Unit V: Animal physiology (18 marks)

Chapter 17 BREATHING AND EXCHANGE OF GASES

By Pragya Ranjan **PRAGYA KIE PARHAIE** Ray towards Success Visit https://pkp6.godaddysites.com/

BREATHING:

It is the inflow (inspiration) and outflow (expiration) of air between atmosphere and the alveoli of the lungs.

RESPIRATION:

It is an oxidation process of food substances within the cells to form CO_2 , water and consequent release of energy

RESPIRATORY ORGANS IN ANIMALS

	1		1	
SL.	ORGANISM	GASEOUS EXCHANGE/ RESPIRATION		
NO.				
1	Protozoans,	Direct respiration – Surrounding environmer		
	Sponges,	and plasma membrane by diffusion		
	Coelentrates			
2	Free living flat	General body surface by diffusion		
	worms			
3	Round worms	No exchange of gases (anaerobic		
		respiration)		
4	Earthworm	Cutaneous respiration		
5	Cockroach	The respiratory system includes- spiracles ,		
		tracheae and tracheoles		
6	Scorpion, Spiders	Book lungs	Demonstration Demonstration	
7	Fishes	Gills	PRAGYA RIE PARHAIE	
			/	

RESPIRATORY SYSTEM IN HUMANS

- It comprises of nostrils, nasal chamber, pharynx, larynx, trachea, bronchi and bronchioles.
- 1. Nostrils:
- Holes of nose are called nostrils (external nares) which
 Bronchus Bronchus
 Bronchus
 Cut end of rib
- 2. Nasal chamber:
- •Nasal septum divides nasal cavity into 2 nasal chambers.

Lung-

Diaphragm

The nasal chamber opens into the pharynx.

Epiglottis

Larynx

_Trachea

Alveoli Pleural fluid

Bronchiole

Pleural membranes

3. Pharynx

It is a passage to both air and food.

- The pharynx leads to larynx.
- 4. Larynx (voice box):

Larynx is a cartilaginous box which helps in sound production and hence called the sound box.

•During swallowing glottis (a slit like aperture in larynx) is closed by a thin elastic cartilaginous flap called epiglottis to prevent the entry of food into the larynx.

The larynx leads to trachea.

(5) Trachea:

Trachea is a straight tube extending up to the mid-thoracic cavity.

- It is supported by C-shaped ring cartilage.
- When there is no air, trachea does not collapse due to cartilaginous rings.

(6) Bronchi and Bronchioles:

The trachea branches into 2 primary bronchi, one to each lung.

The primary bronchi are subdivided into secondary bronchi, tertiary bronchi, bronchioles, terminal bronchioles, and finally alveoli.

•Alveoli are the primary site where the exchange of O_2 and CO_2 between blood and atmospheric air takes place.

Lungs

- The branching network of bronchi, bronchioles and alveoli comprise the lungs.
- There is a pair of lungs
- Lung has 2 membranes called pleurae or pleural membranes.
- The space between the two is known as pleural cavity and contains pleural fluid.

Nostril \rightarrow Nasal chamber \rightarrow Pharynx \rightarrow Glottis \rightarrow Larynx \rightarrow Trachea \rightarrow Bronchi

Alveoli 🔶 Bronchioles

Respiration involves the following steps:

i.Breathing by which atmospheric air is drawn in and CO₂

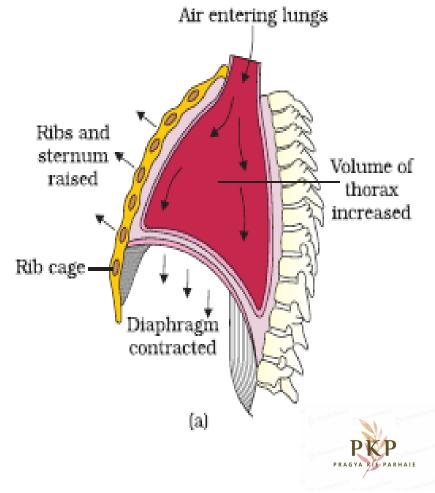
rich alveolar air is released out.

- ii.Diffusion of gases (O_2 and CO_2) across alveolar membrane.
- iii.Transport of gases by the blood.
- iv.Diffusion of O_2 and CO_2 between blood and tissues.

v.Utilisation of O_2 by the cells for catabolic reactions and resultant release of CO_2 .

MECHANISM OF BREATHING:

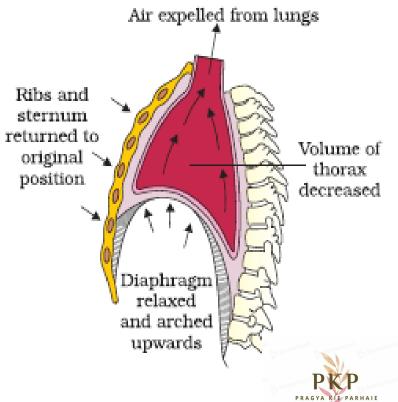
- It involves
 - (i) *inspiration* (ii) *expiration*
- The main muscles of respiration in normal quiet breathing are:
- i. Diaphragm,
- ii. Intercostals muscles of ribs
- iii. Abdominal muscles.



