

The Challenges of Developing a Purity Method for the Analysis of a Single Dose DPI Inhaler

Introduction

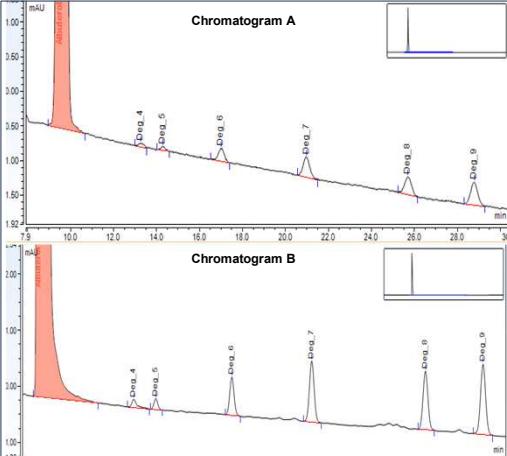
The USP albuterol purity method was redeveloped using Fusion QbD to reduce solvent use, improve sensitivity, and enable impurity analysis in a lactose formulation. The original method used a high flow rate, increasing cost and environmental impact, and lacked sensitivity for single-dose testing.

Fusion QbD optimization of gradient, organic content, oven temperature, and flow rate improved robustness and critical pair resolution, enabling impurity analysis from a single-dose DPI inhaler.

Victoria Sillis¹, Frank Chambers¹ & Bob Lott²
1 - Inhalytic Ltd, Discovery Park, Sandwich, Kent, CT13 9ND, United Kingdom
2 - CI Informatics, PO Box 300, Didcot, OX11 1EU, United Kingdom

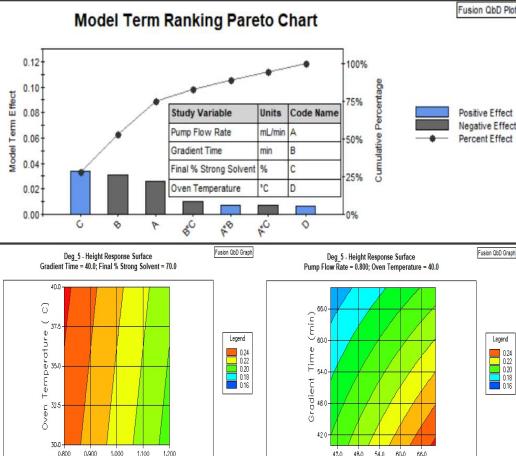
Time / mins	MP A / %	MP B / %	Mobile Phase A	5mM SDS in Water/ACN (80/20%v/v)
0	90	10	Mobile Phase B	5mM SDS in Water/ACN (60/40%v/v)
35	45	55	Flow Rate	2 mL/min
45	45	55	Injection Volume	50 μ L
45.1	90	10	UV Wavelength	230 nm
55	90	10	Column Temp	30 °C
			Column	Pursuit 5 C18, 150 x 4.6mm, 5 μ m

Materials and Methods


- A proprietary blend with 100 μ g albuterol and lactose monohydrate was degraded at 70 °C for two weeks in an open beaker to generate degradation products.
- Method development was performed on an Agilent 1100 HPLC with a UV detector.
- Test sequences were designed using Fusion QbD® method development software (S-Matrix Inc.), a data-driven HPLC development tool.
- Fusion QbD® was also used to establish the Method Operable Design Region (MODR) following Analytical Quality by Design (AQbD) principles.
- An online HPLC method transfer calculator (Merck™) provided baseline conditions for a 2.7 μ m silica column, 10 cm length (vs. 5 μ m, 15 cm in the monograph).

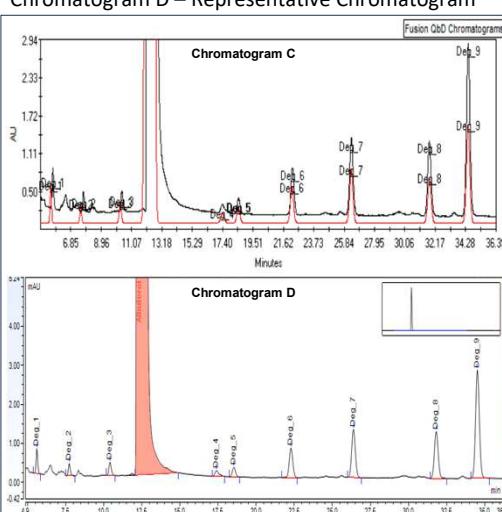
Results and Discussion

Column Optimisation


Chromatogram A – USP Method

Chromatogram B – Shorter column with smaller particle size.

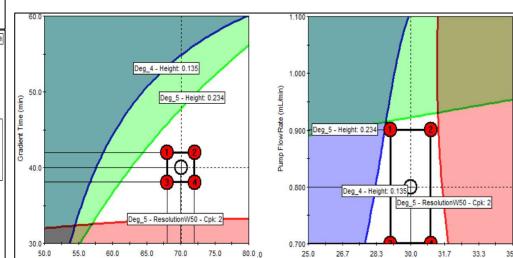
Fusion QbD


Assessment of gradient time, % organic, oven temperature and flow rate.

Verifying Fusion Best Method Centre Point

Chromatogram C – Fusion Best Method Centre Point.

Chromatogram D – Representative Chromatogram


Final Conditions

Time / mins	MP A / %	MP B / %	Mobile Phase A	5mM SDS in Water/ACN (80/20%v/v)
0	90	10	Mobile Phase B	5mM SDS in Water/ACN (60/40%v/v)
40	30	55	Flow Rate	0.8 mL/min
40.1	90	55	Injection Vol	25 μ L
50	90	10	UV Wavelength	225 nm
			Column Temp	30 °C
			Column	InfinityLab Poroshell 120 EC-C18, 100 x 4.6mm, 2.7 μ m

Robustness

The goal was to identify the steepest gradient while meeting robustness criteria. A simulation generated Deg-5 resolution distributions from virtual robustness experiments. Optimization was then performed to maximize Deg-4 and Deg-5 peak heights and Deg-5 resolution robustness.

The optimal method was located at the corner of the experimental region, with conditions of 30 °C column temperature, 0.8 mL/min flow rate, 40 min gradient time, and 70% final organic content.

Conclusion

The USP monograph was successfully redeveloped to enhance sensitivity by sevenfold and reduce solvent usage by 70 mL per injection, thereby minimizing environmental impact.

Significant sensitivity improvements were achieved through alternative column technology, use of albuterol's λ max, and optimization of HPLC parameters known to affect sensitivity.

The Fusion QbD software facilitated this optimization while maintaining excellent robustness of the separation under the modified conditions.

The data suggest that further improvements may be possible by extending the experimental region studied, and translating the method to a UPLC column and instrument is expected to provide additional advantages.

References

Pharmacopeial Forum; PF Vol.27, No. 3, page 2505.
<https://www.sigmaaldrich.com/GB/en/support/calculators-and-apps/hplc-method-transfer-calculator>.
S-Matrix Inc; Fusion QbD Method Development Software.

