order of Operations

- 1. Parentheses and other grouping symbols
- 2. Exponents
- 3. Multiplication and division from left to right
- 4. Addition and subtraction from left to right

6)
$$(33 - 3^2) \div (-3 + 7)$$

$$2) (14 + 23 - 5) \div 4$$

7)
$$(34 - 4) \div 3 + 3^2$$

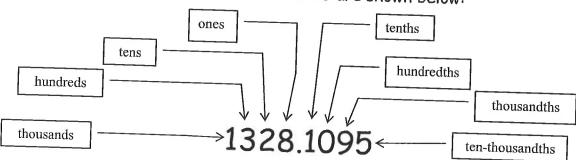
$$3)$$
 $3 \times 13 \times (3 - 8)$

8)
$$6x(9-4)+5^2$$

9)
$$3 \times (14 + 3) - 5^2$$

$$5)(10 + 5) + 12 \div 4$$

10)
$$(7 \times 10 + 4^2) + 2$$


Decimal Place Values

The <u>decimal point</u> separates the <u>whole numbers</u> from the <u>fractional part</u> of a number.

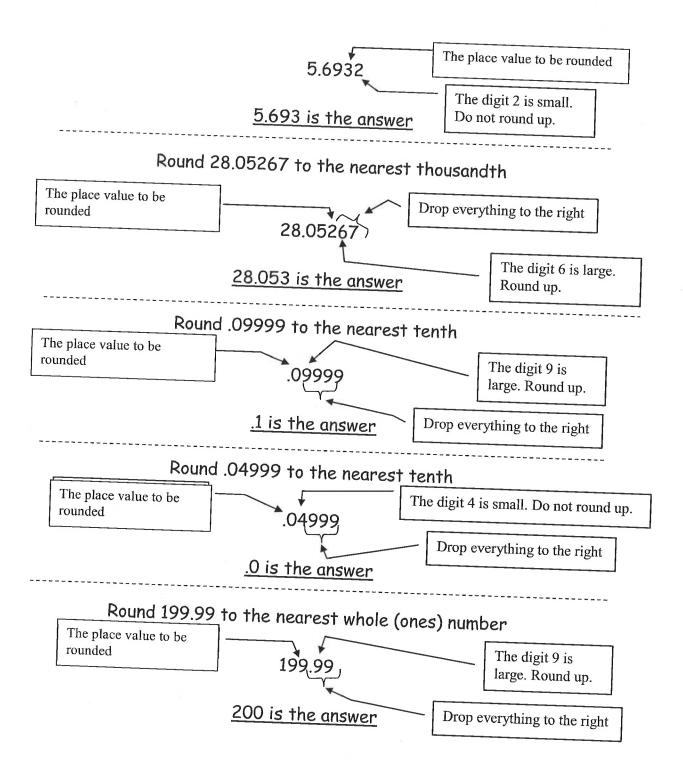
1328.1095

In a whole number the <u>decimal point is all the way to the right</u>, even if it is not shown in a problem.

The place values of the number 1328.1095 are shown below:

The word "AND" is where the decimal point will go.

- 1) In the number 2039.876, which digit is in the tenths place?
- 2) In the number 2039.876, which digit is in the tens place?
- 3) In the number 2039.876, which digit is in the thousands place?
- 4) In the number 2039.876, which digit is in the thousandths place?
- 5) In the number 6174.903, what digit is in the thousandths place?
- 6) In the number 6174.903, what digit is in the hundredths place?
- 7) In the number 6174.903, what digit is in the tenths place?
- 8) In the number 6174.903, what digit is in the ones place?

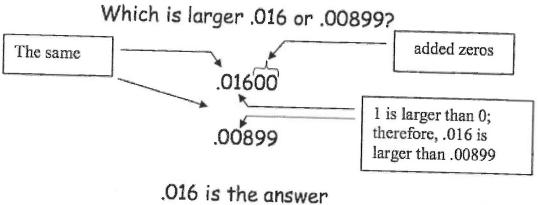

Decimals can be written in standard, word, or expanded forms. For example, the number 34.215 can be written in:

- STANDARD FORM = 34.215
- WORD FORM = thirty-four and two hundred fifteen thousandths
- EXPANDED FORM = $(3 \times 10) + (4 \times 1) + (2 \times 0.1) + (1 \times 0.01) + (5 \times 0.001)$

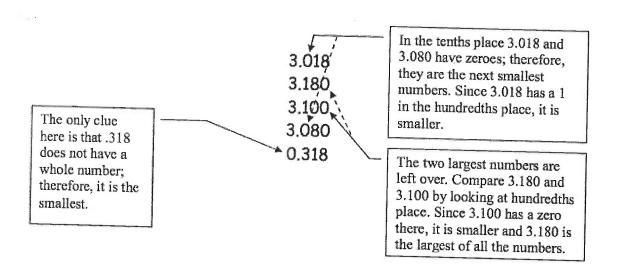
STANDARD FORM	EXPANDED FORM
44.907	
1.004	
0.45	
	(1 × 0.01) + (3 × 0.001)
	$(2 \times 100) + (1 \times 1) + (4 \times 0.01) + (8 \times 0.001)$
	(6x 1) + (7 x 0.1)
	44.907 1.004

Rounding Decimal Numbers

When rounding decimals, first look at the place value to be rounded. Then look at the digit immediately to its right. If that digit is less than 5 (0, 1, 2, 3, or 4), then do NOT round up. If the digit is 5 or more, then round up.



