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Abstract Expertise in domains ranging from sports to surgery involves a process of

recognition-primed decision-making (RPD) in which experts make rapid, intuitive deci-

sions based on recognizing critical features of dynamic performance situations. While the

development of expert RPD is assumed to require years of domain experience, the tran-

sition from competence to expertise may potentially be hastened by training that specifi-

cally targets the recognition aspect of RPD. This article describes a recognition training

approach that is based on expertise theories, research findings, and laboratory measurement

techniques. This approach repurposes laboratory research tasks as deliberate practice

training tasks. Although pioneered in sports expertise research, this approach is appropriate

for pre-service and in-service professionals in a wide range of domains that involve rapid,

recognition-primed decision-making.

Keywords Advanced learning � Expertise � Instructional design � Performance �
Recognition-primed decision-making � Training

Introduction

This article follows up on a challenge by van Gog, Ericsson, Rikers, and Paas (2005) for

instructional designers to apply theories of learning and instruction to devising instruc-

tional methods and activities intended for advanced learners. Historically, the instructional

design field has been both focused on and effective in directing novice and intermediate

learners’ acquisition of declarative knowledge and skill competence. Now, with the

continuing evolution of theories of expertise and expert performance—as highlighted by
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publication of The Cambridge Handbook of Expertise and Expert Performance1 (Ericsson,

Charness, Feltovich, & Hoffman, 2006)—the time appears ripe for combining the efforts of

the historically distinct fields of primarily descriptive expertise research and primarily

prescriptive instructional systems design in order to devise strategies for hastening the

transition of advanced learners to expert performers.

This article focuses on a particular type of expert performance that requires a rapid sequence

of recognition, decision, and action—performances that involve reaction skills. Reaction

performance skills are differentiated from deliberate and controlled action performance skills.

In the sports realm, action skills include hitting a golf shot and executing a gymnastics vault

while reaction skills include goalie play in hockey or soccer, batting in baseball, and return of

serve in tennis. Many performance activities include both action and reaction skills and often

they are performed almost simultaneously. A classroom teacher, for example, is engaging in

action skills in delivering a planned lesson while also engaging in reaction skills in managing

the classroom and monitoring students’ comprehension. Inexperienced teachers often expe-

rience excessive cognitive load in monitoring student behavior and comprehension that can

adversely affect delivery of the lesson (Feldon, in press). However, while it is common

practice in training and education programs to focus instructional attention on action portions

of performance, the reaction component is seldom directly practiced. Yet it is the natural and

effortless execution of reaction skills that often typifies expert performance.

This article draws on expertise theory, especially the theoretical model of recognition-
primed decision-making (RPD), in order to outline an approach to hastening learners’

development of expertise in reaction performance skills. Special attention is given to sports

expertise studies that have adapted the laboratory measurement techniques developed by

expertise researchers in order to create recognition training programs. It is a central pre-

mise of this article that the challenge of designing representative tasks to train expert

recognition skills can be met in part by repurposing the types of tasks designed to measure

expertise in the laboratory. Studies that have used this approach to enhance expert rec-

ognition skills in sports have evolved a low fidelity form of simulation that has implica-

tions for training complex psychomotor skills in domains such as aviation and surgery

where high fidelity simulation is routinely used. The recognition training approach that is

described in this article also has applicability in improving more cognitively oriented skills

such as medical diagnosis, security screening, physics problem solving, classroom teach-

ing, and social services interviewing.

This article has three parts. In the first part, theories of expertise and expert performance

are reviewed. The second part explains targeting recognition skills for expertise training.

The third part of the article outlines a four-step approach for developing recognition

training programs that can potentially be applied in a wide range of skill areas.

This recognition training approach is presented with a number of qualifications. The first is

that it is generally not appropriate to apply expert schema induction to initial learning by

novices. Recognition training does not replace direct instruction in rules, concepts, and

procedures but rather enhances it...at the appropriate time in the learner’s development.

Another qualification is that, while some of the domains discussed have an existing body of

expertise research to draw on, instructional designers in many domains are not as fortunate.

1 While numerous edited volumes and special journal issues have marked the evolution of a distinct theory
of expertise and expert performance, the publication of The Cambridge Handbook of Expertise and Expert
Performance can be considered watershed. The volume contains seminal theory contributions as well as
articles reporting expertise research in a surprisingly wide range of domains. Some of the articles in the
Handbook that are cited in this article reference earlier works by the same authors. In most of these cases,
the Handbook article is cited here rather than the original article.
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Developing expertise training in these domains often requires studying expert performance

by using techniques such as cognitive task analysis. A third qualification is that there is little

agreement on definitions of expert or expertise within specific domains. Experts are some-

times defined in terms of amount of experience (e.g., years in the field or flight hours), status,

professional certification, or recognition of peers. Seldom is expertise measured by

performance on representative tasks, and when it is, experts often perform no better than

non-experts (van Gog et al., 2005). That could mean that the identified ‘‘experts’’ are not truly

expert, or it could mean that the tasks are not truly representative. The question of ‘‘what is an

expert?’’ is somewhat skirted when training, rather than describing, expertise because the

goal of moving individual learners along a continuum from less expert to more expert reflects

a relative rather than an absolute view of expertise (Chi, 2006a).

The recognition training approach that is described in this article targets advanced

learners and practitioners who are on a clear trajectory to expertise. That includes trainees

who are near the completion of formal training programs (e.g., police, military, emergency

response) and students finishing professional education programs (e.g., medical, nursing,

teacher preparation), as well as in-service professionals who are poised to transition from

journeyman to expert status.2 Experience, of course, is essential in the development of

expertise. A tenant of the theory of expert performance is the ten-year rule, which posits

that approximately ten years and 10,000 h of deliberate practice—consisting of purposeful

activities intended to improve specific skills—are necessary (but not sufficient) to become

an expert performer in a variety of domains (Ericsson, Krampe, & Tesch-Römer, 1993).

