NATIONAL INSTRUMENT 43-101 TECHNICAL REPORT: BALD HILL ANTIMONY PROJECT SOUTHERN NEW BRUNSWICK, CANADA NTS 21G/09

Prepared for

Antimony Resources Corp.

by

JPL GeoServices

Prepared by the following Qualified Person:

- John Langton, M.Sc., P. Geo.
- Effective Date: September 16, 2025 Signature Date: October 28, 2025.

TABLE OF CONTENTS

TABLE	OF CONTENTS	II
LIST O	F FIGURES	III
LIST O	F TABLES	IV
1	EXECUTIVE SUMMARY	5
1.1	INTRODUCTION	5
1.2	PROPERTY DESCRIPTION, LOCATION AND OWNERSHIP	6
1.3	GEOLOGY	6
1.4	MINERALIZATION	7
1.5	EXPLORATION	7
1.6	RESOURCE ESTIMATION	8
1.7	CONCLUSIONS	8
1.8	RECOMMENDATIONS	9
2	INTRODUCTION	10
2.1	QUALIFIED PERSON	. 10
2.2	Sources of Information	. 10
2.3	SITE VISIT	. 11
2.4	Units of Reference	. 11
3	RELIANCE ON OTHER EXPERTS	12
4	PROPERTY DESCRIPTION, LOCATION AND OWNERSHIP	13
4.1	PROPERTY AGREEMENT	. 15
4.2	SURFACE RIGHTS AND PERMITS	
5	ACCESSIBILITY, CLIMATE, PHYSIOGRAPHY AND INFRASTRUCTURE	18
5.1	ACCESS	. 18
5.2	CLIMATE	. 18
5.3	Physiography	. 19
5.4	LOCAL RESOURCES AND INFRASTRUCTURE	. 19
6	EXPLORATION HISTORY	20
6.1	HISTORICAL EXPLORATION AND DEVELOPMENT WORK	. 20
7	GEOLOGICAL SETTING AND MINERALIZATION	35
7.1	REGIONAL GEOLOGY	. 35
7.2	LOCAL GEOLOGY	. 37
7.3	Stratigraphy	. 38
7.4	STRUCTURAL GEOLOGY	. 39
7.5	MINERALIZATION	. 40
8	DEPOSIT MODEL	41
9	SUMMARY OF WORK	42
10	DRILLING	43

10.1	SUMMARY	45
11	SAMPLE PREPARATION, ANALYSES, AND SECURITY	46
11.1	Sampling	47
11.2	QA/QC	49
11.3	Project QA/QC	49
1.1.1	11.3.1 Standards	50
1.1.2	11.3.2 Blanks	53
1.1.3	11.3.3 Core Duplicates	55
1.1.4	11.3.4 Pulp Duplicates	58
11.4	COMMENTS	60
12	DATA VERIFICATION	
12.1	SITE VISIT	61
12.2	Drill-Core Check Sampling	61
13	MINERAL PROCESSING AND METALLURGICAL TESTING	63
13.1	HISTORICAL TEST WORK (ROW 477458 AND ROW 477665)	63
14	MINERAL RESOURCE ESTIMATES	68
ITEMS	S 15 TO 22 – NOT APPLICABLE TO THIS REPORT	70
23	ADJACENT PROPERTIES	70
24	OTHER RELEVANT DATA AND INFORMATION	71
25	INTERPRETATION AND CONCLUSIONS	72
26	RECOMMENDATIONS	73
27	REFERENCES	74
28	SIGNATURE PAGE	
28	SIGNATURE PAGE	/6
	LIST OF FIGURES	
Figure	e 4.1: Regional map showing location of the Project	13
_	e 4.2: Physiographic map showing location of the Project area	
	e 4.3: Base map of Bond Road claim (#4633) showing claim units	
	e 5.1: Location map showing local access routes to the Project area	
	e 6.1: Sb-in-soils base map (from ROW 477665) of main and south extension howing location of 2014 trenches	
	e 6.2: Base map showing location of 2014-2015 drill holes	
	e 6.3: Reduced to pole (RTP) map of the Novatem magnetometer survey (Bor	
Figure	e 7.1: Regional geology map of northern Appalachian Orogen	35
	e 7.2: Lithotectonic terranes and cover sequences of New Brunswick. Faults:	
	River; (2) Rocky Brook-Millstream; (3) Catamaran-Woodstock; (4) Bamford Br	
	5) Fredericton; (6) Sawyer Brook; (7) Turtle Head-Pendar Brook; (8) Falls Bro Brook; (9) Wheaton Brook–Back Bay; (10) Belleisle-Beaver Harbour; (11) Ken	
	coologan; and (12) Caledonia-Clover Hill. Abbreviations: MK = Markey Brook	
	River terrane; BV = Brookville terrane; CD = Caledonia terrane	

