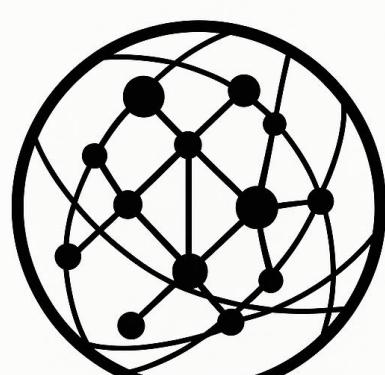


Policy Brief**Lifecycle Cost Parity Between Human Personnel and AI-Enabled Systems:**
Implications for U.S. and China's Force Structure Transition (2026–2060)**Series Information:**


This policy brief is part of the EPINOVA Policy Brief Series on AI-Enabled Warfare, Sustainability, and Global Security Governance.

Recommended Citation:

EPINOVA (2026), *Lifecycle Cost Parity Between Human Personnel and AI-Enabled Systems: Implications for U.S. and Chinese Force Structure Transition (2026–2060)*, Policy Brief No. EPINOVA-2026-PB-06, Global AI Governance and Policy Research Center, EPINOVA LLC, <https://doi.org/10.5281/zenodo.18689812>.

Disclaimer:

This policy brief is an institutional publication of EPINOVA, prepared by Dr. Shaoyuan Wu in his capacity as Director of the Global AI Governance and Policy Research Center, EPINOVA LLC. The analysis is based on publicly available information and does not represent the official positions of any government. The publication is intended solely for research and policy discussion purposes and does not constitute legal, military, or operational advice.

GLOBAL AI
GOVERNANCE
RESEARCH CENTER

Author: Shaoyuan Wu

Affiliation: Global AI Governance and Policy Research Center, EPINOVA LLC

Date: February 19, 2026

Executive Summary

This brief evaluates when AI-enabled systems achieve lifecycle cost parity with human military personnel in the United States and China. Drawing on a cross-service lifecycle cost model, including the Army, Navy, Marine Corps, Air Force, Space Force, Strategic Forces, Strategic Technical roles, and Medical Corps, the analysis estimates the earliest year in which AI-enabled capability equals or falls below the full lifecycle cost of recruiting, training, sustaining, and compensating comparable human personnel.

The analysis yields three principal findings.

- Cost parity occurs earlier in the United States across most categories. Higher personnel compensation, healthcare expenditures, and long-term benefit obligations accelerate financial pressure toward substitution relative to China.
- Information-intensive and maintenance roles reach parity earliest (2028–2033), followed by combat aviation and maneuver forces (2032–2040). These categories exhibit both measurable lifecycle costs and increasing technological maturity in autonomous systems.
- Strategic and high-liability roles, including nuclear command functions, senior intelligence positions, and trauma medicine, remain augmentation-dominant through 2045–2055. In these domains, institutional constraints, escalation risk, and accountability requirements limit the pace of automation independent of cost considerations.

Cost parity should be interpreted as a financial threshold rather than an operational outcome. It indicates the emergence of structural incentives for force redesign, not immediate personnel displacement. The likely trajectory is a phased transition toward hybrid manned–unmanned architectures rather than categorical replacement of human personnel.

1. Introduction

Artificial intelligence is increasingly integrated into military systems across operational domains. Beyond questions of capability and reliability, the economic relationship between personnel costs and AI-enabled systems may shape future force design.

Personnel expenditures continue to rise in major defense economies, while AI system costs are projected to decline with industrial scaling and technological maturation. This interaction creates the potential for lifecycle cost parity.

This brief assesses projected parity across U.S. and Chinese military services from 2026 to 2060 and considers the implications for force structure transition.

Policy Brief

2. Analytical Framework

2.1 Definition of Economic Crossover

Economic crossover occurs when:

$$AI_{lifecycle} \leq Human_{lifecycle}$$

Where:

- Human lifecycle cost includes recruitment, training, compensation, benefits, equipment amortization, and operational sustainment.
- AI lifecycle cost includes development amortization, procurement, deployment, maintenance, and supervisory staffing.
- Human costs grow at real annual rates (higher in the United States than in China).
- AI costs decline rapidly through 2035 and more gradually thereafter.
- Role-specific maturity delays reflect autonomy reliability, command authority requirements, and liability exposure.

The model assumes minimum combat-ready operational maturity rather than experimental capability.

2.2 Baseline Modeling Assumptions

Lifecycle cost parity estimates are derived under a standardized baseline scenario to ensure cross-service and cross-country comparability.

Costs are evaluated over a 20-year horizon and expressed in constant 2025 U.S. dollars using a 3 percent real discount rate.

Real annual personnel cost growth is assumed at 2.5–3.5 percent for the United States and 1.5–2.5 percent for China. Personnel lifecycle costs include recruitment, training, compensation, healthcare, long-term benefits, and allocated sustainment.

AI-enabled system costs are assumed to decline by 6–10 percent annually through 2035 and 2–4 percent thereafter. Lifecycle costs include development amortization, procurement, maintenance, software updates, integration, and supervisory staffing.