Typically, the ten-year time frame encompasses both preparatory and professional stages

of a performer’s career. As an air traffic control instructor put it, ‘‘after about seven years

in the field some of our students become recognizable experts. Others are just seven years

older (K. Gannell, personal communication, August 16, 2004).’’

Expert performance obviously has many facets and expertise takes many years to

develop, often involving centuries-old methods for transferring knowledge and gaining

experience. The relatively modest instructional goal of hastening the development of

expertise leads instructional designers to seek opportunities to improve on the established

processes. Since the acquisition of knowledge and skills are adequately addressed by

traditional education and training programs and domain experience is largely outside the

realm of instructional design, an opportunity comes in targeting an aspect of expertise

that is not typically addressed by direct instruction—the intuitive or recognition-primed

decision-making that typifies expertise in many domains.

Expertise theory and research

Recognition-primed decision-making

An air-traffic controller spots something unusual on the computer screen and instructs a

pilot to immediately drop one altitude layer, avoiding a close encounter with another plane.

2 Based on Hoffman (1998), Chi describes a guild-like proficiency scale that progresses from novice to
initiate to apprentice to journeyman to expert to master. Journeyman is defined as ‘‘Literally a person who
can perform a days labor unsupervised, although working under orders. An experienced and reliable worker,
or one who has achieved a level of competence. Despite high levels of motivation, it is possible to remain at
this proficiency level for life.’’ Expert is defined as ‘‘The distinguished or brilliant journeyman, highly
regarded by peers, whose judgments are uncommonly accurate and reliable, whose performance shows
consummate skill and economy of effort, and who can deal effectively with certain types of rare or ‘tough’
cases’’ (Chi, 2006a, pp. 22).
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A football linebacker reads a screen pass and ‘‘blows it up’’ before the play can develop. A

surgeon instructs an assistant to prepare for an arterial rupture, a moment before the rupture

happens. A semi-truck driver brakes hard, but under control, to avoid rear-ending a

merging school bus that was cut-off by a speeding car dodging into the merge lane. All of

these scenarios involve experts making apparently intuitive decisions that involve quickly

and naturally recognizing critical elements in the emerging situation.

Sometimes called intuitive decision-making or naturalistic decision-making, the ability

to make complex decisions ‘‘in the blink of an eye’’ is recognized by both popular

(Gladwell, 2005) and academic (e.g., Klein, 1998) writers as the ultimate expression of

expertise in domains that require rapid decisions and actions. The concept is most clearly

described as recognition-primed decision-making (RPD). RPD involves a sequence in

which experts in a dynamic situation quickly recognize patterns, represent the situation as

being of a particular type, notice any anomalies, spontaneously generate a solution,

mentally rehearse the solution and, if acceptable, execute and monitor the solution. Which

creates a new situation and recycles the sequence (Klein, 1998). RPD is distinct from

traditional models of analytical decision-making in that it is less deliberate and much

faster. RPD was developed to model the rapid, strategic command-and-control type of

decision-making engaged in by intensive care nurses, tank commanders, and offshore

drilling rig managers (Ross, Shafer, & Klein, 2006). In this article, RPD is extended to

describe the type of on-the-ground, reactional decision-making that is displayed in the

air-traffic control, football, surgery, and truck driving scenarios described above.

The expertise training approach that is outlined in this article targets the recognition
aspect of recognition-primed decision-making for part-task training. The critical issues are

1) why to train recognition skills, 2) how to train recognition skills, and 3) if part-task

training of recognition skills will lead to improved performance of the full skill. The

question of transfer of training to performance is among the most challenging aspects of

expertise research and training evaluation because on-the-job performance is notoriously

difficult to measure. Indeed, one of the central reasons that sports provide a rich test bed for

expertise research is that sports performance tends to be more observable and measurable

than performance in other domains. A second transfer question is to what extent an

expertise training approach developed largely in the sports realm transfers to other domains

of expert performance. This question is addressed throughout this article by using exam-

ples, mostly hypothetical, drawn from a variety of domains.

Theory of expertise and expert performance

Although expertise has long been of interest to psychologists, philosophers, and educators,

modern information-processing based theories of expertise have emerged in the wake of

chess expertise research (de Groot, 1978; Simon & Chase, 1973). The chess studies

introduced the expert–novice paradigm in which more expert performers are compared to

less expert performers on a variety of tasks. In a classic expert–novice chess experiment

participants were briefly shown an arrangement of pieces on a chessboard and then directed

to duplicate the arrangement of pieces on another chessboard. When the chess pieces were

randomly arranged, there was little difference in the ability of chess masters and lesser

players to reproduce the original arrangement of pieces. However, when the pieces were

arranged in meaningful patterns drawn from actual games, the chess masters were much

better at reproducing the arrangement of pieces. The researchers concluded that chess

experts use chess-specific schema to group pieces into meaningful chunks, thereby
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circumventing the generally accepted ‘‘seven plus or minus two’’ limitation of working

memory (Miller, 1956). In the computer analogy adopted by the cognitive information-

processing paradigm, expert chess players enjoy a software (schema) advantage rather than

a hardware (memory) advantage. This observation has been essential to modern theories of

expertise that emphasize learning and practice over innate talent and physiological attri-

butes.

Expertise researchers have since investigated a variety of performance domains using

the expert–novice approach3 rooted in the classic chess studies. In sports, adoption of the

expertise model led to a major paradigm shift in which perceptual skills previously

attributed to physiological dimensions of vision such as dynamic tracking acuity and

peripheral vision were instead attributed to skill-specific schema (Chamberlain & Coehlo,

1993). Even in an obviously psychomotor sports skill like hitting a pitched baseball,

expertise research has revealed the distinctly cognitive sub-skill of pitch recognition as

being the primary factor differentiating expert batters (Paull & Glencross, 1997).