Round each decimal to the indicated place value.


1)	.1325 to thousandths	
2)	.0091 to thousandths	
3)	.0196 to thousandths	
4)	5.1234 to thousandths	
5)	6.6666 to thousandths	
6)	40.61884 to thousandths	
7)	1.99999 to thousandths	
8)	.1325 to hundredths	
9)	.0091 to hundredths	
10)	.3333 to hundredths	
11)	5.567 to hundredths	
12)	48.001 to hundredths	
13)	7.987 to tenths	
14)	.666 to tenths	
15)	1.32 to tenths	
16)	99.99 to tenths	
17)	.5 to whole (ones) number	
18)	11.99 to whole (ones) number	
19)	499 to the nearest hundred	
	To monda con nundi ed	

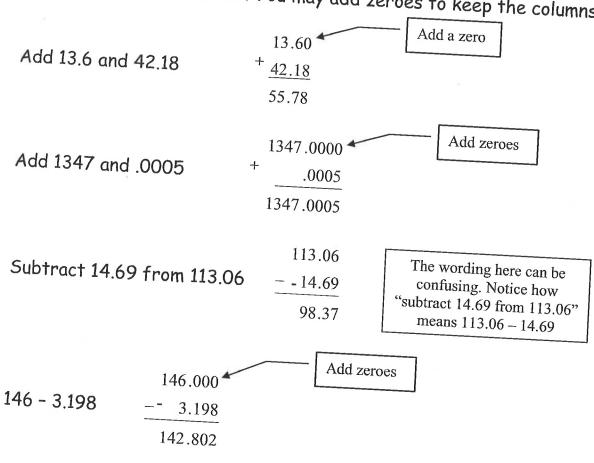
Comparing and Ordering Decimals

When comparing and ordering decimals, it is usually easiest to line up the numbers vertically with the decimal points in a vertical line. If a number doesn't have a decimal point, place the decimal point at the end. You may fill in blanks spaces with zeroes to make the columns easier to compare.

Example: Order the decimals from least to greatest.

ANSWER .318 3.018 3.08 3.1 3.18

Order these decimals from greatest to least.


1) 2.62	2.061	2.612	0.66	6.21
2) 14.01	140.1	1.401	14.1	14.11
3) .0067	.007	.00618	.00701	.006
4) .1	.01	1	1.1	.019
5) 5.1	5	5.01	5.09	5.91
				·

Order these decimals from least to greatest.

0, 00	er mese dech	mais trom least t	o greatest.		
6)	7.8	8.7	8.2	7.96	8.014
7)	0.15	.01	.1	.0101	.001
8)	94	93.999	93.909	93.99901	94.0001
9)	16.83	16.38	16.3	16.8	16
10)	3.49	3.489	3.4899	3.48999	3.48989

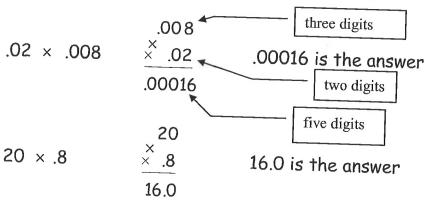
Adding and Subtracting Decimal Numbers

When adding and subtracting decimal numbers, line up the decimal point of all the numbers. If a number does not show a decimal point, place one to the right of the whole number. You may add zeroes to keep the columns lined up.

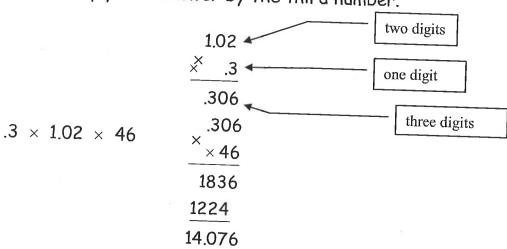
15) Subtract 38.97 from 59

18)

3.80


26.91

587.89


20) Subtract .001 from .01

Multiplying Decimal Numbers

When multiplying decimal numbers, set up the problem like regular multiplication. When you get your answer, add up the total number of digits to the right of the decimals in both the numbers you are multiplying and place the decimal in your answer that many places from the right end.