Figure 7.3: Lithotectonic Subdivisions of the south-western New Brunswick (from Johnson et al. 2009)	
Figure 7.4: Local geology map of the Bald Hill Property area	
Figure 10.1: Base-map showing location and surface trace of 2025 drill holes	
Figure 13.1: Mass balance flow sheets for East and West bulk samples (from RPC Report MIS-	
J1915, Assessment Report 477665)	65
LIST OF TABLES	
Table 1-1: Summary of Claims and Claim Units Comprising the Project	6
Table 1-2: Potential Quantity and Grade Ranges* (from MacDonald, 2010)	
Table 1-3: Potential Quantity and Grade Ranges* (from Orix, 2025)	
Table 4-1: Claim Units Comprising the Bond Road Property (Claim #4633)	14
Table 6-1: Summary of 2008 Diamond-Drilling Programme (ROW 476577)	22
Table 6-2: Best Results from 2008 Drilling Programme (ROW 476577)	23
Table 6-3: Summary of 2008 Diamond-Drilling Programme (ROW 476773)	
Table 6-4: Best Results from 2008 Drilling (ROW 476773)	25
Table 6-5: Potential Tonnages from Bald Hill Deposit*	
Table 6-6: Summary of Assay Results From 2014 Trenching Programme	
Table 6-7: Summary of 2014, Boulder-In-Till Assay Results	
Table 6-8: Summary of 2014-2015 Phase 1 and Phase 2 Drill Holes	
Table 6-9: Summary of Best Results from Phase 1 Drilling	
Table 10-1: Summary of 2025 Diamond-Drilling by Antimony Resources	
Table 10-2: Summary of Significant Core Intervals from 2025 Drilling Programme	
Table 11-1: Actlab's Code 1H INAA Multi-Element Suite	
Table 11-2: Rates of Control Samples Inserted into the Sample Stream	
Table 11-3: QA/QC Analytical Results for CRM Standard OREAS 292 (n=89)	
Table 11-4: QA/QC Analytical Results for Blank Samples (n=89)	
Table 11-5: QA/QC Analytical Results for Core Duplicates (n=88)	
Table 11-6: QA/QC Analytical Results for Pulp Duplicates (n=89)	
Table 12-1: Verification Results of Original and Re-sample Analyses	
Table 13-1: Mass Balance Results from East (a) and West (b) Bulk Samples	
Table 14-1: Potential Quantity and Grade Ranges* (from MacDonald, 2010)	
Table 14-2. Fotential Qualitity and Grade Ranges (110111 Offx, 2025)	09

1 EXECUTIVE SUMMARY

1.2 Introduction

In July 2025, Antimony Resources Corp ("Antimony Resources") retained JPL GeoServices Inc. to update a Technical Report entitled: "National Instrument 43-101 Technical Report: Bald Hill Antimony Project Southern New Brunswick, Canada", published on October 28, 2014 for Tristar Antimony Canada Inc. (Banks and Langton, 2014). Antimony Resources is a CSE listed Vancouver-based, publicly held company trading on the Canadian stock Exchange (CSE) under the symbol "ATMY".

The purpose of this document is to provide an updated, independent Technical Report (the "Report") on the Bald Hill project (the "Project") located in New Brunswick (NB), Canada, and to provide recommendations for further exploration. The Report documents the recent activity at the Project, which is being actively explored for economic concentrations of antimony-bearing stibnite mineralization by Antimony Resources, which recently completed a 16-hole, 3,160 m diamond-drilling campaign to test the stibnite-mineralized zone. There is presently no commercial production on the Project.

