Mud Volume Accounting

Conventional Volume Accounting:

Let's unpack both methods

Compositional Mass Balance Accounting

430 bbls Start Volume	+ 871 bbls +	1155 bbls Whole Mud	Hole Volume	- 1574 bbls =	1962 bbls
Includes pit	New Volume	Volume	Drilled	includes just the	includes SRE,
volume & hole	Built – all	transferred	include a	volume x/f back	hole, dumped,
volume at the	Product	into the	nominal	to Reserve at the	left behind
start of the well	Additions	active system	washout 5%	end of the well	casing, etc.
% By Volume:					
Density – 9.5 ppg	Density – 9.0 ppg	Density – 10.5ppg	Density – 21.7 ppg	Density – 10.7 ppg	Density – 14.4 ppg
% Oil – 60.0 %	% Oil – 75.1 %	% Oil – 59.7 %	% Oil – 0 %	% Oil – 58.5 %	% Oil – 36.7 %
% Water – 10.3 %	% Water – 10.7 %	% Water – 10.1 %	% Water – 0 %	% Water – 10.5 %	% Water – 15.3 %
% Solids – 29.7 %	% Solids – 14.2 %	% Solids – 29.9 %	% Solids – 100 %	% Solids – 31 %	% Solids – 47.0 %
% By Mass:					
Density – 9.5 ppg	Density – 9.0 ppg	Density – 10.5ppg	Density – 21.7 ppg	Density – 10.7 ppg	Density – 14.4 ppg
% Oil – 31.3 %	% Oil – 36.2 %	% Oil – 31.2 %	% Oil – 0 %	% Oil – 30.7 %	% Oil – 21.0 %
% Water – 6.9 %	% Water – 6.6 %	% Water – 6.8 %	% Water – 0 %	% Water – 7.1 %	% Water – 11.2 %
% Solids – 61.8 %	% Solids – 57.2 %	% Solids – 62.0 %	% Solids – 100 %	% Solids – 62.2 %	% Solids –67.8 %
Solids – 106,095 lb	Solids – 188,269 lb	Solids – 315,889 lb	Solids – 984,312 lb	Solids – 440,267 lb	Solids – 670,523 lb

Compositional Mass Balance Calculation:

Total Mass of Solids IN – 1,594,566 lb Total Mass of Solids OUT– 1,110,789 lb Solids Removal Efficiency = 69.7 %

Leveraging Real Time Data The Value in Increasing Solids Removal Efficiency

Continuous improvement plan would be to track intangible cost savings such as:

- number of trips due to downhole tool failures
- number of mud pump consumable swabs, liners, fluid end repairs
- Abrasiveness of high solids concentration on drill pipe, valves, BOP internal components.

		DIGITAL FLUIDS MANAGEMENT							
	8.5" Hole Section	PACESETTER PAD	PAD # 1 (Averages)	PAD # 2 (Averages)	STRETCH TARGET				
+	TOTAL FLUIDS MANAGEMENT \$	\$435,525.00	\$425,555.00	\$398,502.00	\$358,651.00				
ι	% Cost Reduction Across Pads		\$9970 (2.3%)	\$37,023 (8.5%)	\$76,874 (17.7%)				
	DRILLING FLUID PRODUCT \$	\$361,838	\$334,982	\$319,819	\$287,837				
	% Cost Reduction Across Pads		7.4%	11.6%	20.5%				
	TOTAL WASTE MANAGEMENT \$	\$63,187	\$57,028	\$52,943	\$47,648				
)	% Reduction Across Pads		9.7%	16.2%	24.6%				
	Facility Disposal Costs	\$29,397	\$26,058	\$25,730	\$23,156.64				
	Drilled Cuttings Disposed (bbls)	2879	2524	2197	1977				
	Waste Trucking Costs	\$33,790	\$30,970	\$27,213	\$24,492				
Ē	Waste Cost/bbl of Hole Drilled	\$61.53	\$31.44	\$53.18	\$47.86				
S	LGS Removed (bbls)	780	828	892	803				
_	Mud on Cuttings Volume (bbls)	2099	1696	1305	1175				
	Solids Removal Efficiency (SRE)	43.7%	51.1%	62.9%	72.3%				
	Centrifuge Run Time (hrs)	14	33	59	83				
	Diesel Usage (bbls)	1459	1073	916	825				
	Diesel/ft (gal/ft)	4.4	3.9	3.2	2.9				
	Cost/bbl of Hole Drilled	\$424.07	\$371.02	\$389.45	\$350.51				
	Cost/ft of Hole Drilled	ost/ft of Hole Drilled \$31.01 \$29.65		\$22.30	\$20.07				
	New Volume Built	2157	1857	1687	1518				
	18 wells / year / rig Savings \$	Value Add: As Solid	\$1,383,722						
	Fleetwide Adoption 5 rig Total Savings	dilution volumes decreased & waste volumes decreased.			\$6,918,611				

AbSmart

Environmental Footprint ESG – GHG Emissions

ESG COMPLIANCE / GHG ENVIRONMENT	TAL FOOT	PRINT					
	Well #1	Well # 2	Well # 3	Well #4	Well #5	Well #6	Total Pad
Number of Waste Loads (12.25")	54	43	55	48	55	50	305
Estimated CO2 Emissions (tons)	14.8	11.8	15.1	13.2	15.1	13.7	83.8
Number of Waste Loads (8.5")	74	46	38	46	21	53	278
Estimated CO2 Emissions (tons	20.3	12.6	10.4	12.6	5.8	14.6	76.4
Total Loads/well	128	89	93	94	76	103	583
Estimated CO2 Emissions/well (tons)	35.2	24.5	25.6	25.8	20.9	28.3	160.2
Generator Diesel (gallons/well)	36230	34815	35130	33710	31647	33968	205500
Estimated CO2 Emissions (tons)	369	354	358	343	322	346	2092
Trucks hauling diesel for generators (tons)	125	121	122	117	110	118	712
Total CO2 Emissions/well (tons)	404	379	383	369	343	374	2252
Total CO2 Emissions 3 pads per yr/rig (tons)	1212	1137	1150	1107	1029	1122	6757
Total Emissions/yr from 5 rigs (tons)	6060	5683	5748	5535	5146	5612	33784
20% Stretch Target Reduction (tons/yr)						·····	6757

A targeted 20% reduction in GHG emissions by applying good drilling fluid practices like reduce the mud on cuttings and remove large volumes of drilled solids to lighten the energy load required by the generators could reduce the GHG emissions by more than 7000 tons/year.

This initiative could qualify as a Carbon Credit Offset Project.