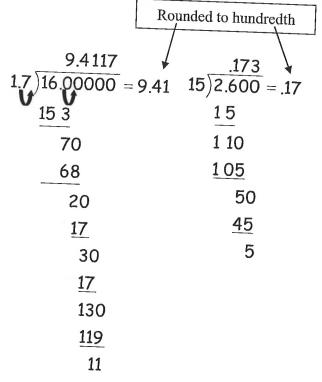
When multiplying three numbers together, multiply any two to get an answer; then multiply that answer by the third number.

14.076 is the answer

11) 12) 13) 14)
$$0.001$$
 8.88 12.34 0.001 0.001 8.88 0.001 0.00

Dividing Decimal Numbers

Here are the three ways you will see division problems; they all mean the same thing:


When dividing decimal numbers, move the decimal point in the divisor (number you're dividing by) to the right end of the divisor. Then move the decimal point in the dividend (the number you're dividing into) the same number of places to the right as you moved it in the divisor.

Once you have placed the decimal point correctly in your quotient (answer), divide like you would in whole numbers.

Directions: Divide. Round answers to hundredths, if necessary

Word Problems with Decimals

Definitions:

Sum - the answer from adding numbers

<u>Difference</u> – the answer from subtracting numbers <u>Product</u> – the answer from multiplying numbers <u>Quotient</u> – the answer from dividing numbers

In solving word problems, try to understand the whole situation being described. Some numbers may not even be involved in answering the question. Sometimes you will have to do extra steps to get the numbers you need to solve the problem.

If the annual rainfall for a town near Santa Fe was 12.3 inches in 1960, 13.2 inches in 1961, and 11.5 in 1962, what was the total rainfall for the three years?

"Total" means to add
$$+\frac{12.3}{13.2}$$
 37.0 inches is the answer 37.0

What is the difference between David's salary of \$523.86 per month and Robert's monthly salary, which is \$318.90?

"Difference" means to subtract
$$-\frac{523.86}{-318.90}$$
 \$204.96 is the answer 204.96

If you have a car that used 19.2 gallons of gas to go 285 miles, how many miles per gallon (mpg) did the car get? (round your answer to the nearest tenth.)

$$mpg = \frac{miles}{gallon} = \frac{285 \text{ miles}}{19.2 \text{ gallon}}; \text{ so divide } 19.2 \text{ into } 285$$

$$\frac{14.84}{19.2 \times 285.000}$$
14.8 mpg is the answer

You need to order three hinges for each of 15 doors. Each hinge costs \$.75. How much will the hinges cost?

The total number of hinges is
$$3 \times 15 = 45$$

Multiply $45 \times .75 = 33.75$ \$33.75 is the answer

- 1) During five days, you drive 15.4 miles, 24.2 miles, 10.4 miles, 18.7 miles, and 7.5 miles. How many miles did you drive during those five days?
- 2) If you are given 3 checks, one for \$36.98, another for \$17.27, and a third for \$260, how much is the total of all 3 checks?
- 3) If a car gets 42.1 mpg on the highway, how many gallons of fuel will it use by traveling 340 highway miles? (round answer to tenths)
- 4) If you need to cut 5 pieces of glass from a 14 feet length, how long should each piece be?
- 5) If you purchase a TV and pay \$40 down and \$32.60 a month for 8 months, what was the purchase price of the TV?
- 6) If the revenues from the extra $\frac{1}{4}$ % sales tax amounted to \$48,136.47 in 1983 and is to be divided equally among 7 different departments within the city of Albuquerque, how much will each department receive? (round to the nearest cent)
- 7) If the total precipitation (rainfall and snow) for the year at a mountain town is expected to be 37.9 inches and it has already rained 26.82 inches, how many more inches of precipitation are expected?

MIXED DECIMALS PRACTICE

Change to decimals. (round to hundredths)

1)
$$\frac{2}{5}$$

2)
$$\frac{1}{6}$$

3)
$$\frac{3}{8}$$

4)
$$5\frac{1}{2}$$

Change to fractions (reduce, if possible)

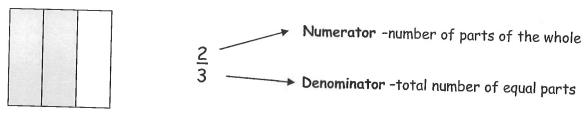
Add

11) 8.1 + 268 + 49.64

Subtract

Multiply

Divide (round answers to hundredths)


- 21) Arrange from largest to smallest .808, .81, .8019, .807 .8
- 22) Arrange from smallest to largest 1.62, 1.6, 1.06, 1.16, 1.66
- 23) Subtract four and three-tenths from eleven and eighty-one hundredths.
- 24) If you ran 5.3 miles on Monday, 3.9 miles on Wednesday, and 4.7 miles on Friday, how many miles did you run, total, for the three days?