Expert-novice studies in more obviously cognitive domains have also pointed to the

recognition aspects of expert performance. In physics problem solving, for example,

experts (graduate students) were able to more quickly and accurately categorize the type of

problem being presented based on deep structure of the problem rather than on the surface

features that novices (undergraduate students) used to sort problems (Chi, 2006b). In the

area of medical diagnosis, researchers have found that more experienced clinicians rely

more on non-analytical pattern-recognition to generate early hypotheses while less

experienced residents rely more on analytical, rule-based approaches that relate symptoms

to diseases (often embedded in narrative ‘‘illness scripts’’)—a strategy which experts also

engage when a presenting problem defies initial recognition-based analysis (Norman, Eva,

Brooks, & Hamstra, 2006). The question for medical educators is whether the development

of expert-like, non-analytic, exemplar-based diagnostic reasoning can and should be

accelerated through systematic training of pattern recognition skills.

Targeting recognition skills for expertise training

Two key training assumptions arise from research revealing expert–novice differences in

recognition ability within complex skill performance. The first is that if recognition ability

differentiates experts from near-experts, then enhancing the recognition ability of a devel-

oping expert should lead to enhanced expertise. Of course, superior recognition ability may be

a product of and not a cause of expert performance. Still, it is worth exploring recognition

training programs, in part because recognition is relatively easy to train, especially if trained

separately from execution of a full recognition-decision-action sequence.

The second assumption of a recognition training approach is that the recognition-

decision-action linkage in reaction performance skills can be de-coupled for targeted

training purposes and then re-coupled for transfer to performance. This is not an uncon-

troversial assumption. Proponents of ecological psychology maintain that the linkage

cannot be broken, either for descriptive purposes or training purposes, without essentially

3 Expert–novice research studies do not usually compare experts with true novices—which would make for
a meaningless comparison. Instead, most studies compare highly skilled participants with advanced but less
skilled participants. For example, Paull and Glencross (1997) compared Australian ‘‘A’’ League profes-
sional baseball players (experts) with Australian ‘‘B’’ League professional baseball players (novices).
Although the expert–novice term is used, the area of primary research and training interest is the gap that
separates competence from expertise.
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changing the skill (Bootsma & Harvey, 1997). Without entering into a theoretical argu-

ment, the part-task training approach is—like Newtonian physics—a great way to build a

bridge, even if it doesn’t fully describe the universe of expertise. The bridge from expertise

research to expertise training will be constructed in the section of this article that describes

a four-step approach for training expert recognition skills. First, however, further con-

sideration is given to why recognition skill is a particularly good target for expertise

training.

Why train recognition skills?

With the instructional intent of hastening the development of recognition-primed decision-

making, it is logical to start by targeting the recognition aspect of RPD for instructional

attention. Recognition is not necessarily the most important part of the RPD process (which

also includes solution generation, solution simulation, and solution monitoring), but it is

the first part of the process and therefore provides a good instructional opportunity.

Incremental improvement at the beginning of the RPD sequence should have an amplifying

impact on the remainder of the process. In addition, the further up stream we go in an

expert’s RPD sequence the more complex and idiosyncratic the process becomes. The

beginning of the RPD process is much more routine—what the 4C/ID instructional model

calls the recurrent stage of problem solving (van Merriënboer, Clark, & de Croock, 2002).

Referencing another instructional design theory that has recently been applied to ad-

vanced learning, recognition training targets an aspect of performance that experts engage

in with minimal cognitive load (van Gog et al., 2005). While cognitive load theory (CLT)

has primarily been concerned with the role of cognitive load in instruction (e.g., multi-

media design), CLT principles are increasingly being applied to considerations of cognitive

load in performance. For experts, the recognition component of the RPD sequence requires

little cognitive effort. Indeed, modeling recognition as priming decision-making suggests

that the recognition stage is not actually part of the decision process but rather a distinct

preparatory stage. Drawing on 4C/ID, cognitive load, and RPD models, low cognitive load

in the preparatory recurrent stage of problem solving (recognition) frees cognitive capacity

to be applied to the more conscious and demanding non-recurrent stage of problem solving.

The instructional implication of applying CLT to modeling and training RPD is that the

recognition stage involves low cognitive load for experts because the concepts and rules

underlying recognition skill are largely known and routine. The experts’ advantage, as

shown in numerous expert–novice studies in a variety of domains, is in the speed rather

than the accuracy of recognition. Speed essentially becomes an operational representation

of cognitive load. The advanced learner or practicing professional already possesses most

of the requisite declarative knowledge and procedural skills; the instructional designer,

teacher, or trainer is free to devise instructional activities intended to increase the speed of

advanced learners’ cognitive processing to approach that of experts. To quote cognitive

psychologist J. R. Anderson (1980), ‘‘One becomes an expert by making routine what to

the novice requires creative problem-solving (Norman et al., 2006, p. 344).’’

Recognition training focuses on the ordinary aspects of expert performance rather than

the extraordinary aspects. Indeed, the argument can be made that expertise lies largely in

ordinary performance. For instance, Endsley (2006) found that expert pilots did not make

better decisions than novice pilots in simulation tests involving unusual or emergency

situations. However, expert pilots were much faster at routine decisions and actions. In

practice, since emergency situations usually evolve out of ordinary situations, the expert

P. J. Fadde

123



who handles the ordinary situations with low cognitive expenditure would be expected to

have more cognitive resources in reserve for dealing with the emerging, novel situation.

