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Abstract A major challenge in cell and developmental biology is the automated identification

and quantitation of cells in complex multilayered tissues. We developed CytoCensus: an easily

deployed implementation of supervised machine learning that extends convenient 2D ‘point-and-

click’ user training to 3D detection of cells in challenging datasets with ill-defined cell boundaries.

In tests on such datasets, CytoCensus outperforms other freely available image analysis software in

accuracy and speed of cell detection. We used CytoCensus to count stem cells and their progeny,

and to quantify individual cell divisions from time-lapse movies of explanted Drosophila larval

brains, comparing wild-type and mutant phenotypes. We further illustrate the general utility and

future potential of CytoCensus by analysing the 3D organisation of multiple cell classes in Zebrafish

retinal organoids and cell distributions in mouse embryos. CytoCensus opens the possibility of

straightforward and robust automated analysis of developmental phenotypes in complex tissues.

Introduction
Complex tissues develop through regulated proliferation and differentiation of a small number of

stem cells. For example, in the brain these processes of proliferation and differentiation lead to a

vast and diverse population of neurons and glia from a limited number of neural stem cells, also

known as neuroblasts (NBs) in Drosophila (Kohwi and Doe, 2013). Elucidating the molecular basis

of such developmental processes is not only essential for understanding basic neuroscience but is

also important for discovering new treatments for neurological diseases and cancer. Modern imag-

ing approaches have proven indispensable in studying development in intact zebrafish (Danio rario)

and Drosophila tissues (Barbosa and Ninkovic, 2016; Dray et al., 2015; Medioni et al., 2015;

Rabinovich et al., 2015; Cabernard and Doe, 2013; Graeden and Sive, 2009). Tissue imaging

approaches have also been combined with functional genetic screens, for example to discover NB

behaviour underlying defects in brain size or tumour formation (Berger et al., 2012; Homem and

Knoblich, 2012; Neumüller et al., 2011). Such screens have the power of genome-wide coverage,

but to be effective, require detailed characterisation of phenotypes using image analysis. Often

these kinds of screens are limited in their power by the fact that phenotypic analysis of complex tis-

sues can only be carried out using manual image analysis methods or complex bespoke image

analysis.
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Drosophila larval brains develop for more than 120 h (Homem and Knoblich, 2012), a process

best characterised by long-term time-lapse microscopy. However, to date, imaging intact develop-

ing live brains has tended to be carried out for relatively short periods of a few hours (Lerit et al.,

2014; Cabernard and Doe, 2013; Prithviraj et al., 2012) or using disaggregated brain cells in cul-

ture (Homem et al., 2013; Moraru et al., 2012; Savoian and Rieder, 2002; Furst and Mahowald,

1985). Furthermore, although extensively studied, a range of different division rates for both NBs

and progeny ganglion mother cells (GMCs) are reported in the literature (Homem et al., 2013;

Bowman et al., 2008; Ceron et al., 2006) and in general, division rates have not been systematically

determined for individual neuroblasts. Imaging approaches have improved rapidly in speed and sen-

sitivity, making imaging of live intact tissues in 3D possible over developmentally relevant time-

scales. However, long-term exposure to light often perturbs the behaviour of cells in subtle ways.

Moreover, automated methods for the analysis of the resultant huge datasets are still lagging behind

the microscopy methods. These imaging and analysis problems limit our ability to study NB develop-

ment in larval brains, as well as more generally our ability to study complex tissues and organs.

Here, we describe our development and validation of ex vivo live imaging of Drosophila brains,

and of CytoCensus, a machine learning-based automated image analysis software that fills the tech-

nology gap that exists for images of complex tissues and organs where segmentation and spot

detection approaches can struggle. Our program efficiently and accurately identifies cell types and

divisions of interest in very large (50 GB) multichannel 3D and 4D datasets, outperforming other

state-of-the-art tools that we tested. We demonstrate the effectiveness and flexibility of CytoCensus

first by quantitating cell type and division rates in ex vivo cultured intact developing Drosophila lar-

val brains imaged at 10% of the normal illumination intensity with image quality restoration using

patched-based denoising algorithms (Carlton et al., 2010). Second, we quantitatively characterise

the precise numbers and distributions of the different cell classes within two vertebrate tissues: 3D

Zebrafish organoids and mouse embryos. In all these cases, CytoCensus successfully outputs quanti-

tation of the distributions of most cells in tissues that are too large or complex for practical manual

annotation. Our software provides a convenient tool that works ‘out-of-the-box’ for quantitation and

single-cell analysis of complex tissues in 4D, and, in combination with other software (e.g. FIJI), sup-

ports the study of more complex problems than would otherwise be possible. CytoCensus offers a

practical alternative to producing bespoke image analysis pipelines for specific applications.

eLife digest There are around 200 billion cells in the human brain that are generated by a small

pool of rapidly dividing stem cells. For the brain to develop correctly, these stem cells must produce

an appropriate number of each type of cell in the right place, at the right time. However, it remains

unclear how individual stem cells in the brain know when and where to divide.

To answer this question, Hailstone et al. studied the larvae of fruit flies, which use similar genes

and mechanisms as humans to control brain development. This involved devising a new method for

extracting the brains of developing fruit flies and keeping the intact tissue alive for up to 24 hours

while continuously imaging individual cells in three dimensions.

Manually tracking the division of each cell across multiple frames of a time-lapse is extremely

time consuming. To tackle this problem, Hailstone et al. created a tool called CytoCensus, which

uses machine learning to automatically identify stem cells from three-dimensional images and track

their rate of division over time. Using the CytoCensus tool, Hailstone et al. identified a gene that

controls the diverse rates at whichstem cells divide in the brain. Earlier this year some of the same

researchers also published a study showing that this gene regulates a well-known cancer-related

protein using an unconventional mechanism.

CytoCensus was also able to detect cells in other developing tissues, including the embryos of

mice. In the future, this tool could aid research into diseases that affect complex tissues, such as

neurodegenerative disorders and cancer.
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Motivation and design
We sought to overcome the image analysis bottleneck that exists for complex tissues and organs by

creating easy to use, automated image analysis tools able to accurately identify cell types and deter-

mine their distributions and division rates in 3D, over time within intact tissues. To date, challenging

image analysis tasks of this sort have largely depended on slow, painstaking manual analysis, or the

bespoke development or modification of dedicated specialised tools by an image analyst with signif-

icant programming skills (Chittajallu et al., 2015; Schmitz et al., 2014; Stegmaier et al., 2014;

Homem et al., 2013; Myers, 2012; Meijering, 2012; Meijering et al., 2012; Rittscher, 2010). Of

the current freely available automated tools, amongst the most powerful are Ilastik and the custom-

ised pipelines of the FARSIGHT toolbox and CellProfiler (Padmanabhan et al., 2014; Sommer and

Gerlich, 2013; Sommer, 2011; Roysam et al., 2008). However, these three approaches require

advanced knowledge of image processing, programming and/or extensive manual annotation. Other

software such as Advanced Cell Classifier are targeted at analysis of 2D data, whilst programs such

as RACE, SuRVoS, 3D-RSD and MINS are generally tailored to specific applications (Luengo et al.,

2017; Stegmaier et al., 2016; Lou et al., 2014; Cabernard and Doe, 2013; Homem et al., 2013;

Arganda-Carreras et al., 2017; Logan et al., 2016; Gertych et al., 2016). Recently, efforts to make

deep learning approaches easily accessible have made great strides (Falk et al., 2019); such imple-

mentations have the potential to increase access to these powerful supervised segmentation meth-

ods, but at present hardware and installation requirements are likely to be too complex for the

typical biologist. In general, we find that existing tools can be powerful in specific examples, but lack

the flexibility, speed and/or ease of use to make them effective solutions for most biologists in the

analysis of large time-lapse movies of 3D developing tissues.

In developing CytoCensus, we sought to design a widely applicable, supervised machine leaning-

based image analysis tool, addressing the needs of biologists to efficiently characterise and quanti-

tate dense complex 3D tissues at the single-cell level with practical imaging conditions. This level of

analysis of developing tissues, organoids or organs is frequently difficult due to the complexity and

density of the tissue arrangement or labelling, as well as limitations of signal to noise. We therefore

aimed to make CytoCensus robust to these issues but also to make it as user friendly as possible. In

contrast to other image analysis approaches that require the user to define the cell boundaries,

CytoCensus simply requires the user to point-and-click on the approximate centres of cells. This sin-

gle click training need only be carried out on a few representative 2D planes from a large 3D vol-

ume, and tolerates relatively poor image quality compatible with extended live cell imaging. To

make the task very user friendly, we preconfigured most algorithm settings leaving a few, largely

intuitive, parameters for the user to set. To improve performance, we enabled users to define

regions of interest (ROIs) which exclude parts of a tissue that are not of interest or interfere with the

analysis. We also separated the training phase from the analysis phase, allowing efficient batch proc-

essing of data. For the machine learning, we choose a variation of Random Forests with pre-calcu-

lated image features, which allows for much faster training compared to neural networks on typical

computers, and with a fraction of the user annotation. A similar approach is taken by the image anal-

ysis software Ilastik (Berg et al., 2019). Using machine learning, CytoCensus then determines the

probability of each pixel in the image being the centre of the highlighted cell class in 3D, based on

the characteristics of the pixels around the site clicked. This proximity map is used to identify all of

the cells of interest. Finally, to increase the ease of adoption, we designed CytoCensus to be easily

installed and work on multiple platforms and computers with standard specifications, including

generically configured laptops without any pre-requisites. Collectively, these improvements make

CytoCensus an accessible and user-friendly image analysis tool that will enable biologists to analyse

their image data effectively, increase experimental throughput and increase the statistical strength

of their conclusions.

Results

Optimised time-lapse imaging of developing intact ex vivo brains
To extend our ability to study stem cell behaviour in the context of the intact Drosophila brain, we

modified the methods of Cabernard and Doe (2013), revised in Syed et al. (2017), to produce a

convenient and effective protocol optimising tissue viability for long-term culture and quantitative
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imaging. We first developed an isolation procedure incorporating scissor-based dissection of second

or third-instar larvae, in preference to solely tweezer or needle-based dissection which can damage

the tissue. We then simplified the culture medium and developed a convenient brain mounting tech-

nique that immobilises the organ using agar (Figure 1A; Materials and methods). We also made use

of bright, endogenously expressed fluorescently tagged proteins Jupiter::GFP and Histone::RFP

marking microtubules and chromosomes respectively, to follow the developing brain (Figure 1B).

We chose generic cytological markers as these are more consistent across wild-type (WT) and differ-

ent mutants than more specific markers, such as Deadpan (Dpn), Asense (Ase) or Prospero (Pros),

commonly used to identify NBs, GMCs and neurons. Finally, we optimised the imaging conditions to

provide 3D data sets of sufficient temporal and spatial resolution to follow cell proliferation over

time without compromising viability (see Materials and methods). Significantly, to maximise temporal

and spatial resolution without causing damage, we reduced photo-damage by decreasing the laser

excitation power by approximately 10 fold (see Materials and methods) and subsequently restoring

image quality using patch-based denoising (Carlton et al., 2010), developed by Kervrann and Bou-

langer (2006). This approach allowed us to follow the lineage and quantitate the divisions of NBs

and GMCs in the intact brain in 3D (Figure 1C,D).

