
	

https://runoriti.xeltuve.com/gdy?utm_term=developpement+android+openclassroom+pdf


Developpement	android	openclassroom	pdf

Openclassroom	android	studio.	

	Android	openclassroom.		

Cours	de	programmation	Android	openclassroom	PDF...Avec	l'explosion	des	ventes	de	smartphones	ces	dernières	années,	Android	a	pris	une	place	importante	dans	la	vie	quotidienne.	Ce	système	d'exploitation	permet	d'installer	des	applications	de	toutes	sortes	:	jeux,	bureautique,	multimédia,	etc.	

Que	diriez-vous	de	développer	vos	propres	applications	pour	Android,	en	les	proposant	au	monde	entier	via	le	Play	Store,	le	marché	d'applications	de	Google	?	Eh	bien	figurez-vous	que	c'est	justement	le	but	de	ce	cours	:	vous	apprendre	à	créer	des	applications	pour	Android	!Cependant,	pour	suivre	ce	cours,	il	vous	faudra	quelques	connaissances	:Les
applications	Android	étant	presque	essentiellement	codées	en	Java,	il	vous	faut	connaître	ce	langage.	Heureusement,	le	Site	du	Zéro	propose	un	cours	et	même	un	livre	sur	le	Java.Connaître	un	minimum	de	SQL	pour	les	requêtes	(ça	tombe	bien,	le	Site	du	Zéro	propose	un	cours	sur	MySQL).	Si	vous	ne	connaissez	absolument	rien	en	SQL,	vous	pourrez
tout	de	même	suivre	le	cours	dans	son	intégralité,	mais	constituer	votre	propre	base	de	données	sans	théorie	me	semble	risqué.Et	enfin,	être	un	minimum	autonome	en	informatique	:	vous	devez	par	exemple	être	capables	d'installer	Eclipse	tout	seul	(vous	voyez,	je	ne	vous	demande	pas	la	lune).Rien	de	bien	méchant,	comme	vous	pouvez	le	voir.	Mais
le	développement	pour	Android	est	déjà	assez	complet	comme	cela,	ce	serait	bien	trop	long	de	revenir	sur	ces	bases-là.	Ce	cours	débutera	cependant	en	douceur	et	vous	présentera	d'abord	les	bases	essentielles	pour	le	développement	Android	afin	que	vous	puissiez	effectuer	des	applications	simples	et	compatibles	avec	la	majorité	des	terminaux.	

Puis	nous	verrons	tout	ce	que	vous	avez	besoin	de	savoir	afin	de	créer	de	belles	interfaces	graphiques	;	et	enfin	on	abordera	des	notions	plus	avancées	afin	d'exploiter	les	multiples	facettes	que	présente	Android,	dont	les	différentes	bibliothèques	de	fonctions	permettant	de	mettre	à	profit	les	capacités	matérielles	des	appareils.	À	la	fin	de	ce	cours,
vous	serez	capables	de	réaliser	des	jeux,	des	applications	de	géolocalisation,	un	navigateur	Web,	des	applications	sociales,	et	j'en	passe.	En	fait,	le	seul	frein	sera	votre	imagination	!Partie	1	:	Les	bases	indispensables	à	toute	applicationL'univers	AndroidDans	ce	tout	premier	chapitre,	je	vais	vous	présenter	ce	que	j'appelle	l'«	univers	Android	»	!	Le
système,	dans	sa	genèse,	part	d'une	idée	de	base	simple,	et	très	vite	son	succès	fut	tel	qu'il	a	su	devenir	indispensable	pour	certains	constructeurs	et	utilisateurs,	en	particulier	dans	la	sphère	de	la	téléphonie	mobile.	Nous	allons	rapidement	revenir	sur	cette	aventure	et	sur	la	philosophie	d'Android,	puis	je	rappellerai	les	bases	de	la	programmation	en
Java,	pour	ceux	qui	auraient	besoin	d'une	petite	piqûre	de	rappel...La	création	d'AndroidQuand	on	pense	à	Android,	on	pense	immédiatement	à	Google,	et	pourtant	il	faut	savoir	que	cette	multinationale	n'est	pas	à	l'initiative	du	projet.	D'ailleurs,	elle	n'est	même	pas	la	seule	à	contribuer	à	plein	temps	à	son	évolution.	À	l'origine,	«	Android	»	était	le	nom