Crossover is recorded only when AI systems meet minimum combat-ready reliability and integration thresholds. The model excludes large-scale conflict attrition and abrupt doctrinal shifts. Reported crossover years represent baseline estimates and are sensitive to alternative cost trajectories and industrial scaling effects.

3. Service-Level Crossover Outlook

3.1 Army

United States: Median crossover 2030–2036

China: Median crossover 2035–2040

Early transitions occur in:

- Light infantry support functions;
- Engineers and logistics;

Policy Brief

- Cyber and electronic warfare.

Operational implications include a shift from manpower density toward unmanned asset density. Command authority consolidates upward, while tactical execution increasingly decentralizes to autonomous platforms.

Special operations remain augmentation-dominant beyond 2040 due to decision complexity and escalation sensitivity.

3.2 Navy

United States: 2031–2040

China: 2036–2045

Surface fleet operations and aviation maintenance cross earlier. Submarine and nuclear roles cross later (post-2045).

Structural implications include:

- Reduced crew sizes on large vessels;
- Expanded unmanned surface and undersea systems;
- Increased reliance on predictive maintenance and remote supervisory cells.

Nuclear command roles remain human-anchored.

3.3 Marine Corps

United States: 2032–2036

China: 2037–2040

Transition trends include:

- Smaller human expeditionary teams;
- Autonomous ISR, breach, and suppression systems;
- Remote logistics support.

Force design increasingly reflects distributed, semi-autonomous expeditionary operations.

3.4 Air Force

United States: 2031–2036 (most roles)

China: 2035–2040

Earliest crossover appears in:

- ISR analysts;
- UAV operators;
- Aircraft maintenance.

Mid-phase crossover includes fighter and bomber pilots under loyal wingman and collaborative combat aircraft constructs.

Human pilots increasingly function as mission commanders overseeing multiple semi-autonomous platforms.