To assess whether our culturing and imaging protocol supports normal development, we used a

number of criteria. We found that by all the criteria we measured, brain development is normal in

our ex vivo conditions. First, the cultured ex vivo brains do not show signs of damage during prepa-

ration, which can be easily identified as holes or lesions in the tissue that expand with time in culture.

Second, our cultured larval brains consistently increase in size as they progress through development

(Figure 1—figure supplement 1). Third, using our approach, we recorded average division rates of

0.66 divisions/hour (~90 min per cycle, Figure 1C) for the Type 1 NB of the central brain (Figure 1—

figure supplement 1A0), at the wandering third instar larval stage (wL3), as previously published

(Homem et al., 2013; Bowman et al., 2008; Figure 1—video 1; Figure 4—video 1). We note here

that experiments were performed at 21˚C, which differs from some developmental studies per-

formed at 25˚C. Type I NBs were identified by location according to Homem and Knoblich (2012).

Fourth, we rarely observed excessive lengthening or arrest of the cell cycle in NBs over a 22 h imag-

ing period, which is approximately the length of the wL3 stage (Figure 1C). With longer duration cul-

ture and imaging, up to 48 hr, we observe an increase in cell cycle length, which might be expected

for wL3 brains transitioning to the pupal state (Homem et al., 2014). Finally, we observed normal

and sustained rates of GMC division throughout the imaging period that correspond to the previ-

ously described literature in fixed brain preparations (Bowman et al., 2008; Figure 1D; Figure 4—

video 2). We conclude that our ex vivo culture and imaging methods accurately represent develop-

ment of the Drosophila brain and support high time and spatial resolution imaging for quantitation

of cell numbers and division rates.

CytoCensus enables easy automated quantification of cell types in
time-lapse movies of developing intact larval brains with modest
training
Progress in elucidating the molecular mechanisms of regulated cell proliferation during larval brain

development has largely depended on the characterisation and quantification of mutant phenotypes

by painstaking manual image analysis (for example, Neumüller et al., 2011). However, the sheer vol-

ume of image data produced by whole brain imaging experiments means that manual assessment is

impractical. Therefore, we attempted to use freely available image analysis tools in an effort to auto-

mate the identification of cell types. We found that none of the available off-the-shelf image analysis

programs perform adequately on our complex 3D datasets, in terms of ease of use, speed or accu-

racy (Table 1). Neuroblast nuclei are large and diffuse, which means that conventional spot detectors

(e.g. TrackMate) struggle to identify them. Ilastik Density Counting (which takes a related approach

to CytoCensus) was promising to count NB in 2D, but is not designed to work in 3D nor to detect

cell centres (Berg et al., 2019). Similarly, image segmentation tools (such as RACE, Ilastik Pixel Clas-

sification and WEKA) struggle to segment NB marked by microtubule labels as they vary significantly

in appearance with the cell cycle and cell boundaries may appear incomplete. To overcome these

limitations, we developed CytoCensus, an easily deployed, supervised machine learning-based

image analysis software (Figure 2; Figure 2—figure supplement 1). CytoCensus facilitates auto-

mated detection of cell types and quantitative analysis of cell number, distribution and proliferation
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Figure 1. Extended 3D time-lapse imaging of live ex vivo cultured brains. (A) Diagram of the chamber and sample preparation for long-term time-lapse

imaging on an inverted microscope (see Materials and methods). (B) 24 h, confocal 3D time-lapse imaging of a developing larval brain lobe (inset, top

left, shows orientation and region of the brain imaged) labelled with Jupiter::GFP and Histone::RFP, and registered over time to account for movement.

Arrowheads indicate NBs (magenta) and progeny (cyan), enlarged in the top right insets; a dashed white line indicates the boundary to the optic lobe.

(C0) A typical individual dividing NB from a confocal time-lapse image sequence of the brain lobe. The NB is outlined (dashed white line) and indicated

with a magenta arrowhead, the progeny (GMC) is indicated by a cyan arrowhead. (C0 0) Plot of NB division rate for cultured L3 brains shows that division

rate of NBs does not significantly decrease over at least 22 h under imaging conditions (n = 3 brains, not significant (ns), p=0.87, one-way ANOVA),

calculated from measured cell cycle lengths. (D0) Typical GMC division in an intact larval brain. The first row of panels shows production of a GMC (cyan

arrowhead) by the dividing NB (magenta arrowhead, dashed white outline). Second row of panels, GMCs are displaced over the next 6 to 8 h by

subsequent NB divisions, the path of displacement is indicated by the dashed yellow arrow. The last two panels (10 to 18 min) show the division of a

GMC (green arrowhead, progeny yellow arrowheads). (D0 0) Plot showing the rate of GMC division in the ex vivo brain does not change with time in

culture (n = 4 brains, ns, p=0.34, one-way ANOVA), calculated from the number of GMC division events in 4 h. Error bars on plots are standard

deviation. Scale bars (B) 50 mm; (C), (D) 10 mm.

The online version of this article includes the following video and figure supplement(s) for figure 1:

Figure supplement 1. Ex vivo larval brains continue to develop in culture.

Figure 1 continued on next page
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from time-lapse movies of multichannel 3D image stacks even in complex tissues. A full technical

description of the algorithm is found in Materials and methods and a User Guide is available in the

Supplemental Information.

To optimise its effectiveness, we developed CytoCensus with a minimal requirement for supervi-

sion during the training process. We developed an implementation of supervised machine learning

(see Materials and methods), in which the user trains the program in 2D on a limited number of

images (Figure 2). In this approach, the user simply selects, with a single mouse click, the approxi-

mate centres of all examples of a particular cell type within small user-defined regions of interest in

the image. This makes CytoCensus is more convenient and faster than other machine learning-based

approaches, such as FIJI-WEKA (Arganda-Carreras et al., 2017) or Ilastik Pixel Classification,

(Sommer, 2011), which require relatively extensive and time consuming annotation of the cells by

their boundaries. However, this simple training regime requires assumptions of roundness, which

precludes direct analysis of cell shape. We explore the extent of this limitation in subsequent

sections.

To further optimise the training, our training workflow outputs a ‘proximity’ map, similar to those

described in Fiaschi et al. (2012); Swiderska-Chadaj et al. (2018); Liang et al. (2019);

Höfener et al. (2018). These approaches all focus on 2D proximity maps, while CytoCensus utilises

proximity maps in 3D. One may think of the proximity map as a probability of how likely it is that a

given pixel is at the center of one of the cells of interest. Using this proximity map the user can

assess the accuracy of the prediction and, if necessary, provide additional training (Figure 2). This

proximity map and the predicted locations of cell centres across the entire volume and time-series

are saved and may be conveniently passed to ImageJ (FIJI), or other programs (Schindelin et al.,

2012) for further processing (Figure 2; Figure 2—figure supplement 1; Figure 3—figure supple-

ment 1). After this initial phase of manual user training, the subsequent processing of new unseen

data is automated and highly scalable to large image data sets without any further manual user train-

ing. To determine the required training, the impact of training level (number of regions used in the

training) was assessed on live imaging data sets (Materials and methods). The results show that

detection accuracy was optimised even with a modest levels of training (Figure 3—figure supple-

ment 2).

CytoCensus is a significant advance in automated cell detection in
challenging data sets
We assessed the performance of CytoCensus at cell identification on challenging live imaging data

sets that were manually annotated by a user to generate ‘ground-truth’ results. Before comparison

between applications, algorithm parameters were optimised for the different approaches to prevent

overfitting (Materials and methods). In our tests CytoCensus outperformed the machine learning

based approaches Fiji-WEKA (p=0.005, t-test, n = 3) and Ilastik Pixel Classification (p=0.007, t-test,

n = 3), and other freely available approaches in the accuracy of NB detection, speed and simplicity

of use (Figure 3A; Table 1). We calculated a metric of performance, intuitively similar to accuracy,

which is known as the F1-score, with a maximum value of 1.0 (Materials and methods; Table 1). We

found that the best performing approaches on our complex datasets were Ilastik Pixel Classification

and CytoCensus, which are machine learning based. It is likely that both approaches might be fur-

ther improved with additional bespoke analysis, specific to each data set, however this would limit

their flexibility and ease of use.

To further critically assess the performance of CytoCensus, we used an artificially generated ‘neu-

tral challenge’ 3D dataset, which facilitates fair comparison (Figure 3B). We used a dataset of 30

images of highly clustered synthetic cells, in 3D, with a low signal-to-noise ratio (SNR), obtained

from the Broad Bioimage Benchmark Collection (Materials and methods). We selected this dataset

because it has similar characteristics to our live imaging data. Using this dataset, we directly com-

pared the abilities of Ilastik Pixel Classification (Figure 3B0 0) and CytoCensus (Figure 3B0 00), to

Figure 1 continued

Figure 1—video 1. Development of a live explanted larval brain under extended time-lapse imaging conditions.

https://elifesciences.org/articles/51085#fig1video1
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Figure 2. CytoCensus analysis workflow. Refer to the Main Text and Materials and methods for details. Training is

performed by single click annotation (yellow crosses) within a user-defined region of interest (ROI, white dashed

square) to identify the cell class of interest. The resultant proximity map for cell class identification (~probability

score for object centres) is evaluated manually to assess the success of training (white arrows indicate good

detections and circles indicate where more training may be required). A successful identification regime (Model) is

saved and may be used to batch process multiple image data sets. Multiple outputs are produced including a list

of the co-ordinates of identified cells. Multiple identification regimes can be sequentially applied to identify

multiple cell classes from a single data set.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. CytoCensus graphical user interface.
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identify cell centres in 3D. In both cases, we trained on a single image, optimised parameters on five

images, and evaluated performance on the remaining 25 images. We found that CytoCensus

(Table 2, F1-score: 0.98 ± 0.05) outperforms Ilastik Pixel Classification in the accuracy of cell centre

detection (Figure 3B) even after the Ilastik Pixel Classification results were post-processed to aid

separation of touching objects (Table 2, F1-score: 0.88 ± 0.09). We conclude that CytoCensus is sig-

nificantly more accurate than Ilastik at identifying cells when both are tested out-of-the-box on neu-

tral challenge data (Figure 3B0 0 0 0 p<0.001, Welch’s t-test, n = 25).

For a more general comparison to other detection and segmentation methods, we applied Cyto-

Census to 3D data from the Cell Tracking Challenge Segmentation Benchmark (Ulman et al., 2017;

Maška et al., 2014). To properly participate in this challenge, we trained CytoCensus as normal, and

then applied a simple post-processing of the CytoCensus centres, using a small number of iterations

of MorphACME (Marquez-Neila et al., 2013), an active contour segmentation method, in order to

get a segmentation. The results of CytoCensus are shown in Figure 3—figure supplement 2B,

Table 1. CytoCensus outperforms other freely available programs for cell class identification.

