Ultrafast Analysis of Pressurised Metered Dose Inhaler (pMDI) by MS

25th March 2009

Frank Chambers/Andrew Feilden Pat Ref – WO/2008088270

Overview

- The current inhaler test landscape
 - DDU/Cascade impactor methods
 - Limitation of current screening techniques
- Introduce potential new screening technique
 - Capable of API specific detection
- How the technique works
- Current applications/results
- Future developments

Introduction

- The speed of inhaled pharmaceutical products developed often compromised labour intensiveness of the the test procedures required
 - Delivered dose/Cascade Impaction methods are time consuming
- A current lack of a discriminatory technique screening inhaler performance
 - DDU/ACI
- Current screening techniques like APS/ELPI lack specificity to drug components in the formulation
- Decided to look into the potential for using the selectivity offered by Mass Spec as a solution to these issues

Method Requirements (URS)

- Fast analysis technique
 - Minimal sample preparation
- Real time monitoring capability
- Compound specific

Could Mass Spectrometry be an option? If so how would we approach it?

- •LC-MS?
 - No chromatography?
- •Or possibly direct sample induction?

- Droplet size range from pMDI similar to that produced by an LC-MS nebuliser spray
- Decided to investigate the possibility of spraying the pMDI directly into the MS spray chamber

How it works

- Very Simply!
- The pMDI actuated directly into the spray chamber of an LC-MS

Initial Results

- Reproducibility
 - Better than 10%
- Linearity Symbicort 40/4.5, 80/4.5, 160/4.5

POTENTIAL FOR A QUANTITATIVE TECHNIQUE EXISTS

Current Applications

- Compatibility
 - Device formulation interaction
 - Currently Semi quantitative
- In-use leachables studies
 - From valve and actuator
 - PBT Monomer
 - Anti-Oxidants eg Irgafos 168
- Excipient Detection
 - PEG
 - Depends upon levels (LOQs)
- Degradent screening

Compatibility – Material Screening

- No sample prep
- Ultra fast analysis with high selectivity
- Excellent screening technique
- Add extra material to the pMDI
 - Fill with formulation
- Heat to 60°C for 1 week, valve up
- Analysis by direct spray MS

Direct Spray characterisation was completed in 15 minutes

•One weeks work using Direct Spray equivalent to 5 weeks Total Can Analysis

Sensitivity to Particle Size

• The MS has shown a degree of proportionality to large differences in particle size

Direct Spray response for hand ground (HG) unmicronised (UM) and micronised (M) budesonide, all the sample nominal concentration

Sensitivity to Particle Size

- Analysing prepared pMDIs with differing particle size material and comparing direct spray response with with NGI mass per stage data (stages 2-8)
 - Linear response with good correlation

Future work

- Optimise Mass Spectrometer test equipment for direct analysis of pMDI, DPI and nebulisers
 - Optimise sample induction techniques
 - Understand/Optimise airflow into the Spray Chamber
 - Minimise impaction effects/losses
 - Lead to Hardware optimisation?
- Assess the capability of the technique to become a fully quantitative analytical technique for pMDIs
- Develop technique for assessment of Fine Particle dose
- Suitable for any ionisable species

Reduction in pMDI development cycle times

Conclusion

- Direct spray could provide the pharmaceutical industry with a useful screening technique for evaluating inhaler performance
- Demonstrates a degree of analyte specificity not seen with other inhaler screening techniques that are currently available
- Further work is required to optimise the system hardware and to assess it's potential as a fully quantitative technique

Acknowledgements

- Andrew Feilden AZ Charnwood (co-developer)
- Lynsey Bloomfield AZ Charnwood
- Klara Lovrics Nottingham DTC 2008