25) If you divided \$63.65 evenly among five children, how much would each child get?

26) If you bought 12.6 gallons of gasoline at \$1.20 per gallon, how much did the gasoline cost?

Fractions

-A fraction is a symbol used to name a part of a whole, a part of a set, a location on a number line, or a division of whole numbers.

The larger the denominator the smaller each piece of the whole is. This is because the whole needs to be separated into more pieces.

Improper Fractions

An improper fraction has a numerator greater than its denominator.

A mixed number has a whole number and a fraction.

$$= \frac{7}{3} = 2\frac{1}{3}$$

PRACTICE

Write the fraction for each situation.

- 1. It's 25 miles to Gramma's. We have already driven 11 miles. What fraction of the way have we driven?
- 2. A pizza was cut into twelve slices. Seven were eaten. What fraction of the pizza was eaten?
- 3. There are 24 students in a class. 8 have passed the fractions test. What fraction of the students have passed fractions?

Converting Mixed Numbers & Improper Fractions

*Use division to convert an improper fraction into a mixed number.

Step 1: Divide the numerator by the denominator
$$\frac{12}{8}$$
 $\frac{8}{12}$

Step 3: Write your answer as a mixed number and simplify if necessary
$$1\frac{4}{8} \div 2 = 1\frac{2}{4}$$

*Use multiplication to convert a mixed number into an improper fraction.

Step 1: Multiply the whole number by the denominator.

$$3 \underbrace{3}_{4} \qquad 3 \times 4 = 12$$

Step 2: Add your answer to the numerator

$$12 + 3 = 15$$

Step 3: Put the new numerator over the old denominator.

Write the mixed number for each improper fraction.

1a.
$$\frac{55}{18}$$

1b.
$$\frac{38}{12}$$

1c.
$$\frac{20}{15}$$

2a.
$$\frac{45}{3}$$

2b.
$$\frac{14}{10}$$

2c.
$$\frac{48}{15}$$

3a.
$$\frac{29}{20}$$

3b.
$$\frac{34}{18}$$

3c.
$$\frac{20}{2}$$

Write the improper fraction for each mixed number.

1a.
$$2\frac{11}{15}$$

1b.
$$18\frac{2}{9}$$

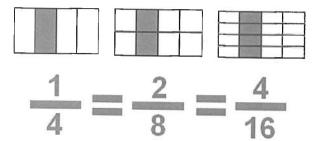
1c.
$$18\frac{7}{19}$$

2a.
$$8\frac{8}{10}$$

2b.
$$15\frac{16}{17}$$

2c.
$$18\frac{10}{13}$$

3a.
$$14\frac{15}{16}$$


3b.
$$11\frac{4}{7}$$

3c.
$$17\frac{3}{16}$$

Notes

Equivalent Fractions

Equivalent fractions are fractions that name the AMOUNT in different ways.

To find equivalent fractions by using MULTIPLICATION, multiply the original fraction by a fraction that represents ONE WHOLE.

$$\frac{1}{3} \frac{x^2}{x^2} = \frac{2}{6} \frac{x^2}{x^2} = \frac{4}{12}$$

To find equivalent fractions by using DIVISION, divide the original fraction by a common factor of the numerator and denominator.

$$\frac{30 \div 6}{42 \div 6} = \frac{5}{7}$$

PRACTICE

Find the missing numerator or denominator.

1a.
$$\frac{4}{3} = \frac{4}{12}$$

$$2a. \quad \frac{}{1} \quad = \quad \frac{50}{5}$$

$$3a. \frac{12}{} = \frac{60}{5}$$

1b.
$$\frac{2}{1} = \frac{30}{1}$$

2b.
$$\frac{2}{}$$
 = $\frac{20}{10}$

3b.
$$\frac{21}{6} = \frac{7}{}$$

1c.
$$\frac{1}{2} = \frac{3}{2}$$

$$2c. \quad \frac{5}{20} \quad = \quad \frac{1}{}$$

$$3c. \quad \frac{1}{} = \frac{5}{5}$$

Notes

Simplifying or Reducing Fractions

To simplify or reduce a fraction, divide both the numerator and denominator by the GREATEST COMMON FACTOR. If you do not know the greatest common factor, then keep dividing the fraction by a common factor until the only common factor is one.

$$\frac{12}{54} = \frac{6}{27} = \frac{2}{9} \qquad \text{OR} \qquad \frac{12}{54} \div \frac{6}{6} = \frac{2}{9}$$

PRACTICE

Simplify or reduce each fraction.