Performance assessment for a series of freely available tools in identifying NBs from a typical 4D live-

imaging time-series of the generic cytological markers Jupiter::GFP/Histone::RFP, expressed in larval

brains. Comparison to CytoCensus is made on the same computer, including time taken to provide

user annotations for a standard data set (150 or 35 time-points, 30-Z). Computer specifications: Mac-

Book Pro11,5; Intel Core i7 2.88 GHz; 16 GB RAM. For manual annotations, the time taken to anno-

tate the full dataset was estimated from the time to annotate 10 time-points. Values ± standard

deviations are shown, n = 3. Fiji, ImageJ V1.51d (Schindelin et al., 2012); FIJI, local threshold V1.16.4

(http://imagej.net/Auto_Local_Threshold); FIJI-WEKA, WEKA 3.2.1 (Arganda-Carreras et al., 2017);

RACE (Stegmaier et al., 2016); TrackMate (Tinevez et al., 2017); Ilastik (V1.17) (Logan et al., 2016;

Sommer, 2011).

Manual
Fiji/auto local
threshold

TrackMate
spot

detection RACE

Ilastik
Pixel

Classif-
ication
(1.17)

Fiji
WEKA

Cyto-
Census
V0.1

Total Parameters to select - 1 4 8 67
(48)

25 6

Handles 4-D easily - NO YES YES YES NO YES

Time to Train model (min.) - N/A N/A N/A 15 18 6

Time to Run (min. including
postprocessing)

550
(equivalent)

5 1 16 70 105 19

F1-score - Fail 0.11
±0.09

0.17
±0.01

0.76
±0.01

0.62
±0.07

0.96
±0.01

Table 2. CytoCensus outperforms other freely available programs for cell class identification.

Direct comparison of Ilastik Pixel Classification vs CytoCensus in automatically identifying cell centres in a crowded 3D data set. To

facilitate fair comparison, a ‘neutral challenge dataset’ was used (Main Text). F1 score is intuitively similar to accuracy of detection.

Values ± standard deviations are shown, n = 25 images. Computer specifications: MacBook Pro11,5; Intel Core i7 2.88 GHz; 16 GB

RAM. Ilastik (V1.17) (Logan et al., 2016; Sommer, 2011).

Ilastik pixel classification (1.17)
(raw)

Ilastik pixel classification
(1.17)

(post-processed)
CytoCensus

V0.1

CPU time (hours) 82 83 12

Precision
(True Positive Rate)

0.39 ± 0.19 0.86 ± 0.10 0.98 ± 0.05

Recall
(Positive Predictive Value)

0.15 ± 0.10 0.90 ± 0.07 0.98 ± 0.05

F1-score (max = 1.0) 0.21 ± 0.13 0.88 ± 0.09 0.98 ± 0.05
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Figure 3. Validation of CytoCensus performance. (A) Performance in identifying NBs from 3D confocal image data

of a live brain labelled with Jupiter::GFP, Histone::RFP. (A0) Ground Truth manual identification of NB centres. A0 0

to 0 0 0 0) Output images comparing NB identification by Ilastik, Fiji-Weka and CytoCensus, white overlay. (Av) Plot

comparing object centre detection by TrackMate spot detection, RACE, Fiji-Weka, Ilastik Pixel Classification and

Figure 3 continued on next page
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along with the results of the top 3 ranked algorithms at the time of publication. CytoCensus in gen-

eral performs well at detection, achieving top 3 performance on 3/6 datasets tested (Figure 3—fig-

ure supplement 2B00). CytoCensus with post-processing performs surprisingly well at the

segmentation aspect of the challenge, despite primarily being aimed at detection, achieving top 3 in

2/6 datasets (Figure 3—figure supplement 2B0 0 0). Unsurprisingly, datasets such as N3DH-CE, which

have cells with highly variable cell size and shape, were challenging for CytoCensus. However, Cyto-

Census performed particularly well on datasets with lower signal to noise and a high density of cells

(e.g. N3DH-SIM+, N3DH-DRO, N3DH-TRIC [Jain et al., 2019]), illustrating where CytoCensus is best

applied. In general CytoCensus performs competitively on the tested datasets, leveraging a small

amount of training to achieve good results without needing dataset specific algorithms for denoising

or object separation.

We conclude that CytoCensus represents a significant advance over the other current freely avail-

able methods of analysis, both in ease of use and in ability to accurately and automatically analyse

cells of interest in the large volumes of data resulting from live imaging of an intact complex tissue

such as a brain. This will greatly facilitate the future study of subtle or complex mutant developmen-

tal phenotypes.

Using CytoCensus to analyse the over-growth phenotype of syncrip
knockdown larval brains
To demonstrate the power and versatility of using CytoCensus in the analysis of a complex brain

mutant phenotype, we characterised the brain overgrowth phenotype of syncrip (syp) knockdown

larvae (Figure 4A). SYNCRIP/hnRNPQ, the mammalian homologue of Syp, is a component of RNA

granules in the dendrites of mammalian hippocampal neurons (Bannai et al., 2004). Syp also deter-

mines neuronal fate in the Drosophila brain (Ren et al., 2017), NB termination in the pupa

(Yang et al., 2017; Samuels et al., 2020b) and is required for neuromuscular junction development

and function (McDermott et al., 2014; Halstead et al., 2014; Titlow et al., 2020). syp has previ-

ously been identified in a screen for genes required for normal brain development

(Neumüller et al., 2011), although the defect was not characterised in detail.

In light of these studies, we wanted to understand the defect caused by syp on brain develop-

ment in more detail. We therefore examined syp - / - brains (eliminating Syp expression in the NB

lineages) and found that in early wL3, brains were significantly enlarged compared to WT larvae at

the same stage of development (p<0.0001, t-test, Figure 4A, Figure 4—figure supplement 1A).

syp brain lobes exhibit a 23% increase in diameter (WT 206.5 mm ± 5.0, n = 10, syp 253.7 mm ± 11.0,

n = 5), and a 35% increase in central brain (CB) volume. Significantly, a more specific RNAi knock-

down of syp driven under the inscuteable promoter, which is expressed primarily in NBs and GMCs,

demonstrates a similar increase in CB diameter (p=0.002, 13% larger than WT; 234 mm ± 17.0,

n = 12; Figure 4—figure supplement 1A). Our data raises the question as to how the removal of

syp from the neural lineages causes such a significant increase in central brain size.

We tested whether this brain overgrowth is caused by additional ectopic NBs, as has been previ-

ously described for other mutants (Bello et al., 2006). We used CytoCensus to accurately determine

the total number of NBs in the CB of fixed syp knockdown verses WT wL3 brains. Our results show

that wL3 brains with syp RNAi knockdown have no significant difference in ventral NB number com-

pared to WT (Figure 4B; WT 45.6 ± 1.3, n = 22, syp RNAi 44.1 ± 2.1, n = 15). We conclude that a

Figure 3 continued

CytoCensus (error bars are standard deviation). CytoCensus achieves a significantly better F1-score than Ilastik

(p=0.01, n = 3) and FIJI (p=0.005, n = 3). (one-way RM-ANOVA with post hoc t-tests) (B) Comparison of algorithm

performance for a 3D neutral challenge data set (B0, see Materials and methods). (B0 0, B0 0 0) Output images

comparing object centre determination by Ilastik Pixel Classification and CytoCensus. Segmentation results are

shown as green outlines, object centre determination is show as a cyan point. (B0 0 0 0) Plot comparing object centre

determination accuracy for the 3D neutral challenge dataset (error bars are standard deviation; p<0.001, Welch’s

t-test, n = 25). Scale bars (B) 20 mm; (A0) 50 mm.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. CytoCensus identification of cell types.

Figure supplement 2. Comparison of CytoCensus performance.
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Figure 4. Knockdown of Syncrip protein in NBs causes larval brain enlargement. (A) Brightfield images of freshly isolated brains from third instar WT

(OregonR) and syp RNAi larvae, respectively. Inserts in (A) show the region of the brain imaged and the measurements taken to compare brain size. (B)

Chart comparing NB numbers showing that syp RNAi knockdown does not have a significant effect on NB number/brain (ns, p=0.77, t-test, WT n = 22;

RNAi n = 15). NB were identified by Dpn labelling and the average count for a comparable volume of a single optic lobe CB region is shown. (C)

Figure 4 continued on next page
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change in NB number is not the underlying cause of brain enlargement observed in syp RNAi and

hypothesise that a change in NB division rate or that of their progeny might be responsible.

syp RNAi knockdown brains exhibit an increased NB division rate
To investigate whether an increase in NB division rate contributes to the brain overgrowth observed

in syp knockdown larvae, we examined the rate of NB division in living brains using our optimised

culturing and imaging methods, followed by CytoCensus detection and tracking.

First, we perform 3D NB detections using CytoCensus (as shown previously in Figure 3A), and we

fed this input into TrackMate, a simple tracking algorithm. Without the CytoCensus detections,

TrackMate spot detection performs poorly on the raw data (F1 score 0.11 ± 0.09), and tracking is all

but impossible. Applying TrackMate to the proximity maps generated by CytoCensus dramatically

improves TrackMate detections (F1 score 0.92 ± 0.02, Figure 5—figure supplement 1A). As a result,

16 out of 17 NBs were successfully and accurately tracked for over 20 h in our tests (Figure 4C0, Fig-

ure 5—figure supplement 1AV).

In order to follow the NB cell cycle, we next showed CytoCensus can accurately identify individual

dividing NBs in live image series, both in WT (Figure 4C00) and in RNAi brains (Figure 5—figure sup-

plement 1B). We detected dividing NBs by training on NBs with visible spindles using CytoCensus,

and used this output to create plots of division for each NB (Figure 4C0 0 0, Figure 5—figure supple-

ment 1C–D). Using these plots, we measured the cell cycle length of NBs in wild type and syp RNAi

brains and found that, on average, syp RNAi NBs have a 1.78-fold shorter cell cycle compared to

WT (p=0.02, Welch’s t-test, WT N = 7, syp RNAi n = 5 brains; Figure 4C00 0 0). We propose that this

shorter cell cycle length (i.e. an increased division rate) in the syp knockdown is the primary cause of

its increased brain size. These results illustrate the potential of CytoCensus to analyse the patterns

of cell division in a complex, dense tissue, live, in much more detail than conventional methods in

fixed material.

GMC cell cycle length is slightly decreased in syp RNAi brains
We also investigated GMC behaviour in the CB region of syp RNAi and WT larval brains, to test

whether an aberrant behaviour of mutant GMCs could also contribute to a brain enlargement phe-

notype. Given that GMCs are morphologically indistinguishable from their immature neuronal prog-

eny (which makes them particularly difficult to assess) we had to identify GMCs by tracking them

from their birth in a NB division to their own division into two neurons. To achieve this goal required

us to use high temporal resolution imaging and patch based denoising (Materials and methods),

which allowed us to confirm that normal, symmetric GMC divisions occurred with the correct timing

and resulted in two daughter cells (which did not regrow or divide further), both in WT and syp

RNAi (Figure 4D).