The Report was prepared in compliance with the disclosure and reporting requirements for mineral projects set forth in National Instrument 43-101 - *Standards of Disclosure for Mineral Projects* ("NI 43-101"). Mr. John Langton (the "Author"), who meets the definition of a "qualified person" (QP) for the purposes of NI 43-101, is independent of Antimony Resources, and is responsible for all Items of the Report.

The Report will be filed on the System for Electronic Document Analysis and Retrieval (SEDAR), as required under applicable securities regulations.

The information in the Report derives from the 2014 Technical Report (Banks & Langton, 2014) and subsequent exploration work carried out on the Project. Additional information was garnered from publicly available Reports of Work (ROW), on-line resources of New Brunswick's Department of Natural Resources and Energy Development (DNRED), publications of the Geological Survey of Canada, scientific papers from various earth science Journals, and geological work performed or commissioned by the New Brunswick government and Antimony Resources.

All information held by Antimony Resources pertinent to the Project was made available for use in the Report, including confidential results and details pertaining to Antimony Resources' 2025 exploration programme.

A list of the principal material reviewed and used in the preparation of this document is included in the References section (Item 27) of this document.

The Author conducted a site visit of the Project on September 14, 2025. The on-site visit, explored the general landscape and surface features of the Project area and examined a number of drill-sites. On September 16, 2025, the Author reviewed drill core from Antimony Resources' 2025 drilling campaign stored at DNRED's secure core storage facility in Sussex, NB accompanied by Antimony Resources geologist Wazir Khan. It was noted that drill core from the Project is stored in sheltered outdoor core racks and all boxes are clearly marked with metal tags and retain their sample interval tags. During the inspection visit Mr. Langton collected nine (9) core interval samples for analytical verification purposes.

1.3 Property Description, Location and Ownership

The Project comprises the NB-registered "Bond Road" mineral claim (Claim #4633), which consists of 26 contiguous claim units (**Table 1-1**) within the geological Annidale Belt in south-central NB, approximately 40 kilometres (km) northwest of Sussex and 60 km north of Saint John, near the community of Wickham.

Table 1-1: Summary of Claims and Claim Units Comprising the Project

Claim Number	Name	Claim Units	Total Units
4633	Bond Road	2422001A, -B, -C, -D, -E, -F, -G, - H; 2423091D; 2522009O, -P; 2522010A, -B, -G, -H, -I, -J, -K, -N, -O, -P; 2523099M; 2523100D, -E, -L, -M	26

The Project is within National Topographic System (NTS) Map Sheet 21G/09 in Queens County and is easily accessible by primary (i.e., paved) and secondary roads.

On January 22, 2025 Antimony Resources (formerly Big Red Mining Corp.) announced it had signed an Option Agreement with Globex Mining Enterprises Inc. ("Globex") to obtain 100% interest in the Bond Road property (Claim # 4633), by paying \$2,000,000 in cash, and delivery of 1,100,000 shares over a four-year period and a minimum aggregate of \$5,000,000 in exploration expenditures over the same time period. Globex will retain a 3.5% Gross Metal Royalty (GMR) on the property. A buy-back of 1.0% GMR may be purchased by Antimony Resources for \$1,000,000 (subject to inflation).

1.4 Geology

The Project area is underlain mainly by Carpenter Brook Formation and rocks of the Bald Hill Suite. The Carpenter Brook Formation is a largely sedimentary sequence intercalated with felsic volcanic rocks that are part of the Bald Hill Suite of rhyolite domes.

The Bald Hill Suite comprises peralkaline rhyolite dome complexes including felsic ash tuff, felsic pyroclastic breccia and rhyolite flows, that are spatially and temporally associated with the Carpenter Brook Formation and that parallel the regional northeast-trending fabric.

The felsic volcanic and sedimentary units are intruded by a pinkish microgranite, fragments of which occur within the felsic pyroclastic breccia, indicating a close temporal relationship between the intrusive and extrusive phases. Other felsic intrusions are noted in the Project area and are generally small, commonly granitic in composition and are aphanitic to mediumgrained.