1a.
$$\frac{4}{16}$$

1b.
$$\frac{10}{26}$$

1c.
$$\frac{18}{18}$$

2a.
$$\frac{6}{27}$$

2b.
$$\frac{3}{48}$$

2c.
$$\frac{10}{40}$$

$$3a. \frac{15}{48}$$

3b.
$$\frac{3}{45}$$

3e.
$$\frac{4}{24}$$

4a.
$$\frac{20}{50}$$

4b.
$$\frac{7}{35}$$

4c.
$$\frac{9}{39}$$

5a.
$$\frac{8}{56}$$

5b.
$$\frac{18}{33}$$

5c.
$$\frac{12}{20}$$

Comparing and Ordering Fractions

Step 1: Find a common denominator (LCM)

Step 2: Find equivalent fractions using the common denominator

$$2 \times 8 = 16$$
 $7 \times 2 = 14$ $5 \times 3 = 15$

$$5 \times 3 = 15$$

$$\frac{14}{24}$$
 < $\frac{15}{24}$ < $\frac{16}{24}$ so $\frac{7}{12}$ < $\frac{2}{3}$ < $\frac{5}{8}$

PRACTICE

Compare the fractions by using >, <, or =.

1a. $\frac{4}{12}$ $\boxed{\frac{1}{2}}$	1b. $\frac{5}{11}$ $\boxed{}$ $\frac{1}{2}$	1c. $\frac{8}{8}$ $\boxed{1\frac{11}{12}}$
$2a. \frac{2}{4} \boxed{1} \frac{11}{11}$	$\frac{3}{10}$ $\frac{2}{4}$	2c. $\frac{11}{12}$ $\boxed{ \frac{11}{11} }$
3a. $\frac{1}{2}$ $\frac{1}{6}$	3b. $\frac{4}{5}$ $\frac{9}{9}$	3c. $\frac{1}{2}$ $\frac{6}{11}$

Order the fractions from LEAST to GREATEST.

1a.
$$\frac{6}{11}$$
, $\frac{8}{11}$, $\frac{5}{11}$

1b.
$$\frac{1}{7}$$
, $\frac{3}{11}$, $\frac{1}{2}$

$$\frac{8}{12}$$
, $1\frac{8}{11}$, $\frac{8}{9}$

2b.
$$\frac{1}{2}$$
, $\frac{3}{8}$, $1\frac{1}{4}$

$$\frac{8}{12}$$
, $\frac{7}{12}$, $\frac{3}{12}$

3b.
$$1\frac{4}{8}$$
, $\frac{1}{10}$, $1\frac{2}{3}$

Adding & Subtracting Fractions with LIKE Denominators

Step 1: Make sure the denominators are the same
$$\frac{5}{10} + \frac{3}{10} =$$

Step 2: Add or subtract the numerators
$$\underline{5} \div \underline{3} = \underline{8}$$

10 10 10

Step 3: The denominator stays the same
$$\frac{5}{10} + \frac{3}{10} = \frac{8}{10}$$

Step 4: Simplify if necessary
$$8 \div 2 = 4$$

 $10 \div 2 = 5$

Adding & Subtracting Fractions with LIKE Denominators

Step 1: Find an equivalent fraction for both fractions, so that they both have the same denominator

$$\frac{4}{8} + \frac{1}{6} =$$
 a) find the LCM of the denominators $\underline{8}$: 8, 16, 24, 32 6: 6, 12, 18, 24, 30

b) find the equivalent fraction
$$\frac{4}{8} \times 3 = \frac{12}{24} = \frac{1}{6} \times 4 = \frac{4}{24}$$

Step 2: Once the denominators are the same, add or subtract the numerators

$$\frac{12}{24} + \frac{4}{24} = \frac{16}{24}$$

Step 3: The denominator stays the same
$$\frac{12}{24} + \frac{4}{24} = \frac{16}{24}$$

Step 4: Simplify if necessary
$$\frac{16}{24} \div 8 = \frac{2}{3}$$

Find the sum.

1a.
$$\frac{4}{11} + \frac{9}{4} =$$

1b.
$$\frac{10}{11} + \frac{1}{6} =$$

2a.
$$\frac{1}{11} + \frac{5}{9} =$$

2b.
$$\frac{9}{7} + \frac{5}{4} =$$

3a.
$$\frac{9}{8} + \frac{9}{4} =$$

3b.
$$\frac{6}{9} + \frac{6}{9} =$$

4a.
$$4\frac{1}{2} + 5\frac{1}{4} =$$

4b.
$$9\frac{2}{12} + 3\frac{3}{4} =$$

5a.
$$2\frac{7}{8} + 10\frac{1}{3} =$$

5b.
$$7\frac{1}{4} + 9\frac{1}{3} =$$

6a.
$$4\frac{5}{12} + 3\frac{3}{4} =$$

6b.
$$3\frac{2}{4} + 6\frac{6}{9} =$$

Find the difference.