Figure 4 continued

Automated identification of NB division using CytoCensus: (C0) Tracking of NB centres, based on CytoCensus detections, over 14 h; (C0 0) raw image

showing single timepoint from live, 3D time-lapse, confocal imaging (insert = single dividing NB, showing CytoCensus prediction of a dividing NB);

(C0 0 0) graph of division of a single tracked NB over 14 h; (C0 0 0 0) average NB (6–9 NB/brain) cell cycle length is reduced in syp RNAi knockdown brains

(p=0.004, Welch’s t-test, WT n = 7, syp RNAi n = 5 brains); (D) Sequence of confocal images from a typical 3D time-lapse movie showing that in syp

RNAi brains, GMCs divide normally to produce two equal sized progeny that do not divide further. (E) Semi-automated analysis of GMC division by

CytoCensus shows that GMC cell cycle length is reduced in syp RNAi brains. (E0) Single image plane taken from a 3D time-lapse, confocal image data

set (imaged at one Z-stack/2 min). showing raw image data (top) and denoised (bottom). (E0 0) CytoCensus GMC detections (cyan) with a single NB

(magenta), and NB niche (dotted white line), shows GMCs are detected but neurons (green) are not. (E0 0 0) Plot of GMC cell cycle length, which is

decreased in syp RNAi brains compared to WT (p=0.01, Welch’s t-test, n = 8 GMCs from three brains). Scale bars in (A) 50 mm; (C0) 20 mm; (C0 0) 50 mm;

(D) 5 mm; (E) 25 mm.

The online version of this article includes the following video and figure supplement(s) for figure 4:

Figure supplement 1. Loss of Syp causes enlarged larval brains.

Figure 4—video 1. Neuroblast division in live explanted larval brains under extended time-lapse imaging conditions.

https://elifesciences.org/articles/51085#fig4video1

Figure 4—video 2. Tracking of GMCs in a live explanted larval brain under extended time-lapse imaging conditions, collected at 2 min intervals and

displayed at 5 fps.

https://elifesciences.org/articles/51085#fig4video2
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Using our refined culture and imaging conditions, we trained CytoCensus to successfully detect

GMCs in denoised images (Figure 4E0-E00) and, similarly to NBs, track them with a trackpy based

script (Allan et al., 2012, see Materials and methods). Unlike in the case of NB tracking, GMCs do

not go through repeated cycles of division, so following automated detection, for each GMC, we

manually identified the birth and final division and additionally corrected any tracking errors. This

semi-automated tracking allowed us to compare the cell cycle length of GMCs in multiple brains

over 12 h time-lapse movies for the first time (Figure 4E00 0). In syp RNAi, we find a small but signifi-

cant shortening (p=0.01, Welch’s t-test) of the cell cycle compared to WT (8.00 h ± 0.89, n = 8 WT;

6.25 h ± 1.45, n = 8 syp RNAi). However, while we conclude that GMC cell cycle length is decreased

by 20%, GMCs terminally divide normally (representative example, Figure 4D), and we see no evi-

dence of further divisions in the neurons. We take this to mean that no additional cells are produced

by GMC or neuron division and therefore brain size is not significantly affected. We conclude that

the cause of the enlarged brain size in syp RNAi brains is an increase in NB division rate resulting in

more GMCs and their progeny than in WT.

NB division rate is consistently heterogenous in Drosophila brains
Most current methods for measuring NB division rates produce an average rate for whole brains

rather than providing division rates for individual NBs. It has previously been shown that NB lineages

give rise to highly variable clone size (30–150 neurons for Type I neuroblasts). The origin of this

diversity has primarily been attributed to patterned cell death (Yu et al., 2013; Pinto-Teixeira et al.,

2016), but the importance of NB division rate in determining clone size is less well understood.

Using live imaging and CytoCensus, however, we were able to quantitate the behaviour of multiple

individual NBs over time within the same brain to investigate whether cell division rates are constant

or variable across the population. Interestingly, we found that each NB has a constant cell cycle

period (Figure 5A), matching observations in vitro (Homem et al., 2013). However, there is consid-

erable variation in cell cycle length between NBs within the same brain lobe (Figure 5A). Given the

scale of this variation, which covers more than twofold difference in rate, we expect that the regula-

tion of NB division rate is a key factor that contributes to the observed variation in NB lineage size.

By comparing the distribution of division rates in individual WT and syp RNAi brains, we found that

syp knockdown NBs have a more consistent division rate in individual NBs (Figure 5B) and between

brains (Figure 4C00 0), which suggests a role for syp in the regulation of NB division rate. Future work

using CytoCensus and live imaging would allow one to explicitly link individual NB division rates to

atlases of neural lineages and explain the contribution of division rate to each neural lineage.

We conclude that analysing live imaging data with CytoCensus can provide biological insights

into developmental processes that would be difficult to obtain by other means. However, it was

important to establish the use of CytoCensus in other situations outside Drosophila tissues, espe-

cially in vertebrate models of development.

Directly quantifying cell numbers enhances the analysis of zebrafish
retinal organoid assembly
To test the utility of CytoCensus for the analysis of complex vertebrate tissue, we first analysed

Zebrafish tissue, an outstanding model for studying development with many powerful tools, such as

the Spectrum of Fates (SoFa) approach (Almeida et al., 2014), which marks cells from different

layers of the Zebrafish retina by expression of distinct fluorescent protein labels. Previously pub-

lished work by Eldred et al. (2017) studying eye development in artificial Zebrafish organoids, pro-

vided an excellent example of material that was previously analysed using bespoke MATLAB image

analysis software that measured only the cumulative fluorescence at different radii from the organoid

centre. While this was sufficient for a summary of organoid organisation, future research will require

the ability to examine organoids at the single-cell level, particularly in cases where layers are formed

from a mixture of cell types or cell types are defined by combinations of markers. We deployed

CytoCensus to this end, without the need for bespoke image analysis, in directly locating and count-

ing cells (Figure 6A).

Using CytoCensus, we trained multiple models on subsets of the raw data (Figure 6A0, gift from

the William Harris lab), corresponding to each of the different cell types. Applying our models to the

remainder of the dataset, CytoCensus was able to identify individual cells (Figure 6A, bottom
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panels), allowing an analysis of cellular distribution that would not be possible from cumulative fluo-

rescence measurements. We then calculated the number of cells found at different distances from

the center of the organoid (Materials and methods, Figure 6A0 0-A0 00). Using this approach, we repro-

duced the previously published analysis (Eldred et al., 2017), mapping the different cell distribu-

tions in the presence and absence of retinal pigment epithelium cells. We show that CytoCensus

produces similar results to Figure 2 of Eldred et al. (2017), but with identification of individual cells

and without the need for a dedicated image analysis pipeline (Figure 6A0 0-A0 00). In particular, we are

able to produce an estimate of the distribution of the photoreceptor (PR) cell class, which is defined

by a combination of markers (Crx::gapCFP, Ato7::gapRFP) that could not be separated from other

cell types in the original analysis.

Given that the SoFa markers support the study of live organoid development, and CytoCensus

can be used to identify cells based on the SoFa markers, we expect CytoCensus could easily be

used to analyse live organoid development along similar lines to our Drosophila analysis. We

Figure 5. Direct analysis of NB division from time-lapse imaging of live explanted larval brains. (A) Using the proximity map output of CytoCensus,

individual NBs can be followed through their cell cycle. Arrows: Individual NB locations, and the corresponding proximity map output plotted over time

for that NB. (B) Comparison of WT and syp RNAi NB: (B0) analysis of cell cycle over time for individual NBs from a syp RNAi brain; (B0 0) comparison of

cell cycle lengths for individual NB in a single WT vs syp RNAi brain (p=0.002, F-test, n = 9 NB). Scale bar 40 mm.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Following NB division with CytoCensus.
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Figure 6. A generally applicable automated analysis tool to assess tissue development. (A) Automated analysis of

Zebrafish retinal organoids at the single-cell level. Raw data from Eldred et al. (2017). (A0) Top: brightfield image

and diagram indicating the location of cells was defined as displacement from the organoid center. Middle: Cell

fate marker expression (Crx:gapCFP; Ato7:gapRFP; PTf1a:cytGFP) and DAPI. Bottom: Cell centre identification by

Figure 6 continued on next page
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conclude that CytoCensus is an effective tool to investigate the distribution of cell types in the

assembling retinal organoid, with the potential to analyse other complex Zebrafish tissues.

CytoCensus facilitates rigorous quantification of TF expression patterns
in mouse embryos
Mouse models are widely used to understand developmental processes in the early embryo. In such

work, genetic studies have been fundamental in understanding the molecular mechanisms underly-

ing important lineage decisions (Piliszek et al., 2016; Arnold and Robertson, 2009). However,

assessment of changes in cell numbers and distribution frequently relies on manual counting and

qualitative estimation of phenotypes. We tested the ability of CytoCensus to provide quantitative

data on the number of transcription factor positive cells in the early post-implantation embryo for

each of the transcription factors Brachyury, Lhx1 and Sox2. Using CytoCensus, we quantitated the

number of cells that express each of these transcription factors in two regions of interest: the visceral

endoderm (VE) and the proximal posterior epiblast (PPE), where primordial germ cells (PGCs) are

specified. We also analysed the distribution of Blimp1-mVenus in membranes in both the VE and

PGCs (Ohinata et al., 2008; Vincent et al., 2005; Figure 6B0, B00).

Using CytoCensus, we identified all Blimp1 expressing cells and mapped them to structures of

interest using a 3D ROI (Figure 6B0 marked regions). We then used CytoCensus to identify cells

expressing both Blimp1 and Brachyury in the proximal posterior epiblast (PPE) (Figure 6B00 and

insert). We note that CytoCensus could be used to successfully detect cells of the VE and PGCs,

despite the fact that they are frequently far from round. CytoCensus is able to detect these cells,

almost as well as truly round cells, by integrating information from the nuclear and membrane

markers to produce robust cell centre detections. Our analysis highlights the enrichment of Bra-

chyury in the developing PGCs and their almost complete absence from the VE, which matches well

with manual 2D quantification (Figure 6B0 0 0). Repeating this analysis for the transcription factors

Sox2 and Lhx1 highlights a differential expression of the transcription factors (Figure 6B00 0 0-V). These

proportions match well with qualitatively reported expression patterns in the field (Piliszek et al.,

2016). Our results demonstrate how CytoCensus can be used to produce a robust and detailed

quantitation of cell type and TF expression in specific complex mouse tissues using standard

markers, improving on the standard qualitative analysis.