How to train recognition skills

A critical challenge for instructional designers, as it is for expertise researchers, is to

‘‘identify those tasks that best capture the essence of expert performance in the corre-

sponding domain, and then standardize representative tasks than can be presented to

experts and novices (Feltovich, Prietula, & Ericsson, 2006, p. 49).’’ There are three

components of this process. The first is to identify key skills within the target performance

and the second is interpreting such skills or sub-skills in the form of standardized testing

and/or training tasks that can be repeated and measured consistently in a laboratory con-

text. The third component of creating representative testing/training tasks is to generate

stimulus items to present to experts and novices in a research (testing) context or to near

experts in a training context. The relationship between a representative task used for testing

or training purposes is described in more detail in the section of this article that outlines a

four-step approach for creating recognition training programs (see Table 1).

When the testing or training focus is on the recognition component of reaction per-

formance skills, the designation of representative tasks is often clear. For instance, the

recognition component of the complex psychomotor reaction skill of batting is pitch
recognition. A quite different type of pitch recognition is involved in playing music—that

is, a musician recognizing the notes being played by other musicians. Sight reading a

musical score can also be considered to be a recognition skill that is performed with very

low cognitive load by more expert musicians but that can create excessive cognitive load

for less expert musicians. It is more challenging to partition the action and reaction skills in

expert performance domains that don’t include an observable psychomotor action. For

example, diagnostic-perceptual activities in the medical area involve reading an electro-

cardiogram (ECG), a mammogram, a radiograph (X-ray), or a microscope slide of a tissue

sample (histology) or a blood sample (hematology). The action component may be con-

sidered to be stating a diagnostic decision. The reaction component, then, involves the

pattern recognition sub-skill that primes the diagnostic action.

After a critical reaction performance skill is identified, the expertise researcher or trainer

must then interpret the skill in the form of a repeatable and measurable task that can be

used for testing and/or training purposes. Basic types of laboratory-based expertise testing

tasks include: recall, detection, categorization (Chi, 2006b), and prediction (Endsley,

2006). Recall, detection, and categorization tasks can be considered to represent declara-

tive knowledge level while a prediction task suggests knowledge advanced to the level of

procedural knowledge (Anderson, 1982).

In some domains, expert–novice researchers have developed representative recognition

testing tasks. Paull and Glencross (1997) represented the skill of pitch recognition in

baseball as two separate tasks. Expert and novice baseball players were asked to identify
the type of pitch being delivered by a pitcher shown on a video display (a categorization

task). Participants were also asked to predict the ultimate location of the pitch in the hitting

zone. Fadde (2006) added the instructional elements of immediate feedback and pro-

gressive difficulty to the pitch identification and location prediction tasks developed for

expertise research in order to train pitch recognition skill in college baseball players.

The approach of repurposing testing tasks for training purposes can be applied in other

areas as well. For example, Norman et al. (2006) report on a series of studies in derma-
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tology that used a ‘‘clever’’ experimental design in which performance on a categorization

task was assessed using typical-similar, typical-dissimilar, atypical-similar, and atypical-

dissimilar slides of dermatological conditions. Assessing typicality was considered to

represent more analytical reasoning while assessing similarity was considered to represent

more non-analytical, pattern matching strategies. The study found that more experienced

(and assumedly more expert) residents were better at recognizing similarity and medical

students were better at assessing typicality. This experimental design can readily be

repurposed as a recognition training task that is not only clever but is also validated in that

it differentiates expert and novice performance. This four-way typicality-versus-similarity

design supports creative instructional design. For example, the design of a dermatology

diagnosis practice activity could be manipulated to increase the non-analytical reasoning

ability of less experienced clinicians or to increase the analytical reasoning ability of

practicing clinicians. This categorization task can likely be ported to training an array of

medical perceptual-diagnostic skills. Indeed, the four-way typicality-versus-similarity

categorization task may be adaptable to training recognition in diverse domains such as

security screening and air-traffic control.

The typicality/similarity task provides a model of how well designed research tasks can

be repurposed as training tasks. Research tasks must be reliable, valid, repeatable, and

measurable—that is, standardized. Training tasks benefit from the same characteristics. In

addition, testing tasks can sometimes be further optimized for training purposes because

training tasks are less constrained by the requirements of research design and analysis. For

example, expertise research designs that aspire to discover underlying cognitive mecha-

nisms in expert decision processes often use non-authentic content in order to reduce

previous knowledge as a confounding variable (Norman et al., 2006). Training designs, on

the other hand, may purposefully elicit and integrate previous knowledge. Training

activities should produce meaningful measurement of results, but not necessarily statistical

analysis supporting generalizable findings.

While the approach of repurposing expert–novice laboratory research tasks to create

recognition training tasks can be described hypothetically in reference to medical educa-

tion and other domains, the approach has been developed, implemented, and researched in

the area of sports science. Whether sports-based findings transfer to other psychomotor

domains, and whether research on psychomotor skills transfers to more cognitively ori-

ented problem-solving skills, are open questions. However, the potential for transfer is

supported by sports expertise research being grounded in the same theory of expertise that

underlies cognitive domains such as chess.