1a.
$$\frac{4}{2} - \frac{2}{10} =$$

1b.
$$\frac{7}{8} - \frac{1}{10} =$$

$$2a. \frac{4}{5} - \frac{2}{5} =$$

2b.
$$\frac{6}{4} - \frac{10}{11} =$$

3a.
$$7\frac{6}{8} - \frac{11}{3} =$$

3b.
$$5\frac{2}{6} - \frac{1}{3} =$$

4a.
$$7\frac{2}{10} - \frac{1}{2} =$$

4b.
$$10\frac{4}{7} - \frac{6}{8} =$$

5a.
$$8\frac{1}{2} - 8\frac{4}{9} =$$

5b.
$$11\frac{5}{6} - 4\frac{4}{10} =$$

6a.
$$8\frac{5}{8} - 7\frac{2}{3} =$$

6b.
$$9\frac{8}{9} - 1\frac{8}{10} =$$

WORD PROBLEMS PRACTICE

- 1. Find the total width of 3 boards that $1\frac{3}{4}$ inches wide, $\frac{7}{8}$ inch wide, and $1\frac{1}{2}$ inches wide.
- 2. A 7.15H tire is $6\frac{5}{8}$ inches wide and a 7.15C tire is $4\frac{3}{4}$ inches wide. What is the difference in their widths?
- 3. A patient is given $1\frac{1}{2}$ teaspoons of medicine in the morning and $2\frac{1}{4}$ teaspoons at night. How many teaspoons total does the patient receive daily?
- 4. $3\frac{1}{3}$ feet are cut off a board that is $12\frac{1}{4}$ feet long. How long is the remaining part of the board?
- 5. $\frac{3}{8}$ of the corn in the U.S. is grown in Iowa. $\frac{1}{4}$ of it is grown in Nebraska. How much of the corn supply is grown in the two states?

- 6. A runner jogs $7\frac{1}{5}$ miles east, $5\frac{1}{4}$ miles south, and $8\frac{2}{3}$ miles west. How far has she jogged?
- 7. If $3\frac{1}{2}$ ounce of cough syrup is used from a $9\frac{1}{4}$ ounce bottle, how much is left?
- 8. I set a goal to drink 64 ounces of water a day. If I drink $10\frac{1}{3}$ ounces in the morning, $15\frac{1}{2}$ ounces at noon, and $20\frac{5}{6}$ ounces at dinner, how many more ounces of water do I have to drink to reach my goal for the day?
- 9. Three sides of parking lot are measured to the following lengths: $108\frac{1}{4}$ feet, $162\frac{3}{8}$ feet, and $143\frac{1}{2}$ feet. If the distance around the lot is $518\frac{15}{16}$ feet, find the fourth side.
- 10. Gabriel wants to make five banners for the parade. He has 75 feet of material. The size of four of the banners are: $12\frac{1}{3}$ ft., $16\frac{1}{6}$ ft., $11\frac{3}{4}$ ft., and $14\frac{1}{2}$ ft. How much material is left for the fifth banner?

Multiplying Fractions

$$\frac{4}{5} \times \frac{3}{8} = 12$$

$$\frac{4}{5}$$
 $\frac{3}{8}$ = $\frac{12}{40}$

Multiplying Whole Numbers and Mixed Numbers

Step 1: Change the whole number or mixed number to an improper fraction.

Step 2: Follow the rules for multiplying fractions.

$$1\frac{3}{4} \times 2\frac{1}{2} = ?$$

$$1x4+3=7$$

$$2x2+1=5$$

$$\frac{7}{4} \times \frac{5}{2} = \frac{35}{8} = 4\frac{3}{8}$$

PRACTICE

Find the product.

1a.
$$\frac{5}{6} \times \frac{5}{12} =$$

1b.
$$\frac{8}{12} \times \frac{8}{11} =$$

$$2a. \frac{5}{12} \times \frac{9}{10} =$$

2b.
$$\frac{2}{12} \times \frac{1}{6} =$$

3a. 8
$$\times \frac{8}{11} =$$

3b. 3
$$\times \frac{5}{6} =$$

4a.
$$\frac{7}{12} \times 1 =$$

4b.
$$\frac{7}{8} \times 3 =$$

5a.
$$4\frac{9}{12} \times 3\frac{1}{2} =$$

5b.
$$10\frac{1}{9} \times 8\frac{8}{10} =$$

6a.
$$9\frac{1}{3} \times 2\frac{2}{10} =$$

6b.
$$9\frac{4}{7} \times 7\frac{1}{4} =$$

Dividing Fractions and Mixed Numbers

Step 1: Rewrite any whole numbers or mixed numbers as improper fractions.

Step 2: Keep the first fraction.

Step 3: Change the division sign to multiplication.

Step 4: Flip the second fraction to its reciprocal.

Step 5: Follow the rules for multiplying fractions.