Taking our results in their entirety, in Drosophila, Zebrafish and mouse, we illustrate the wide

applicability of CytoCensus to transform the quantitative analysis of any complex tissue. CytoCensus

makes it possible without bespoke programming to quantitate cell numbers and their divisions in

complex living or fixed tissues in 3D.

Figure 6 continued

CytoCensus for the different cell types as defined by the labelling profiles (Bipolar, Photoreceptor, Retinal

Ganglion, Amacrine/Horizontal, Live/Dead). (A0 0-A0 0 0) Radial distribution of the different cell types determined from

cell centre identifications by CytoCensus; the effects on organoid organisation of the presence (A0 0) or absence

(A0 0 0) of retinal pigment epithelium (RPE) cells is examined (ns, one-way ANOVA). RU = Radial Units, normalised to

a radius of 100 (see Materials and methods) (B) Automated quantification of TF expressing cells in a fixed early

streak stage mouse embryo (e6.5) labelled for transcription factors, Blimp1-mVenus and DAPI. (B0) A medial

confocal section showing Brachyury in the primitive streak in the proximal posterior epiblast (PPE) and visceral

endoderm (VE, highlighted cortical tracing). (B0 0) Cortical image of the same mouse embryo overlaid with total cell

centre predictions by CytoCensus of Brachyury positive cells; insert to the right is a zoomed in image of the

highlighted rectangle showing only cell centre predictions in a single medial plane. (B0 0 0) Comparison of

CytoCensus and manual Ground Truth (GT) measurements of the proportion of Brachyury positive cells from 2D

planes in the VE and PPE (ns, t-test, n = 3). (B0 0 0 0-Bv) Proportion of transcription factor positive cells (TF) in, using

CytoCensus measurements in 3D according to tissue regions (PPE and VE) defined in (B0). Scale bars 25 mm in (A);

100 mm in (B0).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. CytoCensus detections of cells in Mouse embryos.
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Discussion
Progress in understanding the development and function of complex tissues and organs has been

limited by the lack of effective ways to image cells in their native context over extended develop-

mentally relevant timescales. Furthermore, a major hurdle has been the difficulty of automatically

analysing the resulting large 4D image series. Here, we describe our development of culturing and

imaging methods that support long term high resolution imaging of the cells in intact living

explanted Drosophila larval brains. This progress relies on optimised dissection and mounting proto-

cols, a simplified culture medium for extending brain viability and the use of patch-based denoising

algorithms to allow high resolution imaging at a tenth of the normal illumination intensity. We next

describe our development of CytoCensus: a convenient and rapid image analysis software employ-

ing a supervised machine learning algorithm. CytoCensus was developed to identify neural stem

cells and other cell types, both in order to quantitate their numbers and distribution and to enable

analysis of the rate of division on an individual cell level, from complex 3D and 4D images of cellular

landscapes. We demonstrate the general utility of CytoCensus in a variety of different tissues and

organs.

To image all the cell types in an explanted brain, we used very bright generic markers of cellular

morphology, which offer major advantages over specific markers of cell identity, as they are more

abundant and brighter, allowing the use of low laser power to maximise viability. Markers of cell

morphology can also be used in almost all mutant backgrounds in model organisms, unlike specific

markers of cell identity, whose expression is often critically altered in mutant backgrounds. However,

imaging cells in a tissue or organ with generic markers leads to complex images, in which it is very

challenging to segment individual cells using manual or available image analysis tools. In contrast to

other approaches, we demonstrate that CytoCensus allows the user to teach the program, using

only a few examples, by simply clicking on the cell centres. CytoCensus outperforms, by a significant

margin, the other freely available approaches that we tested, so represents a step change in the

type and scale of datasets that can be effectively analysed by non-image analysis experts. Crucially,

CytoCensus analysis combined with cell tracking in extensive live imaging data allows parameters

such as cell cycle length to be determined for individual cells in a complex tissue, rather than con-

ventional methods that provide snapshots or an ensemble view of average cell behaviour.

The image analysis approach we have developed depends critically on the use of ‘supervision’ or

training regimes which are, by definition, subjective and user dependent. Supervised machine learn-

ing methods (Luengo et al., 2017; Arganda-Carreras et al., 2017; Logan et al., 2016;

Chittajallu et al., 2015; Sommer, 2011) require the user to provide training examples by manually

identifying (annotating) a variety of cells or objects of interest, often requiring laborious ‘outlining’ of

features to achieve optimal results. Where extensive training data, appropriate hardware and exper-

tise are available, users should consider the use of NN such as those described in Falk et al. (2019)

because of their superior ability to make use of large amounts of training data. However, our use of

a 2D ‘point-and-click’ interface (Figure 2—figure supplement 1), to simplify manual annotation,

with a 3D proximity map output, and choice of fast machine learning algorithm, makes it quick and

easy for a user to train and retrain the program with minimal effort. Using our approach, a user can

rapidly move from initial observations to statistically significant results based upon bulk analysis of

data.

We show the value of CytoCensus in three key exemplars. In Drosophila, we measure cell cycle

lengths ex vivo in two key neural cell types, revealing the significant contribution of neuroblast divi-

sion rate to the syp RNAi overgrowth phenotype. This complements a study some of the authors of

this paper published while this paper was being revised (Samuels et al., 2020a). Samuels et al. show

that Syncrip exerts its effect on NB by inhibiting Imp, which in turn regulates the stability of the

mRNA of myc a proto-oncogene that regulates size and division. In Zebrafish organoids, we illustrate

that CytoCensus is generally applicable and compatible with other cell types and live imaging

markers. We show it is possible to easily characterise organoid organisation at the cellular level,

including analysis of cell type which was not previously quantified (Eldred et al., 2017). Finally, we

quantify TF expression in images of mouse embryos, illustrating how qualitative phenotypes can be

straightforwardly converted into quantitative characterisations, even in epithelial tissue which differs

from the typical assumptions of round cells.
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A technical limitation of our ‘point-and-click’ strategy is that the program ‘assumes’ a roughly

spherical cell shape. This means that cellular projections, for instance axons and dendrites of neu-

rons, would not be identified, and other programs (e.g. Ilastik, etc.) may be more appropriate to

answer specific questions that require knowledge of cell shape or extensions. However, we find that

the robustness of the CytoCensus cell centres, even with irregular or extended cells can be a useful

starting point for further analysis. To this end, we configured the output data from CytoCensus to

be compatible with other programs, such as FIJI (ImageJ), allowing a user to benefit from the many

powerful plug in extensions available to facilitate further extraction of information for defined cell

populations from bulk datasets.

With the increased availability of high-throughput imaging, there is a greater unmet need for

automated analysis methods. Ideally, unsupervised methods will remove the need for manual anno-

tation of datasets, but at present, the tools required are in their infancy. In this context, methods

that require minimal supervision, such as CytoCensus are desirable. Machine learning approaches,

such as CytoCensus, offer the potential to analyse larger datasets, with statistically significant num-

bers of replicates, and in more complex situations, without the need for time-consuming comprehen-

sive manual analysis. Easing this rate limiting step will empower researchers to make better use of

their data and come to more reliable conclusions. We have demonstrated that analysis of such large

live imaging datasets with CytoCensus can provide biological insights into developmental processes

in Drosophila that would be difficult to obtain by other means, and that CytoCensus has a great

potential for the characterisation of complex 4D image data from other tissues and organisms.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation

Source or
reference Identifiers Additional information

Antibody Guinea pig
polyclonal
anti-Syncrip

I.Davis Lab
(McDermott et al., 2012)

N/A (use 1:100)

Antibody Mouse monoclonal
anti-Prospero

Abcam ab196361 (use 1:100)

Antibody Guinea pig
polyclonal anti-Asense

Gift from JA Knoblich N/A (use 1:200)

Antibody Rat monoclonal
anti-Deadpan

Abcam ab195173 (use 1:100)

Antibody Goat monoclonal
anti-Mouse Alexa
Fluor 488

ThermoFischer A-11001 (use 1:250)

Antibody Goat monoclonal
anti-Guinea pig
Alexa Fluor 647

ThermoFischer A-21450 (use 1:250)

Antibody Goat monoclonal
anti-Rabbit Alexa
Fluor 594

ThermoFischer R37117 (use 1:250)

Antibody Goat monoclonal
anti-Mouse Alexa
Fluor 647

ThermoFischer A-32728 (use 1:250)

Chemical
compound/drug

VECTASHIELD Antifade
Mounting Medium

VECTOR Laboratories H-1000 N/A

Chemical
compound/drug

Formaldehyde, 16%,
methanol free, Ultra Pure

Polysciences, Inc 18814–20 N/A

Chemical
compound/drug

Low melting point
agarose

ThermoFischer v2111 N/A

Chemical
compound/drug

Foetal Bovine Serum (FBS) Life Technologies Ltd 10500064 N/A

Continued on next page
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Continued

Reagent type
(species) or resource Designation

Source or
reference Identifiers Additional information

Chemical
compound/drug

Schnider’s Medium ThermoFischer 21720024 N/A

Chemical
compound/drug

Bromophenol Blue Sigma-Aldrich 116K3528 N/A

Strain
(Drosophila)

Drosophila Wild-
Type, Oregon-R

Bloomington 2376 N/A

Strain
(Drosophila)

Drosophila: Jupiter::GFP,
Histone::RFP
(recombined on the third)

Ephrussi Lab N/A N/A

Strain
(Drosophila)

Drosophila:
AseGal4 >> UAS-MCD8-GFP

This article N/A N/A

Strain
(Drosophila)

Drosophila: w11180;
PBac(PB)sype00286/TM6B

Harvard (Exelixis) e00286 N/A

Strain
(Drosophila)

Drosophila: w[11180];
Df(3R)BSC124/TM6B

Bloomington 9289 N/A

Strain
(Drosophila)

Drosophila:syp RNAi
lines w11180; P{GD9477}
v33011, v33012

VRDC 33011, 33012 N/A

Strain
(Drosophila)

Drosophila: ase-GAL4 Gift from
JA Knoblich

N/A N/A

Software/
algorithm

Fiji, ImageJ (V1.51d) Schindelin et al., 2012 N/A http://imagej.nih.gov/ij

Software/
algorithm

Ilastik (V1.17) Sommer, 2011 N/A ilastik.org

Software/
algorithm

CytoCensus This article N/A github.com/hailstonem
/CytoCensus

Software/
algorithm

SoftWoRx, Resolve3D GE Healthcare N/A

Software/
algorithm

Microsoft Excel Microsoft Cooperation N/A 150722

Software/
algorithm

OMERO V5.3.5 Allan et al., 2012 N/A openmicroscopy.
org/omero/

Software/
algorithm

Bio-Formats Linkert et al., 2010 N/A openmicroscopy.
org/bio-formats/

Software/
algorithm

ND-SAFIR, PRIISM Carlton et al., 2010 N/A N/A

Software/
algorithm

Trackmate 3.8 Tinevez et al., 2017 N/A N/A

Other Superfine Vannas
dissecting scissors

WPI 501778 N/A

Other MatTek (or Eppendorf)
3 cm glass-bottom Petri- dish

MatTek (or Eppendorf) P35G-1.5–14 C N/A

Other Broad Bioimage
Benchmark Collection
Datasets

https://data.broadin
stitute.org/bbbc/; Svoboda et al., 2009

BBBC024vl N/A

Other Cell Tracking
Challenge datasets

celltrackingchallenge.net
Ulman et al., 2017,
Maška et al., 2014

N/A N/A

Fly strains
Stocks were raised on standard cornmeal-agar medium at either 21˚C or 25˚C. To assist in determin-

ing larval age, Bromophenol Blue was added at 0.05% final concentration in cornmeal-agar medium.