The Bald Hill suite is commonly enriched in pyrite, arsenopyrite, locally massive stibnite, and gold. Field relationships and new radiometric data suggest that the Carpenter Brook Formation and associated rhyolite domes of the Bald Hill suite are the oldest units in the Annidale Group (Johnson et al., 2009).

1.5 Mineralization

Stibnite has been identified at the Bald Hill Project in float, as massive stibnite boulders, in outcrop, as sub-crop, and in diamond-drill core. The Author noted stibnite mineralization in Antimony Resources' drill core during his site visit.

Diamond-drilling by Antimony Resources and previous exploration companies at the Project have intersected a typical rhyolite dome sequence, with various intervals of sedimentary rocks interbedded with volcanic rocks and micro-granite. In drill core, the antimony-bearing stibnite mineralization is observed in a breccia unit with stringers of pyrite and fragments of tuff and quartz, within a boundary zone of volcanic-derived sediments and rhyolite, suggesting a vein-system model. True widths of the mineralized zones, interpreted from drill-core intersections, vary from less than a metre to over three metres. Individual intersections range as high as and 11.70 % Sb over 3.19 m (true thickness) in historical drill hole BH-08-03 (MacDonald, 2010; ROW 477222).

Stibnite (Sb_2S_3) , pyrite (Fe_2S_3) and arsenopyrite (As_2S_3) are the most common sulphides present. Minor galena has also been observed. Sporadic gold (Au) content has also been noted in analytical results, often associated with the stibnite mineralization and occasionally in independent zones. Average gold content ranges from 0.75 g/t to 1.0 g/t.

The regional stratigraphy strikes generally northeast; however, the main antimony mineralized zones trend northwest, and dip sub-vertically to steeply to the southwest. This northwest trend parallels lineaments that are reflected in metal-in-soil anomalies and geophysical surveys and are likely associated with structural discontinuities (i.e., fault zones). This strongly suggests that stibnite mineralization on the property has a component of structural-control.

1.6 Exploration

Exploration of base- and precious-metal occurrences has been carried out in the vicinity of the Project intermittently since the late 1800s. This previous work had identified antimony (Sb) \pm gold (Au) mineralization, and associated low-grade silver (Ag) and disseminated copper (Cu) mineralization in outcrop and drill-core. Historical exploration activities have included prospecting, soil sampling, trenching, diamond-drilling and ground geophysical (VLF EM and magnetometer) surveys.

The most recent exploration efforts were carried out by Antimony Resources in 2025 and comprised a 16-hole diamond-drilling campaign aggregating 3,160 m.

During the course of its exploration work, Antimony Resources identified two distinct mineralized zones of antimony (\pm gold) on the Project. Diamond-drilling results on the Project have delineated the main mineralized trend over a strike length of 700 metres and to a depth of approximately 400 metres; however, neither zone has been fully delineated and both remains open along strike and down-dip.

Anomalous antimony and gold concentrations from historical soil geochemical surveys across the Project indicates the potential for a large mineralized system.

A second stage of diamond-drilling programme by Antimony Resources has recently been initiated; however, no results from this second campaign are available as at the signature date of the Report.

1.7 Resource Estimation

There are currently no defined NI 43-101 mineral resources or reserves on the Property.

A 2010 Technical Report by Conestoga-Rovers & Associates (CRA*) of Fredericton, NB (MacDonald, 2010) included an estimate of potential quantity and grade of the antimony mineralization at the Bald Hill Property (**Table 1-2**).

(*Following a 2014 merger, CRA is now part of GHD Limited Canada, an engineering firm.)

Table 1-2: Potential Quantity and Grade Ranges* (from MacDonald, 2010)

Zone	Metric Tonnes	Grade (%5b)
Main Zone	700,000 to 900,000	4.33% to 5.40%
Parallel Zone	25,000 to 100,000	2.13% to 3.19%
Total	725,000 to 1,000,000	4.11% to 5.32%

^{*}The reader is cautioned that this potential quantity and grade estimate are strictly conceptual in nature as there has been insufficient exploration to define any mineral resources on the Property. Furthermore, it is uncertain whether further exploration will result in the target being delineated as a mineral resource.