Example 1

$$\frac{1}{3} - \frac{4}{5}$$

flip the second fraction...

$$\frac{1}{3} \times \frac{5}{4} = \frac{5}{12}$$

Example 2

$$|\frac{2}{7} \div 5 = \frac{9}{7} \div \frac{5}{7} = \frac{9}{7} \times \frac{1}{5}$$

$$= \frac{9 \times 1}{7 \times 5} = \frac{9}{35}$$

PRACTICE

Find the quotient.

1a.
$$\frac{2}{12} \div \frac{2}{10} =$$

1b.
$$\frac{3}{12} \div \frac{3}{5} =$$

$$2a. \quad \frac{7}{12} \div \frac{4}{5} =$$

2b.
$$\frac{1}{2} \div \frac{2}{4} =$$

$$3a. \frac{3}{12} \div 10 =$$

$3b$
. $\frac{3}{12} \div 6 =$

4a.
$$\frac{5}{8} \div 5 =$$

4b.
$$\frac{1}{11} \div 7 =$$

5a.
$$7 \div \frac{7}{8} =$$

5b.
$$7 \div \frac{4}{10} =$$

$$6a. \ 4 \div \frac{8}{11} =$$

6b. 4
$$\div \frac{4}{10} =$$

$$7a. 7\frac{2}{8} \div \frac{4}{6} =$$

7b.
$$4\frac{8}{10} \div \frac{4}{11} =$$

$$8a. \quad \frac{2}{9} + 10\frac{2}{7} =$$

8b.
$$\frac{6}{7} \div 5\frac{5}{6} =$$

FROM PERCENT TO DECIMAL

To convert from percent to decimal: divide by 100, and remove the "%" sign.

The easiest way to divide by 100 is to move the decimal point 2 places to the left:

Eman D.			places to the left:
75%	0.7-5	To Decimal 0.75	
	2 Places		move the decimal point 2 places to the left, and remove the "%" sign.

FROM DECIMAL TO PERCENT

To convert from decimal to percent : multiply by 100, and add a "%" sign.

The easiest way to multiply by 100 is to move the decimal point 2 places to the right:

From Decimal			- places to the right:
		To Percent	
0.125	0.1.2.5	12.5%	move the decimal point a
PRACTIC	E		right, and add the "%" sign.

Convert Decimal to Percent

	to Percent	
0.95 =		
1.35 =	0.46 =	4.0.
	1.59 =	1.91 =
0.88 =		1.74 =
0.565 =	1.32 =	0.567 =
0.141 =	0.33 =	
0.141 =	0.931 =	0.949 =
	5.001 2	0.25 =

Convert Percent to Decimal

154 % =	78.8 % = 142 % = 78.1 % = 11 % = 32 % =	89 % = 149 % = 37.2 % = 146 % = 66 % =	69 % = 47 % = 57.4 % = 99.5 % =
		66 % =	154 % =

FROM FRACTION TO DECIMAL

The easiest way to convert a fraction to a decimal is to divide the top number by the bottom number (divide the numerator by the denominator in mathematical language)

Example: Convert 2/5 to a decimal

Divide 2 by 5:
$$2 \div 5 = 0.4$$

Answer:
$$\frac{2}{5} = 0.4$$

Another way to convert 2/5 to a decimal is to find an equivalent fraction with a denominator of 10, 100, or 1000. Then convert the fraction to a decimal.

$$\frac{2}{5} \times \frac{2}{2} = \frac{4}{10} = 0.4$$

FROM DECIMAL TO FRACTION

Example: To convert 0.75 to a fraction

Steps

1) Write the decimal as a fraction by using a denominator of 10, 100, or 1000, depending on

the decimal.

3) $0.75 = \frac{3}{4}$.

2) Simplify the fraction, if possible.

Example

75 100

$$\frac{75}{100} \div \frac{25}{25} = \frac{3}{4}$$

PRACTICE

CONVERT EACH FRACTION TO A DECIMAL.

$$\frac{18}{25} = \frac{39}{25}$$

$$\frac{39}{25} = \frac{3}{25}$$

$$\frac{46}{50} = \frac{11}{10} = 67$$

$$\frac{21}{25} = \frac{15}{20} = \frac{1}{20}$$

$$\frac{67}{50} =$$

$$\frac{22}{20} =$$

CONVERT EACH DECIMAL TO A FRACTION.

$$1.73 =$$

$$= 80.0$$

$$0.05 =$$

$$0.46 =$$

FROM FRACTION TO PERCENTAGE

The easiest way to convert a fraction to a percentage is to divide the top number by the bottom number. then multiply the result by 100, and add the "%" sign.