The following Drosophila fly strains were used: [Wild-Type Oregon-R]; [Jupiter::GFP;Histone::RFP

(recombination on the third)]; [AseGal4 >UAS-MCD8-GFP]; [w11180;PBac(PB)sype00286/TM6B];
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[Bloomington 9289, w11180 (homozygote syp Null)]; [Df(3R)BSC124/TM6B (crossed to BL 9289 for

syp Null)]; [syp RNAi lines - w11180; P{GD9477}v33011, v33012].

Mouse embryos
Refer to Simon et al. (2017) for details on mouse embryo preparation.

Fixed tissue preparation and labelling
Flies of both genders were raised as described above and larvae from second instar to pre-pupal

stages collected and dissected directly into fresh 4% EM grade paraformaldehyde solution (from a

16% stock. Polysciences) in PBS with 0.3% TritonX-100 then incubated for 25 min at room tempera-

ture (RT). Following fixation, samples were washed 3 times for 15 min each in 0.3% PBST (1x PBS

containing 0.3% Tween) and blocked for 1 hr at RT in Immunofluorescence blocking buffer (1% FBS

prepared in 0.3% PBST). Samples were incubated with primary antibody prepared in blocking buffer

for either 3 hr at RT or overnight at 4˚C. Subsequently, samples were washed three times for 20 min

each with 0.3% PBST followed by incubation with fluorescent labelled secondary antibodies pre-

pared in blocking buffer for 1 hr at RT. For nuclear staining, DAPI was included in the second last

wash. Samples were mounted in VECTASHIELD (Vector Laboratories) for examination. For details on

the preparation and labelling of mouse embryos, refer to Simon et al. (2017).

Culture of live explanted larval brains on the microscope
Brains were dissected from 3rd instar larvae in Schneider’s medium according to https://www.you-

tube.com/watch?v=9WlIoxxFuy0 and placed inside the wells of a pre-prepared culturing chamber

(Figure 1A). To assemble the culturing chamber, 1% low melting point (LMP) agarose (Thermo-

Fischer) was prepared as 1:1 v/v ratio of 1 x PBS and Schneider’s medium (ThermoFisher 21720024)

then pipetted onto a 3 cm Petri dish (MatTek) dish and allowed to solidify. After solidification, circu-

lar wells were cut out using a glass capillary ~2 mm diameter. To secure the material in place, a 0.5%

LMP solution [1% LMP solution brain diluted 1:1 with culturing medium (BCM)] was pipetted into the

wells to form a cap. Finally, the whole chamber was flooded with BCM. BCM was prepared by

homogenising ten 3rd instar larvae in 200 ml of Schneider’s medium and briefly centrifuge to sepa-

rate from the larval carcasses. This lysate was added to 10 ml of 80% Schneider’s medium, 20% Foe-

tal Bovine Serum (GibcoTM ThermoFisher), 10 ml of 10 mg/ml insulin (Sigma). A lid is used to reduce

evaporation. For GMC imaging we used a solid-agar cap (1–2% LMP agarose) placed directly on top

of the brains, which we found was more consistent at holding brains against the coverslip than our

earlier approach. We note that care must be taken not to flatten brains during this process, as it

appears to result in a higher rate of stalled NB divisions which are likely artefacts. This approach

reduced movement in brains significantly, but did not eradicate it - it seems likely remaining move-

ment is the primarily the result of thermal drift of the microscope focus, and is well corrected using

image registration.

Imaging
Confocal, live imaging of Drosophila was performed using an inverted Olympus FV3000 six laser line

spectral confocal fitted with high sensitivity gallium arsenide phosphide (GaAsP detectors), x30 SI

1.3 NA lens. The confocal pinhole was set to one airy unit to optimise optical sectioning with emis-

sion collection. Images were collected at 512 � 512 pixels using the resonant scanner (pixel size

0.207 mm) and x2 averaging). The total exposure time per Z stack (60) frames was ~20 s. For live cul-

ture and imaging, the sample was covered with a lid at 21 ± 1˚C. Imaging of the GMC cell cycle

required increased temporal and spatial resolution, compared to imaging NB: 2 min. time-lapse with

0.2 � 0.2�0.5 mm resolution. Initial tests indicated that the resulting increased light dosage reduce

the number of GMC divisions over time, which we consider to be a sign of phototoxicity. Therefore,

we reduced the laser power by approximately a factor of 10 (to ~12mW at the objective for 488 nm,

and 7mW for 561 nm), and used post-acquisition patch-based denoising NDSAFIR, by Kervrann and

Boulanger (2006), implemented as part of PRIISM, with adapt = 0, island = 4, zt mode and itera-

tions = 3 by Carlton et al. (2010) to restore image quality. For details on imaging of mouse embryos

(Figure 6) refer to Simon et al. (2017). Details of organoid imaging can be found in Eldred et al.
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(2017). Additional live imaging was carried out on a GE Deltavision Core widefield system with a

Lumencor 7-line illumination source, Cascade-II EMCCD camera and x30 SI 1.3 NA lens.

For imaging of fixed Drosophila material, either an Olympus FV1200 or FV1000 confocal was

used with x20 0.75 dry or x60 1.4 NA. lenses. Settings were adjusted according to the labelling and

were kept consistent within experiments.

For brightfield imaging (Figure 1—figure supplement 1; Figure 4—figure supplement 1; Fig-

ure 4), a GE Deltavision Core widefield system, Cascade-II EMCCD camera and x30 SI 1.3 NA lens

was used. Measurements of brain diameters were performed by hand in OMERO. Reported meas-

urements are the average of one measurement along the longest axis of a brain lobe (passing

through the central brain and optic lobe), and another at right angles to that (typically across the

medulla).

Image analysis (summary)
All programs used for image analysis were installed on a MacBook Pro11,5; Intel Core i7 2.88

GHz;16 GB RAM. Basic image handling and processing was carried out in FIJI (ImageJ V1.51d;

http://fiji.sc; Schindelin et al., 2012). The CytoCensus software, and additional scripts were written

in Python, a detailed technical description is given below.

CytoCensus method: application of an ensemble of decision trees
framework to identify and quantitate cell classes in 4D
With the development of CytoCensus, we aim to make identification of cell types in multi-dimen-

sional image sets as straightforward as possible. We do so by asking the user to identify cell centres

for a small number of 2D image slices. Using the cell centre annotation and the estimated size of the

cells, we create an initial ‘proximity map’ of cell centres, similar in concept to density kernel estima-

tion approaches (Waithe et al., 2015; Waithe et al., 2016; Fiaschi et al., 2012; Lempitsky and Zis-

serman, 2010). In particular, the Ilastik Cell Counting module (Berg et al., 2019) performs 2D

density counting, a related method to CytoCensus, but provides only 2D count estimates. On most

biological tissues, including the 3D tissues that we have tested, 2D counting is insufficient to accu-

rately count cells in 3D, because applying it to many slices results in repeated detections of the

same cells in multiple slices. More recently, using modified density maps as an intermediate for

detecting (and not just counting) cells has become more popular. Such intermediate maps are vari-

ously described as proximity maps (our preferred term), probability density maps, and Pmaps, they

are well reviewed in Höfener et al. (2018).

The advantage of using ‘proximity map’ based methods to detect and count cells has been previ-

ously documented, but these methods have not been extended to the case of 3D cell centres with

2D annotations (Kainz et al., 2015; Waithe et al., 2016). Once we have the proximity maps of the

cell centres, we then apply a series of image filters, which pull out image features such as edges,

and try to use these features to predict a new proximity map of cell centres. We generate this new

proximity map using a machine learning algorithm known as an ‘ensemble of decision trees’ (Brei-

man, 2001; Breiman et al., 1984), which creates a series of ‘decision trees’ that individually predict

poorly, but averaged together are a strong predictor. Once we have the new proximity maps, the

location of cell centres in 3D is inferred from the 2D predictions by applying a 3D Hessian filter (see

later), which enhances the detections and resolves their coordinates in the additional dimension.

The CytoCensus software has three main components in its workflow: The 2D training and evalua-

tion algorithm, the 3D object finding algorithm and the 3D ROI drawing and interpolation algo-

rithms. The software is written in python and includes a Graphical User Interface (GUI) written using

the PyQt library. The 2D training and evaluation algorithm utilises an ensemble of random decision

trees and a bank of filters which utilise the matplotlib, scipy, scikit-learn and scikit-image libraries

(Jones et al., 2001; Hunter, 2007; Pedregosa, 2011; van der Walt et al., 2014). For the 2D train-

ing and evaluation algorithm, the user must provide suitable images and make annotations indicat-

ing the locations of features, objects or cells of interest within defined regions. The user annotates

2-D sections of 3D image volumes and defines rectangular regions which encapsulate areas contain-

ing cells or features of interest or just background. There are N image volumes (Ii=1, I2, I3,. . ., IN) in

the training set and M annotation sections where M > 1 (Aj=1, A2, A3,. . ., AM). Each annotation con-

tains a region of interest (Rj=1, R2, R3,. . ., RM) and also a set of corresponding points (Pj=1, P2, P3,. . .,
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PM) with one or more dot/points Pj = {ptc=1, pt2,. . .,ptC} or no points if the region only contains back-

ground. It is worth noting that providing sufficient area that does not contain cells is important for

minimising false positives. As the model is designed to distinguish cells from the background it

maybe appropriate to annotate regions as empty so as to acclimatise the model to the background.

The points and regions are supplied by the user as they label the centroid locations of cells or

objects within the image plane of interest. For each annotation, we produce a centre-of-mass repre-

sentation (Fj=1,F2, F3. . .,FM) which for each pixel (p) is defined as the maximum value of all the Gauss-

ian kernels (N) centred on dot annotations which overlap this pixel:

8p 2 Rj; F
0

j ðpÞ ¼ max½N ðp; pt; s2
12�2Þ;8pt 2Pj�

and s = [sx, sy]. The kernel is isotropic (sx = sy) as long the features or cells of interest are roughly

spherical. For this application, we recommend choosing a sigma which is smaller than the radius of

the cells or features. The Gaussian will weight pixels in the centre of cells more highly than those

towards the edges or in the background. Finding the maximum pixel, rather than summing pixels

amongst all the overlapping Gaussians, ensures that pixels at the edges of objects, but overlapping,

are not more highly weighted than pixels that are central and represent the centre of the cells, allow-

ing better separation of close objects.