Repurposing sports expertise research for recognition training

Sports expertise researchers have been particularly active in the study of recognition

ability—usually called perceptual-cognitive skills in the sports expertise literature (see

Williams & Ward, 2003 for complete review). Numerous sports expertise studies have

described perceptual-cognitive skills in a variety of sports skills as involving experts’

ability to pick up predictive information from cues that occur early in the movements of an

opponent. A smaller body of sports expertise research has investigated whether such

recognition skills can be trained. These researchers have pioneered the approach of

repurposing laboratory techniques originally devised to measure recognition skills in order

to train recognition skills. The key testing-to-training technique is occlusion in which

portions of a visual display are masked.
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Of particular interest are perceptual-cognitive training programs that used occlusion

techniques to improve the pitch recognition ability of baseball players (Burroughs, 1984;

Fadde, 2006) and the serve recognition ability of tennis players (e.g., Day, 1980; Farrow,

Chivers, Hardingham, & Sacuse, 1998; Haskins, 1965; Scott, Scott, & Howe, 1998; Singer

et al., 1994). The skills of pitch and serve recognition have been targeted for training because

the opponent’s pitch/serve action initiates every live play situation and because the pitch/

serve comes from a set location at a set time, making it amenable to video-based simulation

training. Arguably, the ballistic nature of pitch and serve recognition has few parallels in

other domains of performance. However, the part-task training approach that entails

de-coupling the recognition-decision-action components of a complex skill for targeted

recognition training and then re-coupling to improve performance of the whole task could

not be more dramatically demonstrated than in baseball batting and tennis service return,

where the entire recognition-decision-action sequence happens in less than one-half second.

Recognition training design

In both research and training studies of pitch and serve recognition, participants viewed the

projected film/video image of an opponent that depicted the internal point of view of a

‘‘live’’ participant. Researchers have used two types of occlusion (masking) techniques to

study different aspects of expert recognition skill. Spatial occlusion involves masking

different portions of the visual display of an opponent’s action and then asking expert and

novice participants to identify the type of pitch or serve. If the experts’ advantage dis-

appears when a particular portion of the visual display is masked, then it is assumed that

the experts picked up predictive information from that particular portion of the display.

Spatial occlusion techniques, often combined with eye tracking data, have helped

researchers determine where experts are looking to attain their advantage in predictive

ability. The findings of these studies have generally confirmed conventional coaching

points such as concentrating on the pitcher’s release point and watching the server’s

racquet and arm rather than the ball toss (Williams & Ward, 2003).

The other occlusion technique used for investigating expert recognition skill is temporal
occlusion (time masking) in which the film/video display of an opponent’s pitch or serve is

edited to black at various points in the opponent’s pitch or serve motion and resulting ball

flight. The goal of temporal occlusion is to discover when experts and novices differ in

their predictive ability. In baseball, expertise researchers have determined that the window

of expert advantage is from the moment-of-release of the pitch through about one-third of

ball flight (Paull & Glencross, 1997). The expert–novice difference is most exaggerated

closest to the moment-of-release. At occlusion points prior to moment-of-release, the

performance of both experts and novices is reduced to chance. After about one-third of ball

flight, novices are as good as experts in picking up predictive information.

The pitch recognition training activity that is depicted in Fig. 1 is essentially the same

temporal occlusion task that has been used in expert-novice pitch recognition research. The

participant attempts to identify the type of pitch being thrown while viewing video display

of an opponent pitcher, which is edited to black at various points in the delivery of the pitch

or resulting ball flight. In the training program, learners progress from identifying pitch

type while viewing video clips occluded after one-third of ball flight (which research

showed that novices can do as well as experts can), to clips occluded closer to release of

the pitch and ultimately to clips occluded at the moment-of-release of the pitch (which

experts can do much better than novices). The critical assumption is that, if the learner is
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competent in the necessary psychomotor skills of batting, then improving his pitch

recognition ability to match the measured ability of expert batters should hasten the

advanced learner’s progression to expertise in batting. As a major league baseball exec-

utive put it, ‘‘this is the difference between five o’clock hitters and seven o’clock hitters

(F. Wren, personal communication, May 5, 2003)’’.4

The obvious question, then, is whether occlusion-based training can improve the cog-

nitive sub-skill of pitch recognition and, further, whether improving the target sub-skill

will lead to improved performance of the overall skill. A handful of pitch recognition

training programs (Burroughs, 1984; Fadde 2006) have attempted to improve the pitch

recognition ability of college baseball players. Importantly, the participants in both pitch

recognition training programs verbally input their choice of pitch type or their prediction of

pitch location and did not engage in a psychomotor action such as swinging a bat.

Participants in Burroughs’ study demonstrated near-transfer of performance gains from

film-based pitch recognition training to a live pitch recognition task5 Far-transfer of part-

task, video-occlusion training to full-task in-game performance was demonstrated by

participants in Fadde’s pitch-recognition training program. Half of a cooperating college

baseball team’s position players (non-pitchers) received ten 15-minute individual video

training sessions. Treatment and comparison groups were created using the method of

matched pair with random assignment. The team’s coaches ranked the players according to

perceived batting ability. Players who were adjacent in rank were then paired and ran-

domly assigned to recognition training or traditional training (extra batting practice)

groups. Treatment group players ranked higher than comparison group players (Mann-

Whitney U-test) in the established batting performance measure of batting average

(P < .05) over a post-training schedule of 18 games, as reported by official National

Collegiate Athletic Association game statistics (Fadde, 2006).

Fig. 1 Video simulation training of baseball pitch recognition

4 Major league teams commonly play games about seven o’clock in the evening and take batting practice
about two hours earlier. All professional baseball batters have the requisite physical and technical abilities to
hit baseballs well in batting practice. Only the experts can do it consistently against major league pitchers
under game conditions.
5 Burroughs devised the Visual Interruption System (VIS) for creating occlusion conditions in a live batting
task. The batter wore a batting helmet that was fitted with a shield that would drop in front of the batter’s
eyes in response to an electronic signal. The signal was activated when the pitcher’s front foot landed on a
force pad, an action that has a consistent relationship with the pitcher’s release of the pitch. Using the
patented VIS system, the researcher could manipulate the interval between the signal from the force plate
and the signal to the helmet shield, thereby creating variable occlusion points.
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In other sports skills, the window of expert recognition advantage is different. Expert–

novice studies involving serve recognition in tennis found that experts enjoy a perceptual

advantage only at occlusion points prior to ball-racquet contact. This research finding

informed the design of video-occlusion serve recognition training programs. For example,

Scott et al. (1998) used only one occlusion condition—the moment of ball-racquet contact.