Inspiration

 During inspiration atmospheric air is drawn in.

Inspiration occurs if the pressure within the lungs is less than the atmospheric pressure.


During inspiration, the diaphragm becomes flat, external intercostals muscles contract and abdominal muscle relaxes simultaneously.

This moves the lateral thoracic walls outward and upward increasing the thoracic cavity which increases pulmonary volume and decreases the intra-pulmonary pressure to less than the atmospheric pressure which forces the air from outside to move into the lungs.

Expiration

- During expiration the alveolar air is released out.
- During expiration, the diaphragm becomes dome-shaped and internal intercostals muscles contract and abdominal muscle contract simultaneously;

Resulting in downward and inward movement of the thoracic wall decreasing the thoracic cavity which decreases pulmonary volume and increases the intrapulmonary pressure to slightly above the atmospheric pressure which forces the air to move out of the lungs to outside.

Pulmonary/respiratory volumes and capacities

Pulmonary volume: The quantities of air the lungs can receive, hold or expel under different conditions are called pulmonary volumes.

(1) Tidal volume (TV):

 Amount of air inspired or expired with each normal breath (approx 500 ml).

(2) Inspiratory reserve volume (IRV):

Extra amount of air that can be inspired forcibly after a normal respiration (approx 3100 ml).

(3) Expiratory reserve volume (ERV):

Extra amount of air that can be expired forcibly after a normal respiration (approx 1200 ml).

(4) Residual volume (RV):

 Amount of air left in lungs after forceful expiration (approx 1200 ml).

Pulmonary capacities

It is the combination of two or more pulmonary volumes.

(1) Inspiratory capacity (IC):

 Total volume of air a person can inspire after a normal expiration.

TV + IRV = IC; (500 + 3100) ml = 3600 ml

(2) Expiratory capacity (EC):

 Total volume of air a person can expire after a normal inspiration.

■TV + ERV = EC; (500 + 1200) ml = 1700 ml

(3) Functional residual capacity (FRC):

Volume of air that will remain in the lungs after a normal expiration.

■RV + ERV = FRC; (1200 + 1200) ml = 2400 ml

(4) Vital capacity (VC)

The maximum volume of air a person can breathe in after a forced expiration.

TV + IRV + ERV = VC; (500 + 3100 + 1200) ml = 4800 ml

(4) Total lung capacity (TLC):

Total volume of air accommodated in the lungs at the end of a forced inspiration

■VC + RV = TLC; (4800 + 1200) ml = 6000 ml

EXCHANGE OF GASES

Exchange of gases occurs in lungs and body tissues by diffusion.

Partial pressure

Pressure contributed by an individual gas in a mixture of gases

is called partial pressure (pO₂ for O₂; $_{P}CO_{2}$ for CO₂)

Partial Pressures (in mm Hg) of Oxygen and Carbon dioxide at Different Parts Involved in Diffusion in Comparison to those in Atmosphere

Respiratory Gas	Atmospheric Air	Alveoli	Blood (Deoxygenated)	Blood (Oxygenated)	Tissues
O_2	159	104	40	95	40
CO_2	0.3	40	45	40	45

Exchange of Gases in Lungs:

In lungs, the exchange of gases (O_2 and CO_2) between lung alveoli and pulmonary capillaries take place.

•The pO_2 is higher in alveoli (104 mm Hg) than the deoxygenated blood in the capillaries of pulmonary artery (40 mm Hg). Therefore, O_2 moves (diffuses) from alveoli to capillaries.

•On the other hand, pCO_2 is higher in deoxygenated blood in the capillaries of pulmonary artery (45 mm Hg) than the alveoli (40 mm Hg). Therefore, CO_2 moves (diffuses) from capillaries to alveoli.

Blood becomes oxygenated, and moves to heart and then to tissues.

Exchange of Gases in tissues:

In tissues, the exchange of gases (O_2 and CO_2) between tissue blood capillaries and tissue cells take place.

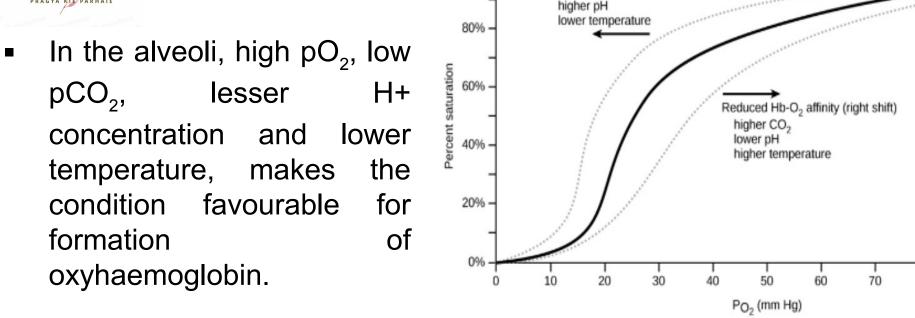
•The pO_2 is higher in oxygenated blood in the capillaries (95 mm Hg) than the body cells (40 mm Hg). Therefore, O_2 moves (diffuses) from capillaries to body cells.