At the request of Antimony Resources, the potential exploration target has been re-estimated by Orix Geoscience Inc. of Toronto Ontario ("Orix"). Potential quantity and grade estimates were completed using a volume estimate from a 3D block model prepared by Orix using results from over 40 historical and new drill holes, totalling over 9,000 drilled metres. An estimated grade range of 3% to 4% Sb, over an average width of 3 to 4 metres was used, and a density of 2.65 was calculated for the mineralized zone based on the ratio of stibnite to quartz in the breccia. The estimate of potential tonnage and grade by Orix is summarized in **Table 1-3**.

Table 1-3: Potential Quantity and Grade Ranges* (from Orix, 2025)

Zono	Volume (m³)	Tommoo	Tonnes Antimony		
Zone		Tonnes	at 3.0% Sb	at 4.0% Sb	
1	2,040,200	769,887	23,097	30,795	
2	4,349,300	1,641,245	49,237	65,650	
3	333,080	125,691	3,771	5,028	
4	466,730	176,125	5,284	7,045	
Totals	7,189,310	2,712,947	81,388	108,518	

^{*}The reader is cautioned that this potential quantity and grade estimate is strictly conceptual in nature as there has been insufficient exploration to define a mineral resource on the Property. Furthermore, it is uncertain whether further exploration will result in the target being delineated as a mineral resource.

1.8 Conclusions

Exploration work on the Bald Hill Project shows that the antimony mineralization comprises a vein and breccia system hosted by sediments, tuffs and rhyolites of the Carpenter Brook Formation and Bald Hill Suites. The fault-fill type breccia and veining trend generally northwest, orthogonal to the regional northeast structural trend, and are likely associated with a fault system.

Antimony Resources' diamond-drilling campaign on the Project has confirmed a zone of antimony mineralization over approximately 700 m along strike and to 400 m depth. Known surface mineralization and historical soil geochemical anomalies imply that the mineralization extends for at least 1,500 m, along strike. A 2014 trenching programme by Rockport, which was focused on the so-called Southern Extension grid approximately 1.0 km to the southeast of the main showing, revealed a new area of antimony mineralization grading 9.04% Sb over 2.60 metres, including 12.32% Sb over 1.7 metres (Dahn, 2015 – ROW 477853).

1.9 Recommendations

The Author believes that the Project is one of merit warranting further exploration and investigation. Efforts should focus on expanding the extent of the known mineralized zones by following up on known surface showings, historical antimony-in-soil anomalies, and induced polarization (IP) and electromagnetic (EM) geophysical anomalies that have associated anomalous soil assays.

The priority targets are the main Bald Hill mineralized zone and the so-called Southeast Extension.

The recommended exploration programmes should aim to establish an NI 43-101 antimony Mineral Resource in the Inferred Mineral Resource category through additional surface excavation and diamond-drilling, including drilling of the known zones at closer drill spacing.

The two priority areas that most warrant this work are:

- 1. the main Bald Hill zone, and;
- 2. the Southeast Extension zone, approximately 1.0 km southeast of the Bald Hill main zone.

An initial Phase I exploration budget totalling approximately \$200,000 is recommended in order to complete an initial shallow-drilling campaign, consisting of 8 holes totalling 750 m on the Southeast Extension and to carry out further surface exploration work (i.e., soil sampling and pre-drill preparation) at the main Bald Hill deposit.

The Phase II programme, which is contingent on positive results of the Phase I exploration programme, should be designed to test both the main zone and the prospective Southeast Extension. A 40-hole, 5,850 metre diamond-drilling programme is recommended for Phase II (a). Depending on the success of Phase II (a) drilling, the defined mineralization grade and/or thickness controls will be applied to a similarly budgeted Phase II (b) drilling campaign. The objective of the Phase II drilling programme should aim to allow calculation of a NI 43-101 maiden Mineral Resource Estimate.

The estimated budget for the recommended Phase II(a) and –(b) programmes is \$3,000,000 (\$1,500,000 for each).

A review of available data suggests that the Project contain a potential antimony resource, the true grade and amount of which have yet to be determined and should be the subject of continued exploration.