All of the training video clips of an opponent’s serve were edited to black immediately

after contact. Progressive difficulty in the training program was achieved by starting with

half-speed versions of the occluded video serves and progressing through a number of

levels of progressively faster motion clips until learners could match experts’ ability to

identify serve type while viewing full-speed clips. Serve recognition training programs

have been consistently successful in improving the target skill and have shown evidence of

transfer of training effects from a lower fidelity training simulation environment to a higher

fidelity simulation environment used to test serve recognition ability (Farrow et al., 1998).

Sports science researchers, primarily working with the return-of-serve task, have also

begun to investigate instructional design variables such as explicit instruction versus

guided discovery that directs learners attention to information-rich portions of the display

but does not specify what clues to look for (Williams, Ward, Knowles, & Smeeton, 2002).

Return-of-serve in tennis and batting in baseball—which Ted Williams called ‘‘the most

difficult thing in sport’’ (Williams & Underwood, 1970, p. 7)—have few parallels in other

domains of performance. There are non-sports skills, such as use-of-force decision-making

by police or military personnel, which involve a similarly rapid recognition-decision-action

sequence. However, these skills are not as contained and repeated as baseball batting and

return of serve in which the initiating action of an opponent comes at a set time and from a

set location. A lethal threat to a soldier or police officer can come in time frames and

locations that differ with each situation. Still, the limited but consistent evidence that

complex psychomotor skills such as batting and service return can be improved through

training that targets the cognitive sub-skill of recognition using low-fidelity video-simu-

lation (Starkes & Lindley, 1994) has potentially paradigm shifting implications for areas

such as aviation and surgery where high fidelity simulation is commonly used but where

excessive emphasis on physical fidelity can result in the ‘‘wrong’’ simulation being pro-

duced (Foshay, 2006). The full implications of this approach are that the recognition-

primed decision-making process that is associated with the highest levels of intuitive

expertise across many domains is amenable to training and that effective training

approaches may be adequately, or even optimally, addressed using lower fidelity

instructional approaches.

The following section codifies the discussion of recognition training while describing a

four-step approach to designing, implementing, and evaluating recognition training pro-

grams that are intended to hasten the development of expertise in performance skills that

involve recognition-primed decision-making. The four-step approach is presented as a

beginning point for teachers and trainers, as well as instructional design researchers and

practitioners, to consider if and how to develop recognition training programs.

Four-step recognition training approach

Designing, implementing, and evaluating a recognition training program involves:

1. Locating the recognition aspect of a reaction performance skill.

2. Devising tasks to test and/or train the recognition sub-skill.
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3. Conducting a systematic recognition training program.

4. Enhancing and evaluating transfer of training using performance-based tasks.

Each step in the process is discussed in more detail below.

1) Locating the recognition aspect of a reaction performance skill. The value in dif-

ferentiating action and reaction components of a performance skill is that they call for

markedly different training approaches. In medical education, technical skills (e.g., sur-

gery) are typically trained through classic demonstration and practice. Surgical training

simulations are largely focused on procedural (action) skill acquisition. However, medical

educators note that surgical expertise is not essentially a matter of technique but rather of

anticipation (reaction skill) during surgery (Ericsson, 2004). Surgical simulations that

include both the action and the reaction aspects of surgical performance become highly

sophisticated. But when a part-task approach is taken, then simulations that focus solely on

the action component can be as low in physical fidelity as practicing laparoscopic pro-

cedures by placing chick peas on golf tees in a minimal-access box trainer—as is done in

the Royal College of Surgeons Basic Surgical Skills Course (Ward, Williams, & Hancock,

2006).

Part-task training of the reaction component of laparoscopic surgery could present

learners with authentic video images recorded from the surgical micro-camera during

actual laparoscopic procedures and ask them to pause the video if and when they detect a

surgical misstep. This detection task, with immediate feedback, would address the most

foreign aspect of laparoscopic surgery for practicing surgeons who were trained in tradi-

tional open surgery procedures—that is, learning to ‘‘read’’ the video image. As this

example points out, the action component of complex skills is routinely de-coupled for

targeted, lower fidelity training. Logically, the reaction component of a complex

psychomotor skill can also be de-coupled for targeted, lower fidelity training.

Once the reaction performance skill domain has been identified, the instructional

designer isolates the recognition component of the recognition-decision-action sequence

through some form of cognitive task analysis (CTA). CTA has the goal of investigating

expert knowledge, reasoning, and performance ‘‘in the wild’’ and leveraging that under-

standing into methods for training (Schraagen, 2006). While it is not always feasible for an

instructional designer to carry out a full cognitive task analysis, it is important to analyze

what experts think and do in addition to analyzing the concepts, rules, and procedures that

traditional instructional systems design models focus on (Clark & Estes, 1996). Concepts,

rules, and procedures are necessary and appropriate for initial learning and competence

building. However, research has shown that as decision makers grow in experience they

move from rule-based to instance-based decision-making (Gonzalez, Lerch, & Lebiere,

2003). The instructional designer can facilitate that transformation by providing the

advancing learner with ample whole or part-task practice that includes repetition, imme-

diate feedback, and progressive difficulty—the essential elements of multimedia drills

(Alessi & Trollip, 2001) progressive difficulty.

2) Devising tasks to test and/or train the recognition sub-skill. The training approach

that is described here repurposes the type of laboratory techniques developed to measure

the recognition skills of experts and novices. Expertise researchers test recognition skills

with laboratory tasks that are representative of the performance context but that are also

repeatable and measurable—attributes of good training tasks as well as good testing tasks.

