Mud Volume Accounting

Conventional Volume Accounting:

Let's unpack both methods

Compositional Material Mass Balance:

Compositional Mass Balance Accounting

Compositional Mass Balance Calculation:

Total Mass of Solids IN $-1,594,566 \mathrm{lb}$ Total Mass of Solids OUT-1,110,789 lb

Solids Removal Efficiency = 69.7 \%

Leveraging Real Time Data

The Value in Increasing Solids Removal Efficiency

Continuous improvement plan would be to track intangible cost savings such as:

- number of trips due to downhole tool failures
- number of mud pump consumable swabs, liners, fluid end repairs
- Abrasiveness of high

DIGITAL FLUIDS MANAGEMENT				
8.5" Hole Section	PACESETTER PAD	PAD \# 1 (Averages)	PAD \# 2 (Averages)	STRETCH TARGET
TOTAL FLUIDS MANAGEMENT \$	\$435,525.00	\$425,555.00	\$398,502.00	\$358,651.00
\% Cost Reduction Across Pads		\$9970 (2.3\%)	\$37,023 (8.5\%)	\$76,874(17.7\%)
DRILIING FLUID PRODUCT \$	\$361,838	\$334,982	\$319,819	\$287,837
\% Cost Reduction Across Pads:		7.4\%	11.6\%	20.5\%
TOTAL WASTE MANAGEMENT \$	\$63,187	\$57,028	\$52,943	\$47,648
\%Reduction Across Pads:		9.7\%	16.2\%	24.6\%
Facility Disposal Costs	\$29,397	\$26,058	\$25,730	\$23,156.64
Drilled Cuttings Disposed (bbls)	2879	2524	2197	1977
Waste Trucking costs	\$33,790	\$30,970	\$27,213	\$24,492
Waste Cost/bbl of Hole Drilled:	\$61.53	\$31.44	\$53.18	\$47.86
LGS Removed (bbls)	780	828	892	803
Mud on Cuttings Volume (bbls)	2099	1696	1305	1175
Solids Removal Efficiency (SRE)	43.7\%	51.1\%	62.9\%	72.3\%
Centrifuge Run Time (hrs)	14	33	59	83
Diesel Usage (bbls)	1459	1073	916	825
Diesel/ft (gal/ft)	4.4	3.9	3.2	2.9
Cost/bbl of Hole Drilled	\$424.07	\$371.02	\$389.45	\$350.51
Cost/ft of Hole Drilled:	\$31.01	\$29.65	\$22.30	\$20.07
New Volume Built	2157	1857	1687	1518
18 wells / year / rig Savings \$	Value Add: As Solids Removal Efficiency increased, costs decreased dilution volumes decreased \& waste volumes decreased.			\$1,383,722
Fleetwide Adoption 5 rig Total Savings:				\$6,918,611

Environmental Footprint

ESG - GHG Emissions

ESG COMPLIANCE / GHG ENVIRONMENTAL FOOTPRINT							
	Well\#1	Well\#2	Well \#3	Well \# 4	Well \# 5	Well \# 6	Total Pad
Number of Waste Loads (12.25")	54	43	55	48	55	50	305
Estimated CO2 Emissions (tons)	14.8	11.8	15.1	13.2	15.1	13.7	83.8
Number of Waste Loads (8.5 ${ }^{\prime \prime}$)	74	46	38	46	21	53	278
Estimated CO2 Emissions (tons	20.3	12.6	10.4	12.6	5.8	14.6	76.4
Total Loads/well	128	89	93	94	76	103	583
Estimated CO2 Emissions/well (tons)	35.2	24.5	25.6	25.8	20.9	28.3	160.2
Generator Diesel (gallons/well)	36230	34815	35130	33710	31647	33968	205500
Estimated CO2 Emissions (tons)	369	354	358	343	322	346	2092
Trucks hauling diesel for generators (tons)	125	121	122	117	110	118	712
Total CO2 Emissions/well (tons)	404	379	383	369	343	374	2252
Total CO2 Emissions 3 pads per yr/rig (tons)	1212	1137	1150	1107	1029	1122	6757
Total Emissions/yr from 5 rigs (tons)	6060	5683	5748	5535	5146	5612	33784
20\% Stretch Target Reduction (tons/yr)							6757

A targeted 20\% reduction in GHG emissions by applying good drilling fluid practices like reduce the mud on cuttings and remove large volumes of drilled solids to lighten the energy load required by the generators could reduce the GHG emissions by more than 7000 tons/year.

This initiative could qualify as a Carbon Credit Offset Project.