d'une	PME	américaine,	créée	en	2003	puis	rachetée	par	Google	en	2005,	qui	avait	la	ferme	intention	de	s'introduire	sur	le	marché	des	produits	mobiles.	La	gageure,	derrière	Android,	était	de	développer	un	système	d'exploitation	mobile	plus	intelligent,	qui	ne	se	contenterait	pas	uniquement	de	permettre	d’envoyer	des	SMS	et	transmettre	des	appels,
mais	qui	devait	permettre	à	l'utilisateur	d'interagir	avec	son	environnement	(notamment	avec	son	emplacement	géographique).	C'est	pourquoi,	contrairement	à	une	croyance	populaire,	il	n'est	pas	possible	de	dire	qu'Android	est	une	réponse	de	Google	à	l'iPhone	d'Apple,	puisque	l'existence	de	ce	dernier	n'a	été	révélée	que	deux	années	plus	tard.C'est
en	2007	que	la	situation	prit	une	autre	tournure.	À	cette	époque,	chaque	constructeur	équipait	son	téléphone	d'un	système	d'exploitation	propriétaire.	Chaque	téléphone	avait	ainsi	un	système	plus	ou	moins	différent.	Ce	système	entravait	la	possibilité	de	développer	facilement	des	applications	qui	s'adapteraient	à	tous	les	téléphones,	puisque	la	base
était	complètement	différente.	Un	développeur	était	plutôt	spécialisé	dans	un	système	particulier	et	il	devait	se	contenter	de	langages	de	bas	niveaux	comme	le	C	ou	le	C++.	De	plus,	les	constructeurs	faisaient	en	sorte	de	livrer	des	bibliothèques	de	développement	très	réduites	de	manière	à	dissimuler	leurs	secrets	de	fabrication.	En	janvier	2007,
Apple	dévoilait	l'iPhone,	un	téléphone	tout	simplement	révolutionnaire	pour	l'époque.	L'annonce	est	un	désastre	pour	les	autres	constructeurs,	qui	doivent	s'aligner	sur	cette	nouvelle	concurrence.	

Le	problème	étant	que	pour	atteindre	le	niveau	d'iOS	(iPhone	OS),	il	aurait	fallu	des	années	de	recherche	et	développement	à	chaque	constructeur...C'est	pourquoi	est	créée	en	novembre	de	l'année	2007	l'Open	Handset	Alliance	(que	j'appellerai	désormais	par	son	sigle	OHA),	et	qui	comptait	à	sa	création	35	entreprises	évoluant	dans	l'univers	du
mobile,	dont	Google.	Cette	alliance	a	pour	but	de	développer	un	système	open	source	(c'est-à-dire	dont	les	sources	sont	disponibles	librement	sur	internet)	pour	l'exploitation	sur	mobile	et	ainsi	concurrencer	les	systèmes	propriétaires,	par	exemple	Windows	Mobile	et	iOS.	Cette	alliance	a	pour	logiciel	vedette	Android,	mais	il	ne	s'agit	pas	de	sa	seule
activité.	L'OHA	compte	à	l'heure	actuelle	80	membres.…Depuis	sa	création,	la	popularité	d'Android	a	toujours	été	croissante.	C'est	au	quatrième	trimestre	2010	qu'Android	devient	le	système	d'exploitation	mobile	le	plus	utilisé	au	monde,	devançant	Symbian	(le	système	d'exploitation	de	Nokia	avant	qu'ils	optent	pour	Windows	Phone).	Désormais,	on
le	retrouve	non	seulement	dans	les	tablettes	et	smartphones,	mais	aussi	dans	les	téléviseurs,	les	consoles	de	jeux,	les	appareils	photos,	etc.La	philosophie	et	les	avantages	d'AndroidOpen	sourceLe	contrat	de	licence	pour	Android	respecte	les	principes	de	l'open	source,	c'est-à-dire	que	vous	pouvez	à	tout	moment	télécharger	les	sources	et	les	modifier