Table 1 illustrates the differences between similar tasks used for testing or training

purposes. The primary differences are in the number of items used, the feedback provided,

the sequencing of items, and the provision of instruction. Testing purposes are served by
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using the minimum number of items needed to measure the target skill whereas systematic

training requires many more items. Immediate and corrective feedback is an essential

element of training, but is not usually provided during a test—specifically to avoid a

learning effect. In a test, items of varying difficulty are usually mixed while training often

involves a progression of difficulty as the learner masters each level. Of course, content or

skill instruction is not typically provided in a testing environment while initial or remedial

instruction may be included in a training design.

A key contribution of sports expertise studies is the development of temporal occlusion

as a powerful technique for testing and training recognition skills. While most performance

domains do not require extremely rapid recognition, expert–novice research in chess,

medical diagnosis, and other skill areas suggests that the differences between expert and

novice recognition ability are exaggerated in speeded conditions (Ericsson, 2004). In-

creased speed in cognitive processes such as recognition can potentially serve as an

indicator of reduced extraneous cognitive load, a key goal of recognition training.

Whether the target skill involves dynamic visual display (e.g., baseball pitch), or static

display (e.g., X-ray), recognition skill can be tested or trained using occlusion tasks that

involve displaying visual items in variably occluded or time-limited frames. The first step

in creating an occlusion-based testing/training task is to create items (e.g., video pitches or

X-rays). After items have been created a variety of tasks can be devised. Established

laboratory tasks for testing recognition skill include recall, detection, categorization, and

prediction. Recall tasks were common in early expertise research, such as the classic chess

studies, but are used less because recall ability—although it differentiates experts and

novices—is not usually part of the expert’s cognitive process in performance (Ericsson,

2006). Detection tasks involve participants or trainees detecting the presence of a key piece

of information in the visual display. Categorization tasks involve identifying critical ele-

ments of the display from a closed set of options (e.g., Pitch Type). Prediction tasks

involve anticipating potential results. In a dynamic occlusion task, this can involve pre-

dicting the continuation of the action that was occluded (e.g., Pitch Location). A training

design may use such tasks independently or in a performance-based sequence. Practice in

reading mammograms, for example, would logically include a detection task of deter-

mining whether an item should be tagged for closer investigation—a realistic task when

only 1–3% of mammograms detect malignancies (Ericsson, 2004). A separate categori-

zation task might involve sorting potential malignancies by type.

Another key contribution of sports expertise training research is demonstrating that low

fidelity, part-task recognition training is a potential alternative to high fidelity, full-task

simulation training. The lower fidelity approach can be applied in other domains involving

perceptual-cognitive skills. In the domain of truck driving, it is likely that—as with

baseball batters—the difference between skilled and expert performers has little to do with

requisite psychomotor skills. Once driving skills have been mastered, then a driver’s

Table 1 Instructional elements used differently for testing and training purposes

Element Testing purpose Training purpose

Repetition Minimum to measure skill As needed to develop skill

Feedback None Immediate and corrective

Difficulty Mixed to avoid training Progressive for mastery

Instruction None Initial and remedial
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progression in level of expertise is based largely on experience-based decision-making.

However, a driver’s experience may be limited to a particular type (over-the-road versus

local) or location (urban east versus mountain west) of driving. If a company decided to

systematically enhance the expertise of its drivers, it might develop a recognition training

program that would artificially grow drivers’ base of experience using a low fidelity

‘‘video flashcard’’ format that can be delivered over the Internet.

An instructional designer devising such a truck driving recognition training program can

adopt research tasks that involve viewing a point-of-view computer display and pressing a

button when a hazard is detected (Durso & Dattel, 2006). Additionally, Smith System

(2006), a company that provides driver training for numerous trucking firms, instructs

drivers to maintain a following distance of 7 s behind other vehicles and to look 15 s down

the road in order to recognize potentially problematic driving situations. A recognition

training program, therefore, might require drivers to view video display of items that depict

an in-cab point of view of authentic driving situations and ask drivers to detect and cate-

gorize potential hazards in the 7–15 s window, and then to predict potential outcomes. These

recognition training tasks should be validated by testing drivers of variable but known levels

of expertise to see if the tasks in fact differentiate expert and less expert drivers.

3) Conducting a systematic recognition training program. Recognition training can be

viewed as ‘‘mental weight lifting’’ in that it is not primarily directed at acquiring

knowledge but rather at systematically strengthening a cognitive skill. As such, effective

recognition training should entail a consistent and progressive program of activities rather

than an occasional practice or testing activity. This type of expertise training program is

potentially appropriate for an array of pre-service or in-service professionals in cognitive

as well as psychomotor domains, such as radiology. While professional education pro-

grams for radiologists certainly involve viewing and judging large numbers of X-rays,

traditional knowledge-building activities can be enhanced with systematic skill-building

exercises that emphasize rapid recognition of critical X-ray features.

There may also be a continuing education role for recognition training of practicing

radiologists. Ironically, while some experienced experts in radiology estimate that they will

have analyzed more than half a million X-rays in their careers (Lesgold et al., 1988),

practicing radiologists lack opportunities for deliberate practice—that is, practice with

immediate feedback and focused learning goals. While practicing radiologists may receive

feedback on their diagnoses, it tends to be far removed from the initial presentation of the

X-ray, limiting the learning value of the feedback (Ericsson, 2004). In addition, there is the

possibility that a radiologist working for years in the same or similar context may see

limited types of X-rays—albeit a lot of them. The availability of deliberate practice

opportunities that involve reading a wide variety of X-rays, with immediate feedback and

progressive difficulty, could offer practicing radiologists an opportunity to expand their

base of experience.

