Measuring Particle Size Distributions

Frank Chambers Inhalation Drug Development 28/29th Sept 2010

The Question Posed

- Impactor Testing "Can we reduce the analytical burden?"
 - What do we currently do?
- Any alternatives to Full Resolution Cascade Impaction?
 - Abbreviated Impactor Measurements Initiative (AIM)
 - Non-Impactor solutions?

Our Starting Point

 Assessment of particle size distribution from oral inhaled products (OIPs) is by multi-stage cascade impactor (CI)

- •Gold standard method:
 - Provides aerodynamic size
 - Traceability to drug mass (Selective Technique)
 - System suitability verifiable through mass balance
 - Though cumulative error in drug recovery can adversely effect this

...but full resolution CI measurements are complicated and therefore both time-consuming and prone to error [Bonam et al. AAPSPharmSciTechnol. 2008;9:404-413]

Full Resolution CI Measurements

- Primary focus is on assessing changes in sub-fractions that are believed pertinent to predict particle deposition in respiratory tract
- Secondary focus on the APSD itself:
 - Often assumed log-normal and uni-modal in estimates of MMAD and GSD

Analysis Efficiency – NGI vs ACI

TYPICAL No. PER ANALYST PER DAY

- 14 Companies took part (coded)
- Overall NGI Showed improvements in throughput
- Many NGI's not yet in use
- Total mean 79 mins & 59 mins for ACI & NGI respectively (NGI 21% quicker)
- 5 ACI & 8 NGI per analyst per day (50% more)

MEANS

Can we simplify this process Further?

Abbreviated Impactor Measurements (AIM)

- A simplified Impactor based approach to the problem of inhaler Aerosol Particle Size Characterisation
- AIM is a Concept currently utilising a number of different Measurement options
- Fractions like Course, Fine and Extra Fine Particle mass (CPM, FPM & EPM) provide simple and useful performance information
 - AIM is an ideal approach for determining these
 - Simplified measurements cf full CI
 - Better design space coverage improved decision making (QbD)

Examples of AIM Systems

Twin Impinger

MSP Fast Screening Impactor

Copley Short-Stack Fast Screening Andersen Impactor

Courtesy Copley Scientific

Westech Short-Stack Fine Particle Dose Impactor

Courtesy Westech Instruments Inc.

Reduced NGI (R-NGI)

Why Consider AIM Systems?

Faster Analysis

- 3 4 stage measurement cf
 - ~ 9 11 stage determinations

Flexibility

- QC or Human Respiratory tract pertinent measurement?
- Further enhanced by using Airway "Throat" models eg
 - Oropharygeal (OPC),
 - Finlay Alberta models
- Breathing simulator/Mixing Inlet measurements?

AIM CONCEPT DESIGNED EXPERIMENT: APPARATUS CONFIGURATIONS										
ECDs⁺ (µm)	Full ACI	Size Bands (µm)	ISM	LPM/ SPM	Abbreviated ACI For QC Data	EI FI C	PM/ PM/ PM	Abbreviated ACI For HRT Pertinent Data		
	I.P.				I.P.	ι. Σ	4	I.P.		
9.0	Stage 0	>9.0			Stage 0	I G	4.	[Stage 0] (as space		
5.8	Stage 1	5.8 - 9.0	Т			1				
4.7	Stage 2	4.7 – 5.8		PM -		į .	L	Stage 2		
3.3	Stage 3	3.3-4.7		2.1						
2.1	Stage 4	2.1 – 3.3		1	Stage 4	1				
1.1	Stage 5	1.1 – 2.1		1973		Μd	<4.7 +	Stage 5		
0.7	Stage 6	0.7 – 1.1		SPM		-	ΣŢ			
0.4	Stage 7	0.4 – 0.7				1	Ш,			
	Filter	< 0.4	T		Filter	į.		Filter		
* at 28.3	L/min					 	-	???		

Coating of collection plates for ACI and C-FSA is essential for the most accurate work

Substantial equivalence has been achieved between C-FSA and ACI

Flow rate effects - Short Stack ACI (AZ)

- Stack composition IP/Stage 0/Stage 2/ stage 7/Filter
- Stage 1 substituted for stage 2 @ 60 Litres min⁻¹

Comparison of key ASPD parameters at 28.3 and 60L/min for both standard and shortened ACI with sectionable throat.