Example: Convert 3/8 to a percentage

First divide 3 by 8: $3 \div 8 = 0.375$,

Then multiply by $100: 0.375 \times 100 = 37.5$

Add the "%" sign: 37.5%

Answer: $\frac{3}{8} = 37.5\%$

FROM PERCENTAGE TO FRACTION

Example: To convert 80% to a fraction

Steps

Example

1) Write the decimal as a fraction with a denominator of 100. $\frac{80}{100}$ 2) Simplify the fraction. $\frac{80}{100} \div \frac{20}{20} = \frac{4}{5}$

3) $80\% = \frac{4}{5}$

PRACTICE

Convert Fraction to Percent

$$\frac{1}{8} =$$

$$\frac{17}{20} =$$

$$\frac{22}{50} =$$

$$\frac{34}{20} =$$

$$\frac{1}{10} =$$

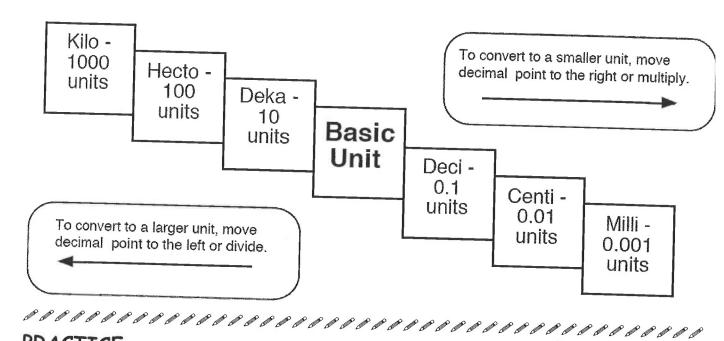
$$\frac{5}{8} =$$

$$\frac{17}{20} =$$

Convert Percent to Fraction

Finding the Percent of a Number

Step 1: Rewrite the percent as a decimal.


Step 2: Multiply.

EXAMPLE

3% of 12

$$3\% \text{ of } 12 = 0.03 \cdot 12$$

= 0.36

Converting within the Metric System

4)
$$5.6 \text{ kg} = \underline{\qquad} \text{g}$$

10)
$$5.6 \text{ m} = ___ \text{ cm}$$

Converting within the Customary System of Measurement

- To convert from larger units to smaller units, MULTIPLY.
- To convert from smaller units to larger units, DIVIDE.

$$7 \text{ ft} = 7 \times 12 = 84 \text{ in.}$$

$$4 \text{ mi} = 4 \times 5,280 = 21,120 \text{ ft}$$

There will be a greater number of smaller units than larger units.

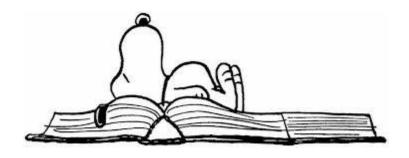
C	ustomary Units of Length
1	mile (mi) $= 5,280$ feet
	1 foot (ft) = 12 inches (in.)
финассия	yard $(yd) = 3$ feet

108 in. =
$$108 \div 12 = 9$$
 ft
15 ft = $15 \div 3 = 5$ yd

There will be fewer larger units than smaller units.

	Customary Units of Capacity
	1 cup (c) = 8 fluid ounces (fl oz)
	1 pint (pt) $=$ 2 cups
- and	1 quart (qt) = 2 pints
	gallon (gal) = 4 quarts

Units of Tim	e
60 seconds (s) = 1 minute (min)	7 days = 1 week
60 minutes = 1 hour (h)	52 weeks = 1 year
24 hours = 1 day	365 days = 1 year


Grade 6 and 7 Summer Reading

Summer is a time of fun and a time of rest. We also need to make sure you continue to read during the summer as this is a wonderful way to work on your reading skills. You have been assigned a book based upon your reading ability. The attached packet will make sure that you are reading with a purpose. This packet is due the first week of school and will be a test grade.

We also want to you read for pleasure so make sure you pick up at least one other book and read for fun!! Take a trip to the library often. I look forward to hearing about your reading when we return to school.

If you have any questions about this packet, please feel free to email me - yes, even during the summer, and I will try and be helpful.

Mrs. Griffin sjgriffin@saintpatricklowell.org

Incoming sixth grade: City of Ember by Jeanne DePrau

Incoming seventh grade: Diary of A Young Girl by Ann Frank

As you read your book choose fifteen (15) words that either you needed to look up - or you think other students in your class would need to look up. Write the definition for that word. This sheet is to be handed in with the rest of the worksheets.

Word:	Definition:

Gist Statements

DIRECTIONS: After you finish a chapter in the novel, write the chapter number in the circle and write a brief

summary of that chapter in the space provided. You must be brief and include only the essential information. Your summary gist statement must be no more than 2 sentences.

$\operatorname{Quote} \operatorname{Jt}$

<u>DIRECTIONS:</u> Copy 5 significant quotes from the book. Write the chapter and page number where you found the quote and explain why you feel it is important to the story, main character, theme, conflict, etc.

Ch./Page	Quote	Significance