For each pixel in the annotation region, we calculate a feature vector which describes the corre-

sponding image pixels. Each descriptor of the feature vector is created through processing of the

input image or volume with one of a bank of filters which includes: Gaussian, Gaussian Gradient

Magnitude, Laplacian of Gaussian, and the minimum and maximum eigenvalues of curvature

(Fiaschi et al., 2012). These filter kernels are applied at multiple scales (sigma = 1,2,4,8,16) to

aggregate data from the surrounding pixels into the feature descriptor at that specific pixel. This

scale range was appropriate for all the cases used in this study and were not changed.

Once training data has been supplied by the user and the pixel features calculated, an ensemble

of random decision trees is used to learn the association between input pixels and the ‘proximity

map’ centre-of-mass representation (Geurts et al., 2006). The decision tree framework was parame-

terised as follows: the data was sampled at a rate of 1/5 from the input regions, with 30 trees gener-

ated during training, with a depth of 10 levels and a minimum split condition of 20 samples for each

node. At each node n/3 features were considered. Once trained, the decision tree framework can

be applied to unseen images (without user annotation), requiring only input features to be calcu-

lated. Evaluation of images produces a centre-of-mass representation of where the cell centres are

located, highly similar to the representation used during training.

The 3D object finding algorithm is applied to the output images of the random decision tree

framework and involves multiple steps. First, the output images of the decision framework are rear-

ranged into a 3D volume, this provides a representation of the proximity of cell centres in 3D. To

facilitate the object identification, we next apply a determinant of Hessian blob detector which

smooths our signal and also enhances objects of a specific size (Lindeberg, 1994). Using this filter

greatly simplifies our cell identification procedure, although some idea of the size of the object is

required, h = [hx, hy, hz] (where hx = hy if the object is spherical in two dimensions and hx = hy = hz if

the object is spherical in three dimensions). Finally, a 3D maxima finding algorithm is used to identify

the centroid locations of the enhanced objects present in the Hessian filtered image (Gao and Kil-

foil, 2009). A simple threshold is used to set the sensitivity to detected maxima.

To allow for selective application of the 3D counting algorithm in distinct regions of a tissue (for

instance the primitive streak in Figure 6), and over time, a novel Region Of Interest (ROI) interpola-

tion algorithm was introduced. The user defines a ROI by clicking points around an area of interest

in a single image (e.g. top of tissue region). The user then defines another region either at the other

end of the object (e.g. bottom of tissue region) or partially through the region. The algorithm can

then interpolate between these user-defined ROI to create a ROI for each frame in the image-vol-

ume. The User can then repeat this process in subsequent time-frames, and the algorithm will inter-

polate the ROI between frames creating a smooth transition which can be tweaked through the

addition of further user defined regions to smoothly follow a 3D region of the tissue over time. The

interpolation is performed using bilinear interpolation of points sampled uniformly along the user

defined ROI. Objects or cells with a centroid position within the tissue region can then be filtered
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from the image volume allowing for selective counting and location of cells over-time within the

defined region.

Algorithm validation and comparison datasets
Validation of algorithm performance is critical in developing an effective tool. We used both real and

artificial data sets to assess performance. For our baseline performance tests of CytoCensus, we

quantified the number and location of NBs identified in five time-points from a movie sequence. We

then compared the output from CytoCensus to that of other algorithms applied to the same test

dataset. In each case, we attempted to optimise the parameters used, based, whenever possible, on

the published information on two time-points that were not used for final evaluation. For TrackMate

detections we used detection diameter of 20 pixels, and five conservatively set filters (standard devi-

ation, max intensity, mean intensity, contrast). For RACE, we used the histone (nuclear) marker for

the seeds, and set parameters at default except for (Max segmentation area 100, min 3D area 20,

Closing 2–6, Threshold 0.0002, H-maxima 30). For Ilastik, we used features from (sigma 0.3, 1.0, 3.5,

10) for color, edge and intensity. For FIJI WEKA, we used default parameters, followed by filtering

to remove small objects. For CytoCensus we used default parameters, except for object size, which

was set at radius 8.

To carry out a direct comparison of algorithm performance, we used artificial ‘neutral challenge’

datasets of highly clustered (75%) synthetic cells, in 3D, with a low signal-to-noise ratio (SNR),

obtained from the Broad Bioimage Benchmark Collection (image set BBBC024vl: Svoboda et al.,

2009). This data has an absolute ground truth and provides a good measure of comparison for the

performance of different algorithms. As CytoCensus is designed to identify cell centres, the ground

truth for the Neutral Challenge data and Ilastik segmentation results were adapted to report esti-

mated cell centres (centroids) rather than segmented boundaries, before carrying out comparison of

algorithm performance. In both cases, Ilastik and CytoCensus were trained on a single image,

parameters optimised over five image, and performance evaluated over the remaining (25) images.

For the neuroblast dataset, detections within 1/2 a neuroblast radius were considered correct. For

the BBBC dataset, detections were considered correct if they were within a stricter four pixel radius

(~1/8 cell size). At the more generous 1/2 a cell size, CytoCensus reached perfect precision and

recall, but Ilastik’s F1-score remained below 0.4 primarily due to the problem of merged cells.

F1-score: Objective analysis of algorithm performance
To quantitate how CytoCensus analysis of complex multidimensional image data is performing and

to compare performance to other freely available programs, we made use of the weighted mean of

the true and false positive identification rates, known as the F1-score (maximum value 1.0; Chin-

chor, 1992; Figure 3 and Figure 3—figure supplement 1, Table 1 and Table 2). F1-score is intui-

tively similar to accuracy: strictly it is the harmonic mean of the fraction of detections that were

correction (precision) and the fraction of cells correctly identified (recall). This metric, therefore, takes

into account both false positives and false negatives. Such analysis is particularly useful in parameter

determination for optimum algorithm performance in applying to experimental data sets and in opti-

mising algorithms for systematic comparison on test data.

Cell tracking challenge segmentation benchmark
To apply CytoCensus to the Cell Tracking Challenge Segmentation Benchmark datasets we down-

sampled all Figures 2–4x before processing to increase speed of processing, although better results

might be achieved without downsampling. We trained CytoCensus on 2–4 frames selected (from the

training set) to capture the imaging variation between datasets and selected appropriate object

sizes for each of the images. Following object detection, we create a crude segmentation by creat-

ing a sphere of corresponding size around each detected object, and refined this segmentation

using a small number of iterations (2-6) of MorphACWE (Marquez-Neila et al., 2013), an active con-

tour segmentation method, followed by marker-based watershed (Meyer and Beucher, 1990) from

the CytoCensus centres in order to separate detected objects. This approach is highly dependent

on the quality of the detected centres to determine the number of objects and assumes cells are

approximately round, so is not well suited to tasks with extended, misshapen objects. The code for
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the cell tracking challenge, including dataset specific parameters, is available at github.com/hailsto-

nem/CTC_CytoCensus.

Parameter optimisation for best performance
The algorithm underlying CytoCensus requires a range of parameters to be set, described in detail

above. To simplify usage, we set most most parameters to reasonable default values. Parameters,

such as the threshold setting, were assessed systematically, using the objective measures of perfor-

mance described above with various data sets. This approach helped us to define which parameters

should be fixed and which need to be user-modified. Details of user defined parameters and how to

assess and set appropriate values are documented in the User Manual. The value of Sigma, which

sets the scale of the object of interest, is particularly critical for detection. Optimum Sigma value was

assessed systematically and the optimum found to be slightly smaller than the size of the cell type of

interest (Figure 3—figure supplement 1A0 0), this parameter was subsequently defined as ‘Object

Size’ (in pixels).

The level of training required is also important in supervised machine-learning approaches. We

assessed the level of training required to achieve good detection of cell types of interest with differ-

ent datasets (Figure 3—figure supplement 1A0). In all cases tested, successful identification of NBs

or progeny required minimal user training (of the order of tens of examples on only a few image

planes) and increasing training gave only marginal improvement (Figure 3—figure supplement

1A’). This is advantageous for quickly annotating datasets, but may limit the flexibility for learning in

particularly difficult and complex cases.

Cell identification
To facilitate development of CytoCensus for the study of the larval brain, we initially tested perfor-

mance on multichannel 3D image datasets of fixed material where NBs and GMC’s were defined by

specific immunostaining (for Ase and Dpn; Neumüller et al., 2011; Bayraktar et al., 2010;

Boone and Doe, 2008; Figure 3—figure supplement 1A,B). We confirmed that, given these ideal

markers, NB’s and GMC’s could be identified. After this initial development, we extended the appli-

cation of CytoCensus to our live cell imaging data with generic cytological markers. To show that

cell types could be recognised correctly with the generic marker combination used for live imaging,

we carried out specific immunostaining on Jupiter::GFP/Histone::RFP expressing larval brains. Man-

ual and automated annotations, first based upon generic labels alone, were scored against identifi-

cation using the specific labelling (Figure 3—figure supplement 1C). The results of this assessment

show that, for NB (96% ± 4 Dpn positive, n = 12, three repeats) and their progeny (92% ± 2 Pros pos-

itive, n = 189, three repeats), our imaging of the generic labels supports identification of NB and

progeny by CytoCensus after training (Figure 3—figure supplement 1D). Using a combination of

these different datasets, we refined the workflow of CytoCensus and optimised the key parameters

of the algorithm.

Image pre-processing and downstream data analysis
CytoCensus outputs proximity map images and object centre XYZ co-ordinates, both of which may

be used as the starting points for further data analysis pipelines, for example as seeds in watershed

segmentation to determine cell areas, volumes or quantitate fluorescence intensity. CytoCensus out-

puts (tif files) which can easily be passed to Fiji (ImageJ) or custom analysis scripts. In this study, we

illustrate several examples of extending data analysis using outputs from CytoCensus.

In our analysis of NB division rates, we generate plots of cell division over time for individual NB

from the map output and NB centre coordinates (Figure 5A,B and Figure 5—figure supplement 1).

Here, we used a custom trackpy based python script to track individual NBs over time, however, sim-

ilar results can be achieved simply, using ImageJ ROI tools, or at scale using TrackMate (Figure 5—

figure supplement 1A). For each of these tracks, we follow the changes in the dividing NB proximity

map that correspond to division. Robustness of the division plots is further improved by subtracting

a moving average over about 20 image frames, which removes spatial differences in the background

of the probability density maps. For analysis of long imaging series, such as multiple NB divisions, it

is important to follow individual cells over time. For such analysis, it is necessary to spatially register

the individual Z stacks across time, to correct for image drift due to movements in culture, prior to
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applying CytoCensus. This was achieved with an ITK based python script (http://www.simpleitk.org/

SimpleITK/resources/software.html), but similar results can be achieved using the Correct 3D drift

plugin in ImageJ (it is crucial to use a high noise threshold, ignoring low value pixels, as this

approach is sensitive to noise). Similar approaches were employed in our analysis of GMC cell cycle

length (Figure 4D). In the challenging case of GMCs, it was necessary to explicitly track cells as they

moved significantly during development of the brain. To achieve this, estimated GMC centres were

passed to a trackpy (Allan et al., 2016), based custom python script to perform linkage analysis and

track each individual GMC over time. Similar results may be achieved using TrackMate in FIJI

(Tinevez et al., 2017). Python scripts for further analysis are available on the CytoCensus Github

page.