selon	vos	goûts	!	Bon,	je	ne	vous	le	recommande	vraiment	pas,	à	moins	que	vous	sachiez	ce	que	vous	faites...	Notez	au	passage	qu'Android	utilise	des	bibliothèques	open	source	puissantes,	comme	par	exemple	SQLite	pour	les	bases	de	données	et	OpenGL	pour	la	gestion	d'images	2D	et	3D.Gratuit	(ou	presque)Android	est	gratuit,	autant	pour	vous	que
pour	les	constructeurs.	S'il	vous	prenait	l'envie	de	produire	votre	propre	téléphone	sous	Android,	alors	vous	n'auriez	même	pas	à	ouvrir	votre	porte-monnaie	(mais	bon	courage	pour	tout	le	travail	à	fournir	!).	En	revanche,	pour	poster	vos	applications	sur	le	Play	Store,	il	vous	en	coûtera	la	modique	somme	de	25$.	Ces	25$	permettent	de	publier	autant
d'applications	que	vous	le	souhaitez,	à	vie	!Facile	à	développerToutes	les	API	mises	à	disposition	facilitent	et	accélèrent	grandement	le	travail.	Ces	APIs	sont	très	complètes	et	très	faciles	d'accès.	De	manière	un	peu	caricaturale,	on	peut	dire	que	vous	pouvez	envoyer	un	SMS	en	seulement	deux	lignes	de	code	(concrètement,	il	y	a	un	peu	d'enrobage
autour	de	ce	code,	mais	pas	tellement).Une	API,	ou	«	interface	de	programmation	»	en	français,	est	un	ensemble	de	règles	à	suivre	pour	pouvoir	dialoguer	avec	d'autres	applications.	Dans	le	cas	de	Google	API,	il	permet	en	particulier	de	communiquer	avec	Google	Maps.Facile	à	vendreLe	Play	Store	(anciennement	Android	Market)	est	une	plateforme
immense	et	très	visitée	;	c'est	donc	une	mine	d'opportunités	pour	quiconque	possède	une	idée	originale	ou	utile.FlexibleLe	système	est	extrêmement	portable,	il	s'adapte	à	beaucoup	de	structures	différentes.	Les	smartphones,	les	tablettes,	la	présence	ou	l'absence	de	clavier	ou	de	trackball,	différents	processeurs...	On	trouve	même	des	fours	à	micro-
ondes	qui	fonctionnent	à	l'aide	d'Android	!	Non	seulement	c'est	une	immense	chance	d'avoir	autant	d'opportunités,	mais	en	plus	Android	est	construit	de	manière	à	faciliter	le	développement	et	la	distribution	en	fonction	des	composants	en	présence	dans	le	terminal	(si	votre	application	nécessite	d'utiliser	le	Bluetooth,	seuls	les	terminaux	équipés	de
Bluetooth	pourront	la	voir	sur	le	Play	Store).IngénieuxL'architecture	d'Android	est	inspirée	par	les	applications	composites,	et	encourage	par	ailleurs	leur	développement.	Ces	applications	se	trouvent	essentiellement	sur	internet	et	leur	principe	est	que	vous	pouvez	combiner	plusieurs	composants	totalement	différents	pour	obtenir	un	résultat
surpuissant.	Par	exemple,	si	on	combine	l'appareil	photo	avec	le	GPS,	on	peut	poster	les	coordonnées	GPS	des	photos	prisesLes	difficultés	du	développement	pour	des	systèmes	embarquésIl	existe	certaines	contraintes	pour	le	développement	Android,	qui	ne	s'appliquent	pas	au	développement	habituel	!	Prenons	un	cas	concret	:	la	mémoire	RAM	est
un	composant	matériel	indispensable.	Quand	vous	lancez	un	logiciel,	votre	système	d'exploitation	lui	réserve	de	la	mémoire	pour	qu'il	puisse	créer	des	variables,	telles	que	des	tableaux,	des	listes,	etc.	Ainsi,	sur	mon	ordinateur,	j'ai	4	Go	de	RAM,	alors	que	je	n'ai	que	512	Mo	sur	mon	téléphone,	ce	qui	signifie	que	j'en	ai	huit	fois	moins.	