The Author is of the opinion that the recommended exploration programme is appropriate, consistent with those of other mineral exploration programmes, and are required in order to help determine the mineral potential of the Property.

2 INTRODUCTION

In June 2025, James Atkinson, President and CEO of Antimony Resources retained Mr. John Langton of JPL GeoServices Inc., to complete an updated NI 43-101 Technical Report to support Antimony Resources' continued development of the Bald Hill Project (the "Project") comprising the NB-registered Bond Road mineral claim (Claim #4633). Antimony Resources is a Vancouverbased, publicly held company trading on the Canadian Stock Exchange (CSE) under the symbol "ATMY".

The purpose of the Report is to provide an independent technical report (the "Report") on the Project, and to provide recommendations for further exploration. The Report is prepared in accordance with NI 43-101 and will be filed on the System for Electronic Document Analysis and Retrieval (SEDAR), as required under applicable securities regulations.

This document reports on the recent activity at the Project, which is being actively explored for economic concentrations of stibnite-bearing antimony mineralization. Base-metal exploration work, carried out in the Project area intermittently since the late 1800s, has identified antimony (Sb) ± gold (Au) mineralization, with associated low-grade silver (Ag) and disseminated copper (Cu) mineralization in outcrop and in drill core. Historical exploration activities have included prospecting, soil sampling, trenching, diamond-drilling and ground geophysical surveys. There is presently no commercial production on the Project.

2.1 Qualified Person

The Report was prepared by John Langton (the "Author") in accordance with NI 43-101 and is considered current as at September 16th, 2025, with a signature date of October 28th, 2025. The Author, by virtue of education, experience and professional association, is considered an independent Qualified Person (QP) as defined by NI 43-101 and its related Form 43-101F1, and is a Professional Geologist in good standing with the Association of Professional Engineers & Geoscientists of New Brunswick (Member 8766). The Author is responsible for all sections of the Report.

The Author reviewed and appraised the information used to prepare the Report, including the conclusions and recommendations, and believes that such information is valid and appropriate considering the status of the Property and the purpose for which the Report was prepared.

2.2 Sources of Information

This report is an update to a 2014 NI 43-101 Technical Report entitled: "National Instrument 43-101 Technical Report, Bald Hill Antimony Project, Southern New Brunswick, Canada" (Banks and Langton, 2014), published on October 5, 2014 for Tristar Antimony Canada Inc. ("Tri-star").

The information in the Report derives from Banks and Langton (2014) and subsequent exploration work carried out on the Project by Antimony Resources. Additional information was garnered from publicly available Assessment Reports, on-line resources of New Brunswick's Department of Natural Resources and Energy Development (DNRED), publications of the Geological Survey of Canada, scientific papers from various earth science Journals, as well as geological work performed or commissioned by the New Brunswick government and Antimony Resources.

The bulk of the historical geological information was distilled from documents obtained from the online databases of DNRED, and incorporates all known assessment work data filed by exploration

companies, as well as geological work performed or commissioned by the New Brunswick government. In addition, the Author made use of scientific publications of the Geological Survey of Canada and various earth science Journals. Analytical results pertaining to the 2025 exploration programme are provided by Antimony Resources and have been verified by the Author. A list of the principal material reviewed and used in the preparation of this document is included in the References section (Item 27) of the Report.

2.3 Site Visit

The Author conducted a site visit of the Project on September 14, 2025. The on-site visit, explored the general landscape and surface features of the Project area and examined a number of drill-sites. On September 16, 2025, Mr. Langton reviewed drill core from Antimony Resources' 2025 drilling campaign stored at the DNRED's secure core storage facility in Sussex, New Brunswick accompanied by Antimony Resources geologist Wazir Khan. The Sussex facility is surrounded by chain link fencing and a locked gate. It was noted that drill core from the Project is stored in sheltered outdoor core racks and all boxes could be properly identified by metal tags secured to the core boxes. Observation suggest that the core cutting/splitting was well done, sample tags were noted as being in place, and the tags and sampled sections corresponded to those indicated in the core logs. The Author also examined plans and sections of the Project, and reviewed Antimony Resources' logging methods, sample-preparation procedures and sample security protocols with Mr. Khan. During the inspection visit Mr. Langton collected nine (9) core interval samples for analytical verification purposes.