Quantification and statistical comparison
Mutant comparisons were performed using an appropriate test in GraphPad Prism (see Figure

legends for specific tests), typically a Student’s T test, following Shapiro-Wilk test to test normal dis-

tribution of the data. Appropriate tests were selected depending on data type and normality: (Fig-

ure 1: one-way ANOVA to determine differences between any time-point, Figure 3A: one-way RM-

ANOVA with post-hoc t-tests to determine difference between CytoCensus performance and the

other programs, Figure 3B: Welch’s t-test (unequal variance) to determine if there is difference

between CytoCensus and Ilastik performance Figure 4: t-test or Welch’s t-test (following F-test for

variance) to determine differences in NB number or cell cycle lengths respectively. Figure 5: F-test

to determine difference in variance between syp RNAi and WT. Figure 6: t-test to determine differ-

ence between CytoCensus and manual annotation).

A p-value of <0.05 was considered significant. Numbers of replicates typically refer to the number

of independent brains and are detailed in the figure legends and main text. Measurements of cell

cycle lengths/division rates are the average of 2–7 measurements (NB that only divided once were

excluded) from 5 to 10 NB per brain (i.e. each NB contributes one measurement). NB Numbers were

limited by the number of visible NB within the imaged region. For live imaging, sample sizes were as

large as reasonably practical given the capture and processing time. For the purposes of Figures 1

and 4, independent brains were considered biological replicates, and NB considered technical repli-

cates. For the purpose of comparing variation in division rates, in Figure 5, each NB is considered as

a biological replicate, and each measurement of cell cycle length is a technical replicate. Unless oth-

erwise stated, error bars shown are standard deviation.
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Maška M, Ulman V,
Svoboda D, Matula
P, Ederra C, Ur-
biola A, España T,
Venkatesan S, Balak
DM, Karas P

2014 A benchmark for comparison of cell
tracking algorithms

http://celltrackingchal-
lenge.net/3d-datasets/

Cell Tracking
Challenge, 3d-
datasets

References
Allan C, Burel JM, Moore J, Blackburn C, Linkert M, Loynton S, Macdonald D, Moore WJ, Neves C, Patterson A,
Porter M, Tarkowska A, Loranger B, Avondo J, Lagerstedt I, Lianas L, Leo S, Hands K, Hay RT, Patwardhan A,
et al. 2012. OMERO: flexible, model-driven data management for experimental biology. Nature Methods 9:
245–253. DOI: https://doi.org/10.1038/nmeth.1896, PMID: 22373911

Allan D, Caswell T, Keim N, van der Wel C. 2016. trackpy: Trackpy v0.3.2. Zenodo. http://doi.org/10.5281/zenodo
Almeida AD, Boije H, Chow RW, He J, Tham J, Suzuki SC, Harris WA. 2014. Spectrum of fates: a new approach
to the study of the developing zebrafish retina. Development 141:1971–1980. DOI: https://doi.org/10.1242/
dev.104760, PMID: 24718991

Arganda-Carreras I, Kaynig V, Rueden C, Eliceiri KW, Schindelin J, Cardona A, Sebastian Seung H. 2017.
Trainable weka segmentation: a machine learning tool for microscopy pixel classification. Bioinformatics 33:
2424–2426. DOI: https://doi.org/10.1093/bioinformatics/btx180, PMID: 28369169

Arnold SJ, Robertson EJ. 2009. Making a commitment: cell lineage allocation and axis patterning in the early
mouse embryo. Nature Reviews Molecular Cell Biology 10:91–103. DOI: https://doi.org/10.1038/nrm2618,
PMID: 19129791

Bannai H, Fukatsu K, Mizutani A, Natsume T, Iemura S, Ikegami T, Inoue T, Mikoshiba K. 2004. An RNA-
interacting protein, SYNCRIP (heterogeneous nuclear ribonuclear protein Q1/NSAP1) is a component of mRNA
granule transported with inositol 1,4,5-trisphosphate receptor type 1 mRNA in neuronal dendrites. Journal of
Biological Chemistry 279:53427–53434. DOI: https://doi.org/10.1074/jbc.M409732200, PMID: 15475564

Barbosa JS, Ninkovic J. 2016. Adult neural stem cell behavior underlying constitutive and restorative
neurogenesis in zebrafish. Neurogenesis 3:e1148101. DOI: https://doi.org/10.1080/23262133.2016.1148101,
PMID: 27606336

Bayraktar OA, Boone JQ, Drummond ML, Doe CQ. 2010. Drosophila type II neuroblast lineages keep Prospero
levels low to generate large clones that contribute to the adult brain central complex. Neural Development 5:
26. DOI: https://doi.org/10.1186/1749-8104-5-26, PMID: 20920301

Hailstone et al. eLife 2020;9:e51085. DOI: https://doi.org/10.7554/eLife.51085 27 of 31

Tools and resources Cell Biology Developmental Biology

https://orcid.org/0000-0002-2152-4271
https://orcid.org/0000-0002-5385-3053
https://doi.org/10.7554/eLife.51085.sa1
https://doi.org/10.7554/eLife.51085.sa2
http://fiji.sc
http://ilastik.org
http://github.com/hailstonem/CytoCensus
http://imagej.net/Bio-Formats
http://github.com/hailstonem/CTC_CytoCensus
https://data.broadinstitute.org/bbbc/BBBC024/
https://data.broadinstitute.org/bbbc/BBBC024/
http://celltrackingchallenge.net/3d-datasets/
http://celltrackingchallenge.net/3d-datasets/
https://doi.org/10.1038/nmeth.1896
http://www.ncbi.nlm.nih.gov/pubmed/22373911
http://doi.org/10.5281/zenodo
https://doi.org/10.1242/dev.104760
https://doi.org/10.1242/dev.104760
http://www.ncbi.nlm.nih.gov/pubmed/24718991
https://doi.org/10.1093/bioinformatics/btx180
http://www.ncbi.nlm.nih.gov/pubmed/28369169
https://doi.org/10.1038/nrm2618
http://www.ncbi.nlm.nih.gov/pubmed/19129791
https://doi.org/10.1074/jbc.M409732200
http://www.ncbi.nlm.nih.gov/pubmed/15475564
https://doi.org/10.1080/23262133.2016.1148101
http://www.ncbi.nlm.nih.gov/pubmed/27606336
https://doi.org/10.1186/1749-8104-5-26
http://www.ncbi.nlm.nih.gov/pubmed/20920301
https://doi.org/10.7554/eLife.51085


Bello B, Reichert H, Hirth F. 2006. The brain tumor gene negatively regulates neural progenitor cell proliferation
in the larval central brain of Drosophila. Development 133:2639–2648. DOI: https://doi.org/10.1242/dev.
02429, PMID: 16774999

Berg S, Kutra D, Kroeger T, Straehle CN, Kausler BX, Haubold C, Schiegg M, Ales J, Beier T, Rudy M, Eren K,
Cervantes JI, Xu B, Beuttenmueller F, Wolny A, Zhang C, Koethe U, Hamprecht FA, Kreshuk A. 2019. Ilastik:
interactive machine learning for (bio)image analysis. Nature Methods 16:1226–1232. DOI: https://doi.org/10.
1038/s41592-019-0582-9, PMID: 31570887

Berger C, Harzer H, Burkard TR, Steinmann J, van der Horst S, Laurenson AS, Novatchkova M, Reichert H,
Knoblich JA. 2012. FACS purification and transcriptome analysis of Drosophila neural stem cells reveals a role
for klumpfuss in self-renewal. Cell Reports 2:407–418. DOI: https://doi.org/10.1016/j.celrep.2012.07.008,
PMID: 22884370

Boone JQ, Doe CQ. 2008. Identification of Drosophila type II neuroblast lineages containing transit amplifying
ganglion mother cells . Developmental Neurobiology 68:1185–1195. DOI: https://doi.org/10.1002/dneu.20648

Bowman SK, Rolland V, Betschinger J, Kinsey KA, Emery G, Knoblich JA. 2008. The tumor suppressors brat and
numb regulate transit-amplifying neuroblast lineages in Drosophila. Developmental Cell 14:535–546.
DOI: https://doi.org/10.1016/j.devcel.2008.03.004, PMID: 18342578

Breiman L, Friedman J, Stone CJ, Olshen RA. 1984. Classification and Regression Trees. CRC press, Taylor and
Francis group. DOI: https://doi.org/10.1002/widm.8

Breiman L. 2001. Random forests. Machine Learning 45:5–32.
Cabernard C, Doe CQ. 2013. Live imaging of neuroblast lineages within intact larval brains in Drosophila. Cold
Spring Harbor Protocols 10:970–977. DOI: https://doi.org/10.1101/pdb.prot078162

Carlton PM, Boulanger J, Kervrann C, Sibarita JB, Salamero J, Gordon-Messer S, Bressan D, Haber JE, Haase S,
Shao L, Winoto L, Matsuda A, Kner P, Uzawa S, Gustafsson M, Kam Z, Agard DA, Sedat JW. 2010. Fast live
simultaneous multiwavelength four-dimensional optical microscopy. PNAS 107:16016–16022. DOI: https://doi.
org/10.1073/pnas.1004037107, PMID: 20705899

Ceron J, Tejedor F, Moya F. 2006. A primary cell culture of Drosophila postembryonic larval neuroblasts to study
cell cycle and asymmetric division. European Journal of Cell Biology 85:567–575. DOI: https://doi.org/10.1016/
j.ejcb.2006.02.006

Chinchor N. 1992. MUC-4 evaluation metrics. Proceedings of the Fourth Message Understanding Conference
22–29.

Chittajallu DR, Florian S, Kohler RH, Iwamoto Y, Orth JD, Weissleder R, Danuser G, Mitchison TJ. 2015. In vivo
cell-cycle profiling in xenograft tumors by quantitative intravital microscopy. Nature Methods 12:577–585.
DOI: https://doi.org/10.1038/nmeth.3363

Dray N, Bedu S, Vuillemin N, Alunni A, Coolen M, Krecsmarik M, Supatto W, Beaurepaire E, Bally-Cuif L. 2015.
Large-scale live imaging of adult neural stem cells in their endogenous niche. Development 142:3592–3600.
DOI: https://doi.org/10.1242/dev.123018

Eldred MK, Charlton-Perkins M, Muresan L, Harris WA. 2017. Self-organising aggregates of zebrafish retinal cells
for investigating mechanisms of neural lamination. Development 144:1097–1106. DOI: https://doi.org/10.1242/
dev.142760
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