Je	peux	donc	lancer	moins	de	logiciels	à	la	fois	et	ces	logiciels	doivent	faire	en	sorte	de	réserver	moins	de	mémoire.	C'est	pourquoi	votre	téléphone	est	dit	limité,	il	doit	supporter	des	contraintes	qui	font	doucement	sourire	votre	ordinateur.Voici	les	principales	contraintes	à	prendre	en	compte	quand	on	développe	pour	un	environnement	mobile	:Il	faut
pouvoir	interagir	avec	un	système	complet	sans	l'interrompre.	Android	fait	des	choses	pendant	que	votre	application	est	utilisée,	il	reçoit	des	SMS	et	des	appels,	entre	autres.	Il	faut	respecter	une	certaine	priorité	dans	l'exécution	des	tâches.	Sincèrement,	vous	allez	bloquer	les	appels	de	l'utilisateur	pour	qu'il	puisse	terminer	sa	partie	de	votre	jeu	de
sudoku	?Comme	je	l'ai	déjà	dit,	le	système	n'est	pas	aussi	puissant	qu'un	ordinateur	classique,	il	faudra	exploiter	tous	les	outils	fournis	afin	de	débusquer	les	portions	de	code	qui	nécessitent	des	optimisations.La	taille	de	l'écran	est	réduite,	et	il	existe	par	ailleurs	plusieurs	tailles	et	résolutions	différentes.	Votre	interface	graphique	doit	s'adapter	à
toutes	les	tailles	et	toutes	les	résolutions,	ou	vous	risquez	de	laisser	de	côté	un	bon	nombre	d'utilisateurs.Autre	chose	qui	est	directement	lié,	les	interfaces	tactiles	sont	peu	pratiques	en	cas	d'utilisation	avec	un	stylet	et/ou	peu	précises	en	cas	d'utilisation	avec	les	doigts,	d'où	des	contraintes	liées	à	la	programmation	événementielle	plus	rigides.	En
effet,	il	est	possible	que	l'utilisateur	se	trompe	souvent	de	bouton.	Très	souvent	s'il	a	de	gros	doigts.Enfin,	en	plus	d'avoir	une	variété	au	niveau	de	la	taille	de	l'écran,	on	a	aussi	une	variété	au	niveau	de	la	langue,	des	composants	matériels	présents	et	des	versions	d'Android.	
Il	y	a	une	variabilité	entre	chaque	téléphone	et	même	parfois	entre	certains	téléphones	identiques.	C'est	un	travail	en	plus	à	prendre	en	compte.Les	conséquences	de	telles	négligences	peuvent	être	terribles	pour	l'utilisateur.	Saturez	le	processeur	et	il	ne	pourra	plus	rien	faire	excepté	redémarrer	!	Faire	crasher	une	application	ne	fera	en	général	pas
complètement	crasher	le	système,	cependant	il	pourrait	bien	s'interrompre	quelques	temps	et	irriter	profondément	l'utilisateur.	Il	faut	bien	comprendre	que	dans	le	paradigme	de	la	programmation	classique	vous	êtes	dans	votre	propre	monde	et	vous	n'avez	vraiment	pas	grand-chose	à	faire	du	reste	de	l'univers	dans	lequel	vous	évoluez,	alors	que	là
vous	faites	partie	d'un	système	fragile	qui	évolue	sans	anicroche	tant	que	vous	n'intervenez	pas.	Votre	but	est	de	fournir	des	fonctionnalités	de	plus	à	ce	système	et	faire	en	sorte	de	ne	pas	le	perturber.	Bon,	cela	paraît	très	alarmiste	dit	comme	ça,	Android	a	déjà	anticipé	la	plupart	des	âneries	que	vous	commettrez	et	a	pris	des	dispositions	pour	éviter
des	catastrophes	qui	conduiront	au	blocage	total	du	téléphone.	Si	vous	êtes	un	tantinet	curieux,	je	vous	invite	à	lire	l'annexe	sur	l'architecture	d'Android	pour	comprendre	un	peu	pourquoi	il	faut	être	un	barbare	pour	vraiment	réussir	à	saturer	le	système.Le	langage	JavaCette	petite	section	permettra	à	ceux	fâchés	avec	le	Java	de	se	remettre	un	peu
dans	le	bain	et	surtout	de	réviser	le	vocabulaire	de	base.	Notez	qu'il	ne	s'agit	que	d'un	rappel,	il	est	conseillé	de	connaître	la	programmation	en	Java	auparavant	;	je	ne	fais	ici	que	rappeler	quelques	notions	de	base	pour	vous	rafraîchir	la	mémoire	!	Il	ne	s'agit	absolument	pas	d'une	introduction	à	la	programmation.Les	variablesLa	seule	chose	qu'un
programme	sait	faire,	c'est	des	calculs.	Il	arrive	qu'on	puisse	lui	faire	afficher	des	formes	et	des	couleurs,	mais	pas	toujours.	Pour	faire	des	calculs,	on	a	besoin	de	variables.	Ces	variables	permettent	de	conserver	des	informations	avec	lesquelles	on	va	pouvoir	faire	des	opérations.	Ainsi,	on	peut	avoir	une	variable	radis	qui	vaudra	4	pour	indiquer	qu'on
a	quatre	radis.	