Policy Brief

3.5 Space Force

United States: 2041–2046

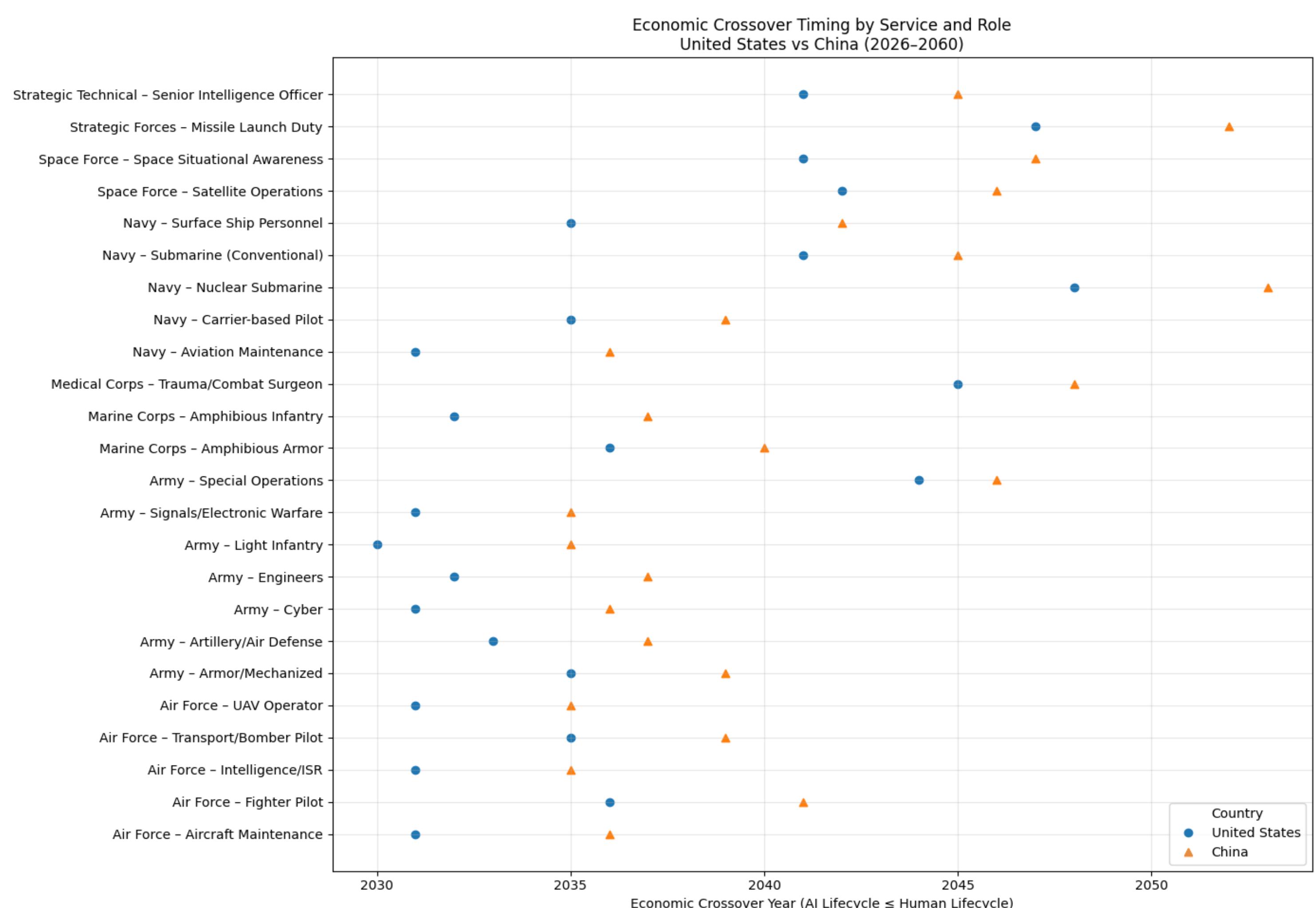
China: 2045–2050

AI absorbs monitoring, anomaly detection, and routine orbital management. Human operators remain central in escalation-sensitive decisions and high-value asset control.

3.6 Strategic Forces

United States: ~2047

China: ~2051


Missile launch duty and nuclear command roles remain augmentation-dominant.

Even where AI achieves economic competitiveness, escalation control, legal accountability, and deterrence stability constrain full autonomy.

3.7 Strategic Technical and Medical Roles

Senior intelligence officers and trauma surgeons reach crossover in the 2040s.

AI enhances analytic speed and clinical precision but does not displace high-liability decision-makers in the near term.

Figure 1. Projected Economic Crossover Timing Between Human Personnel and AI-Enabled Systems by Service and Role, United States and China (2026–2060)

Note: Crossover defined as first year in which AI lifecycle cost is less than or equal to human lifecycle cost under baseline assumptions.

Policy Brief

4. Comparative Patterns

- a) **The United States Transitions Earlier:** Higher personnel costs accelerate economic crossover. Institutional inertia and service culture may moderate the pace of restructuring despite financial incentives.
- b) **China Transitions Slightly Later:** Lower baseline personnel costs delay economic parity. Once parity is reached, centralized planning structures may facilitate more rapid structural adjustment.
- c) **The 2030–2040 Decade Is Structurally Disruptive:** Most maneuver, aviation, and support roles cross during this period. Budget allocations are likely to shift from personnel sustainment toward autonomous systems procurement and integration.

5. Implications for Force Structure

Four structural patterns emerge:

- **Replacement-Dominant (R):** ISR analysts, UAV operators, maintenance roles.
- **Manned–Unmanned Teaming (M):** Armor, aviation, naval surface operations.
- **Augmentation-Dominant (A):** Nuclear command, special operations, trauma medicine.
- **Role Compression:** Operator-level positions contract; oversight and authority roles consolidate.

6. Strategic Risks

- **Workforce Dislocation:** Mid-career personnel in maintenance, ISR, and cyber roles face compression risks.
- **Escalation Stability:** Automation in conventional forces may alter escalation dynamics.
- **Alliance Asymmetry:** Divergent crossover timelines among allies may complicate interoperability.
- **Budget Volatility:** Personnel savings may be offset by transition and integration costs.

7. Policy Considerations

- Develop hybrid doctrine before cost pressures compel abrupt restructuring.
- Preserve human authority in escalation-sensitive domains.
- Expand AI governance frameworks for military applications.
- Conduct sensitivity analysis under alternative AI cost-decline trajectories.
- Rebalance training pipelines toward supervisory, systems-integration, and command roles.

Policy Brief

8. Deployment Dynamics Beyond Cost Parity

Economic crossover should not be interpreted as automatic or immediate force replacement. The transition from cost parity to large-scale deployment depends on several additional factors:

- a) **Industrial manufacturing capacity:** The ability to produce autonomous systems at scale may differ significantly across countries. Manufacturing scale can compress unit costs faster than modeled lifecycle trends.
- b) **Organizational adaptation speed:** Force restructuring requires doctrinal revision, training pipeline adjustment, and command architecture redesign.
- c) **Risk tolerance and escalation control:** High-liability domains may resist automation even after cost parity.
- d) **Institutional incentives:** Personnel compensation structures and pension liabilities create asymmetric fiscal pressures.

As a result, cost crossover represents a financial threshold, not a deployment guarantee. Under certain high-scale manufacturing acceleration scenarios, countries with strong industrial robotics capacity may compress deployment timelines even if economic crossover occurs later.

9. Conclusion

Economic crossover does not imply immediate displacement of human personnel. It indicates a structural shift in the composition of military labor and force design.

Between 2030 and 2035, information-intensive and maintenance functions are projected to reach cost parity, creating financial incentives for restructuring. Between 2035 and 2040, maneuver and aviation forces are likely to enter transitional phases characterized by expanded manned–unmanned integration. Strategic and escalation-sensitive domains are expected to retain human anchoring into the 2050s, notwithstanding advances in autonomous capability.

The central challenge is not automation per se, but the recalibration of command authority, accountability, and operational control within increasingly AI-enabled force architectures.