■pCO₂ is higher in the body cells 45 mm Hg) than the blood in the capillaries (40 mm Hg). Therefore, CO₂ moves (diffuses) from body cells to capillaries.

The blood becomes deoxygenated, and moves to heart and then to lungs.

TRANSPORT OF GASES IN BLOOD:

Blood is the medium of transport for O₂ and CO₂


Transport of O₂

- (1) As dissolve gas
- 3% of O₂ is carried by blood plasma
 (2) As oxyhaemoglobin:
- **-97%** of O_2 is carried by binding to haemoglobin (Hb).
- Haemoglobin consists of a protein called globin and a haeme group.
- •Four iron atoms are present in haeme group.
- •Each iron has the capacity to bind to one O_2 .
- •One haemoglobin molecule can carry four molecules of O₂
- 100 ml of oxygenated blood can carry around 5 ml of O₂.

OXYGEN-HAEMOGLOBIN DISSOCIATION CURVE:

- The percentage of haemoglobin i.e. bound with O₂ is called percentage saturation of haemoglobin.
- The relationship between the pO₂ and percentage saturation of haemoglobin is graphically presented by a curve called Oxygen-haemoglobin dissociation curve.
- The curve is "sigmoid" in shape.
- The oxygen-haemoglobin dissociation curve is useful in studying the effect of factors like pCO₂, H+ concentration, etc., on binding of O₂ with haemoglobin.

100%

Higher Hb-O2 affinity (left shift)

lower CO₂

- In the tissues, low pO₂, high pCO₂, high H+ concentration and higher temperature makes the condition favourable for dissociation of oxygen from the oxyhaemoglobin.
- Shifting of curve to the right indicates dissociation of O₂ from haemoglobin
- Shifting of curve to the left indicates association of O₂ to haemoglobin.

BOHR EFFECT

- Shifting of O₂ haemoglobin dissociation curve to the right by increasing CO₂ partial pressure.
- Increased CO₂ concentration causing dissociation of O₂haemoglobin

Transport of CO₂

- 7% of CO₂ in dissolved state in plasma
- 23% of CO₂ as carbamino-haemoglobin
- 70% of CO₂ as bicarbonates.

As dissolved state in plasma

 $CO_2 + H_2O \Leftrightarrow H_2CO_3$

As carbamino-haemoglobin

•CO₂ reacts directly with haemoglobin to form **carbamino**-**haemoglobin**.

As bicarbonates

•At the tissue site where partial pressure of CO_2 is high, CO_2 diffuses into blood (RBCs and plasma) and reacts with water to form carbonic acid.

This reaction is very slow in blood plasma, but occurs very rapidly inside RBC because of the presence of carbonic anhydrase.

Carbonic anhydrase $CO_2 + H_2O \iff H_2CO_3$ $H_2CO_3 \iff H^+ + HCO_3^-$

CHLORIDE SHIFT

- Most of the bicarbonates (HCO₃⁻) formed inside RBC diffuse out in the blood plasma along a concentration gradient
- To balance ionic concentration, Cl⁻ diffuse from plasma into the RBCs.
- This shifting of Chloride ions and bicarbonates between plasma and RBC is called Chloride shift.

Release of CO₂ in alveoli

At the alveolar site where pCO_2 is low, the reaction proceeds in the opposite direction leading to the formation of CO_2 and H_2O . Thus, CO_2 trapped as bicarbonate at the tissue level and transported to the alveoli is released out as CO_2 .

Haldane effect

Binding of O_2 with haemoglobin displaces CO_2 from blood

Bohr effect	Haldane effect		
 Increased CO2 concentration causing dissociation of O2- haemoglobin Helps in release of O2 from arterial blood to the tissue cells 	 Binding of O₂ with haemoglobin displaces CO₂ from blood Helps in release of CO2from blood to the alveoli of lungs 		

REGULATION OF RESPIRATION:

- Respiration is controlled by specialised centre present in the brain called respiratory rhythm centre
- The respiratory centre is composed of neurons present in medulla oblongata (dorsal respiratory centre) and pons varolli (ventral respiratory centre)
- The functions of the respiratory rhythm centres are again moderated by another centre near pons called pneumotaxic centre
- Neural signal from this pneumotaxic centre can reduce the duration of inspiration and thereby alter the respiratory rate

Chemosensitive area

- Situated adjacent to the rhythm centre
- Highly sensitive to CO₂ and hydrogen ions.
- Increase in CO₂ and hydrogen ions can activate this centre
- Activation sends signal to the respiratory centre
- Necessary adjustments in the respiratory process is made by which these substances can be eliminated (expiration)
- Chemoreceptors associated with aortic arch and carotid artery also can recognise changes in CO2 and H+ concentration and send necessary signals to the rhythm centre for remedial actions