Si	on	a	une	variable	carotte	qui	vaut	2,	on	peut	faire	le	calcul	radis	+	carotte	de	manière	à	pouvoir	déduire	qu'on	a	six	légumes.Les	primitivesEn	Java,	il	existe	deuxtypes	de	variable.	Le	premier	type	s'appelle	les	primitives.	Ces	primitives	permettent	de	retenir	des	informations	simples	telles	que	des	nombres	sans	virgule	(auquel	cas	la	variable	est	un
entier,	int),	des	chiffres	à	virgule	(des	réels,	float)	ou	des	booléens	(variable	qui	ne	peut	valoir	que	vrai	(true)	ou	faux	(false),	avec	les	boolean).Les	objetsLe	second	type,	ce	sont	les	objets.	En	effet,	à	l'opposé	des	primitives	(variables	simples),	les	objets	sont	des	variables	compliquées.	En	fait,	une	primitive	ne	peut	contenir	qu'une	information,	par
exemple	la	valeur	d'un	nombre	;	tandis	qu'un	objet	est	constitué	d'une	ou	plusieurs	autres	variables,	et	par	conséquent	d'une	ou	plusieurs	valeurs.Ainsi,	un	objet	peut	lui-même	contenir	un	objet	!	Un	objet	peut	représenter	absolument	ce	qu'on	veut	:	une	chaise,	une	voiture,	un	concept	philosophique,	une	formule	mathématique,	etc.	Par	exemple,	pour
représenter	une	voiture,	je	créerai	un	objet	qui	contient	une	variable	roue	qui	vaudra	4,	une	variable	vitesse	qui	variera	en	fonction	de	la	vitesse	et	une	variable	carrosserie	pour	la	couleur	de	la	carrosserie	et	qui	pourra	valoir	«	rouge	»,	«	bleu	»,	que	sais-je	!	D'ailleurs,	une	variable	qui	représente	une	couleur	?	Ça	ne	peut	pas	être	une	primitive,	ce
n'est	pas	une	variable	facile	ça,	une	couleur	!	Donc	cette	variable	sera	aussi	un	objet,	ce	quisignifie	qu'un	objet	peut	contenir	des	primitives	ou	d'autres	objets.Mais	dans	le	code,	comment	représenter	un	objet	?	Pour	cela,	il	va	falloir	déclarer	ce	qu'on	appelle	une	classe.	Cette	classe	aura	un	nom,	pour	notre	voiture	on	peut	simplement	l'appeler
Voiture,	comme	ceci	:Code	:	Java//	On	déclare	une	classe	Voiture	avec	cette	syntaxe	class	Voiture	{//	Et	dedans	on	ajoute	les	attributs	qu'on	utilisera,	par	exemple	le	nombre	de	rouesint	roue	=	4;//	On	ne	connaît	pas	la	vitesse,	alors	on	ne	la	déclare	pasfloat	vitesse;//	Et	enfin	la	couleur,	qui	est	représentée	par	une	classe	de	nom	CouleurCouleur
carrosserie;}Les	variables	ainsi	insérées	au	sein	d'une	classe	sont	appelées	des	attributs.Il	est	possible	de	donner	des	instructions	à	cette	voiture,	comme	d'accélérer	ou	de	s'arrêter.	Ces	instructions	s'appellent	des	méthodes,	par	exemple	pour	freiner	:Code	:	Java//Je	déclare	une	méthode	qui	s'appelle	"arreter"void	arreter()	{//Pour	s'arrêter,	je	passe
la	vitesse	à	0vitesse	=	0;}