2.4 Units of Reference

Currency amounts (\$) are reported in Canadian dollars (CAD).

Grid coordinates on maps and figures utilize Latitude N / Longitude W coordinates or are based on the UTM system using the NAD 83 projection. The Property is in Zone 19 (north) of UTM NAD83.

Quantities are stated in originally reported units, either imperial or metric. Metric units, as per standard Canadian and international practice, including metric tons (tonnes, t) and kilograms (kg) for mass, kilometres (km), metres (m), and centimetres (cm) for length/distance. Areas are reported as hectares (ha) acres or square kilometres (km²). Mineral grades and concentrations from assay results are given in percent (%), parts per million (ppm), or grams per tonne (gpt). Compass directions may be abbreviated using letter designations as follows: north (N), east (E), south (S) and west (W). Orientations are in relation to True North (001° - 360°).

3 RELIANCE ON OTHER EXPERTS

The Author has relied upon other expert reports that provided information regarding mineral rights, property agreements and royalty agreement information contained within the Report.

The Author referenced the NB e-Claims system, the province of New Brunswick's online database system, for information regarding mineral claim titles, and disclaim responsibility for information supplied by Antimony Resources about option agreements, royalty agreements, environmental liabilities and permits. This disclaimer applies to Item 4 of the Report.

The Author has not independently reviewed or verified the ownership of the mineral rights of the Property, nor or any underlying agreement(s) that may exist concerning the licenses or other agreement(s) between third parties, as he is not qualified to express any legal opinion with respect to property titles, current ownership or possible litigation.

The Author believes that the information used to prepare the Report and to formulate its conclusions and recommendations is valid and appropriate considering the status of the Project and the purpose for which the Report has been prepared.

4 PROPERTY DESCRIPTION, LOCATION AND OWNERSHIP

The Project is in Queens County in south-central New Brunswick, approximately 40 km west of the Sussex, 60 km southeast of the provincial capital City of Fredericton, and about 45 km north of the port City of Saint John (**Figure 4.1**).

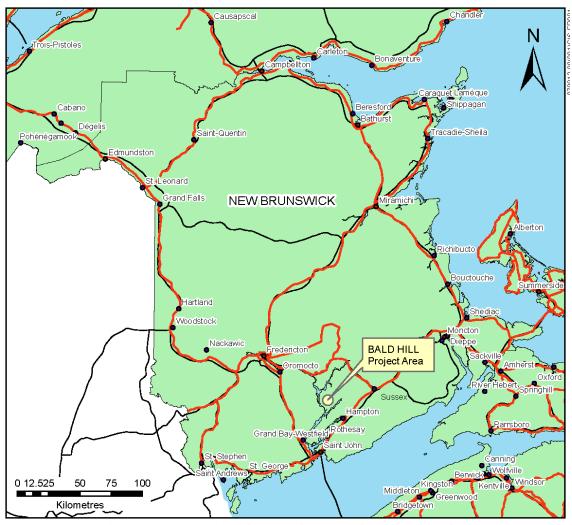


Figure 4.1: Regional map showing location of the Project

The centre of the Project work area is approximately at Universal Transverse Mercator (UTM) coordinates 732700, 5061700 in Zone 19 of the 1983 North American Datum projected coordinate system (NAD83 Z19)"; or, 45°-40′-11" North / 66°-00′-45" West (Latitude /Longitude).

The Property comprises 26 contiguous claim units (**Table 4-1**), covering 586.4 ha designated as "Bond Road" (NB claim #4633), within NTS Map Sheets 21G/09 and 21H/12 (**Figure 4.2** and **Figure 4.3**). The denoted boundary of the claim was obtained from information provided by the NB e-Claims system.