4) Enhancing and evaluating transfer of training using performance-based tasks. Some

of the sports recognition training programs have been able to measure effects of recog-

nition training on full-skill performance in a real-world context. However, directly mea-

suring performance with accepted metrics is fairly unique to the realm of sports. A more

useful approach is seen in the studies of recognition training programs that have shown

transfer of recognition skills improved in video-simulation training environments to more

elaborate and realistic simulation environments (Farrow et al., 1998). Sometimes called

pseudo-transfer (Lee, Chamberlain, & Hodges, 2001), the technique of training using

lower fidelity simulation and testing using higher fidelity simulation can be used to both

evaluate and enhance transfer of training. For example, some smaller police departments
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rotate officers out of the field to train on the Los Angeles Police Department’s high fidelity

use-of-force simulator (McMahon, 1999). If police officers had access to lower fidelity

recognition training on a laptop computer or over the Internet, officers might be able to

reach proficiency in the recognition component of shoot-don’t shoot decision-making and

then use expensive high fidelity simulator training time to facilitate the transfer of

recognition training to the full recognition-decision-action sequence and to certify a level

of achieved performance.

Standardized and validated tests of domain expertise have a place in recognizing and

rewarding expertise as well as in researching and training expert performance. Ericsson

and Lehman (in van Gog et al., 2005) describe experts as showing ‘‘consistently superior

performance on a specified set of representative tasks for a domain (p. 277).’’ Unfortu-

nately, few domains have a set of representative tasks to measure expertise. Endsley (2006)

has provided a model in devising a measure of situation awareness in aviation that she then

used to test the decision-making of more experienced and less experienced pilots in a flight

simulator. Endsley found that situation awareness was a better predictor of performance on

simulation tasks than was flying hours. In the domain of commercial trucking, Allen and

Tarr have developed a set of representative simulation scenarios, the Virtual Check-Ride
System, that is used to test commercial truck drivers and that the researchers have also used

to test the effectiveness of different truck-driving simulators (Allen & Tarr, 2005). With

potential use in hiring, testing, training, certification, and promotion, the case can be made

that expertise researchers, instructional designers, performance technologists, and indus-

trial psychologists should invest in systematically devising representative tasks for a wide

range of performance domains.

Discussion

One of the primary tenants of expertise theory is that experience, although necessary for

the full flowering of expertise, is not the same as deliberate practice—and it is deliberate

practice that is the single most important contributor to the development of expertise

(Ericsson et al., 1993). With the exception of a few public performance domains such

as sports and music, however, most professions do not have a ‘‘culture of practice’’

(Macmahon, Helsen, Starkes, & Weston, 2007). Rather, the development of expertise is

accomplished through preparation for performance (mission rehearsal in military terms)

along with post-performance debriefing and sharing of experience with other professionals,

both formally and informally. While this process is effective in eventually developing

expertise in many practitioners, the goal of hastening expertise calls for instructional

designers to create efficient instructional tasks that target key cognitive skills such as

recognition-primed decision-making.

The approach of creating training tasks by repurposing research testing tasks has been

most fully developed in the area of sports but it can potentially be applied to professional

education and in-service training in domains such as surgery, nursing, radiology, emer-

gency response, aviation, air-traffic control, vehicle operation, security screening, crime

scene investigation, classroom teaching, and use-of-force decision-making by police and

military personnel. These are all domains that are, at times, addressed with simulation

training (including ‘‘live’’ simulation such as student teaching). It may be that lower

fidelity simulation that focuses on part-task training of the recognition aspect of recogni-

tion-primed decision-making can supplement, although not supplant, much more expensive

high fidelity, full-task simulation.
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With imagination, an instructional designer may see recognition-primed decision-

making at work in the performance of experts in many domains. An expert teacher appears

to recognize when to give students free reign and when to rein them in. An expert social

services professional recognizes the signs of bi-polar disorder early in a client interview

and redirects a manic cycle. An expert sales representative recognizes the opportunities

embedded in a customer’s objections and closes the order. A port security officer recog-

nizes a packing crate that ‘‘doesn’t look right’’ and takes a closer look. In all of these

scenarios, trained competence has combined with experience to create expertise. However,

while expertise occurs naturally over time for many learners and practitioners without

systematic instructional interventions, there are opportunities, such as recognition training,

to hasten the progression of advanced learners to expert status...to get more people over the

bar faster.

Traditionally, the culture of instructional design is that we aren’t responsible for the

development of expertise. Expertise is seen as the realm of individual coaching, mentor-

ship, and massed experience while the systematic design of instruction has focused—very

successfully—on the codification and transmission of declarative knowledge and proce-

dural skills. Maturing theories of expertise and expert performance, however, suggest and

support a greater role for instructional design in the systematic development of expertise.

Accepting the value and feasibility of the recognition training approach described in this

article still leaves many challenges and issues to be addressed: What types of skills might

be amenable to recognition training? Who are the experts and how can we identify them?

How can the mechanisms of experts’ recognition skills be revealed? When might learners

gain most from recognition training? Can premature recognition training hurt the schema

development of learners? How can performance gains be observed and measured? These

questions will be addressed primarily through the development and reporting of recogni-

tion training programs in a variety of domains—many of which were represented in this

article with hypothetical examples (apologies to readers who have real expertise in these

areas).

The recognition training approach that has been described in this article is based on the

critical assumption that training skilled but less-than-expert learners to produce recognition

behavior equivalent to what experts display will create, or at least hasten, expertise. A

modest amount of research, primarily in training perceptual-cognitive sports skills,

supports this assumption. However, more training-based research is needed, in more and

different domains of expertise. Ironically, as much as expertise research is ripe for the

instructional design picking, the research also needs to be applied in order to become more

fruitful.
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