Solution MDI Evaporative Effects – QVAR*

- 8% v/v ethanol in Qvar* has small, but measurable impact on FPF
- Can be eliminated by use of empty stage '0' above stages 2 and 5 in abbreviated design

Liquid EtOH deposits on stage '1' of C-FSA

'empty' stage '0'

Liquid EtOH deposits on stage '0' of full ACI

CI Stage Resolution cf Respiratory Tract (IVIVC)

- Multi-stage CI selectivity (resolution) >> size-related deposition selectivity in human respiratory tract (HRT)
- The multi-stage CI is therefore
 NOT an analogue of the HRT
 with regards to describing
 particle deposition

Respiratory tract deposition (ICRP-66) model with collection efficiency curves for the Andersen 8-stage cascade impactor (ACI) operated at 28.3 L/min superimposed

- from Dunbar and Mitchell (2005) J. Aerosol Med., 18:439-451

In Vivo - In Vitro Correlation (IVIVC)

 Selective use of lower stages with OPC Induction ports can be applied

eg OPC Consortium/Finlay Alberta Models

- Does this provide enough sensitivity especially in the CPM to predict *In Vivo* performance?
- Does the AIM approach make adequate allowance for changes in airflow rate?
- Do we need an Impactor?

Predict lung dose using ex OPC filter dose with simulated breathing profiles - a viable alternative? (RDD 2010 Olson, Borgstrom, Svensson et al)

Simulating in vivo conditions

Throat models

- Statistically selected MRI derived physical models of adult subjects inhaling through objects
- Flow profiles
 - Device specific statistically selected profiles, or summary profiles
- Handling
 - According to patient instructions

Burnell et al, J Aerosol Med 2007

Predicted deposition resembles actual

Olsson et al. (2010) Respiratory Drug Delivery 2010, pp. 225-234

What else can we do?

- Ensure the method requirements are consistently met via control of the identified critical analytical method parameters.
- Appropriate Analytical test method validation/SST's
 - API recovery from impactor (mass balance checks/re-wash Strategies)
- Standardized device handling
 - Shake/Fire for pMDI
 - Continued training and monitoring is also important for OINDPs
- Product specific issues
 - Direct impact of validation
 - Product properties
 - Electrostatics DPI?

Measurement of Operator shake/fire inputs

Could we take the impactor out of the equation?

Direct Spray MS (direct sample induction)

- Current screening techniques like APS/ELPI/Spraytec lack specificity to drug components in the formulation
- Could Mass Spec selectivity offer a solution to these issues?
 - Droplet size range from pMDI similar to that produced by an LC-MS nebuliser spray
 - If so how would we approach it?
 - LC-MS?
 - No chromatography?
- Or possibly direct sample induction?
 - Can we spray the pMDI directly into an MS spray chamber?

Pat Ref -WO/2008088270

How it works

- Very Simply!
- The pMDI actuated directly into the spray chamber of an LC-MS

Initial Results

Reproducibility

- Better than 10%
- Linearity (pMDI containing budesonide @ 40/80/160 µg/act)

POTENTIAL FOR A QUANTITATIVE TECHNIQUE EXISTS

Sensitivity to Particle Size

- The MS has shown a degree of proportionality to large differences in particle size
- Analysing prepared pMDIs with differing particle size material and comparing direct spray response with with NGI mass per stage data (stages 2-8)
 - Linear response indicated

Sensitivity to Sample Size (cont)

Sample Name	<u>D10 (um)</u>	<u>D50 (um)</u>	<u>D90 (um)</u>
Unmicronised Budesonide	41.92	162.14	335.788
Ball milled Budesonide – 600rpm 30 min	0.8435	7.484	63.926
Micronised Budesonide; Setting A	0.652	3.905	11.9245
Micronised Budesonide; Setting B	0.5655	2.9805	8.581

What is it Measuring?

- Optimise Mass Spectrometer test equipment for direct analysis of pMDI, DPI and nebulisers
 - Optimise sample induction techniques
 - Development of Standard induction methods
 - Understand/Optimise airflow into the Spray Chamber
 - Minimise impaction effects/losses
 - Lead to Hardware optimisation?
- Assess the capability of the technique to become a fully quantitative analytical technique for pMDIs
- Evaluate technique for assessment of Fine Particle Dose
- Suitable for any ionisable species

An analytical tool to aid Reduction in pMDI development cycle times

Summary

- The drive to improve analysis efficiency has led to a new focus on seeking alternative approaches to full impactor testing
- AIM initiative is a key activity
 - Faster anaylsis
 - Better decision making (QbD)
 - HRT Relevant measurements (IVIVC)?
 - Other approaches may be as effective
 - Caution when using impactor data in this way
- The search for non-impactor based screening tools continues!
 - Direct Spray-MS continues to show promise (particularly for pMDI)

Acknowledgements

- EPAG Impactor Group especially Jolyon Mitchell Trudell Medical International for kindly allowing me to use IPAC-RS AIM presentation material
- DDL21 Pre-Conference AIM Workshop December 8th 2010

Thank You ·

Questions?

Estimating the size of particles reaching the lung