Table 4-1: Claim Units Comprising the Bond Road Property (Claim #4633)

Claim	Name	Claim Units	Total Units
4633	Bond Road	2422001A, -B, -C, -D, -E, -F, G,- H; 2423091D; 2522009O, -P; 2522010A, -B, -G, -H, -I, -J, -K, -N, -O, -P; 2523099M; 2523100D, -E, -L, -M	26

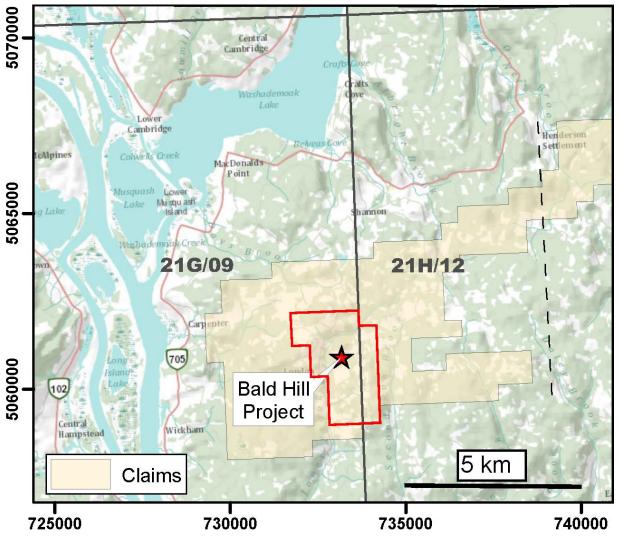


Figure 4.2: Physiographic map showing general location and boundary of the Bond Road claim (solid red line)

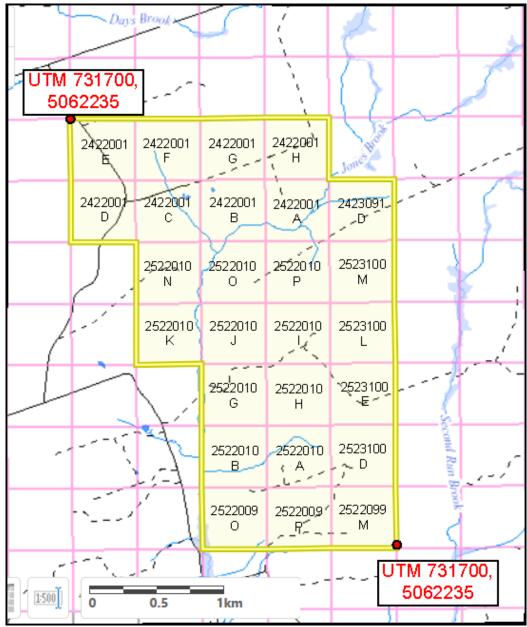


Figure 4.3: Base map of Bond Road claim (#4633) showing claim units

4.1 Property Agreement

On January 22, 2025 Antimony Resources (formerly Big Red Mining Corp.) announced it had signed an option agreement (the "Agreement") with Globex Mining Enterprises Inc. ("Globex") to obtain 100% interest in their Bald Hill Antimony property, which comprised a contiguous block of 26 claim units covering 586.4 ha by paying \$2,000,000 in cash, and 1,100,000 shares over a four-year period and a minimum aggregate of \$5,000,000 in exploration expenditures over four (4) years. Globex will retain a 3.5% Gross Metal Royalty (GMR). A buy-back of 1.0% GMR may be purchased for \$1,000,000 (subject to inflation).

Payment of the \$2,000,000 in cash to Globex was agreed as follows:

- i. \$25,000 being a firm commitment on or before the tenth business day after TSX Venture Exchange acceptance of the Agreement;
- ii. \$75,000 being a firm commitment on or before the 90th business day of the effective date of the Agreement;
- iii. \$125,000 being a firm commitment on or before the 1st anniversary of the effective date of the Agreement;
- iv. \$150,000 on or before the 2nd anniversary of the effective date of the Agreement;
- v. \$500,000 on or before the 3rd anniversary of the effective date of the Agreement; and
- vi. \$1,125,000 or before the 4th anniversary of the effective date of the Agreement;

Issuance of the 1,100,000 common shares of Antimony Resources to Globex was agreed as follows:

- i. 250,000 common shares being a firm commitment on or before the tenth business day after TSX Venture Exchange acceptance of the Agreement;
- ii. 250,000 common shares being a firm commitment on or before the 1st anniversary of the effective date of the Agreement;
- iii. 150,000 common shares on or before the 2nd anniversary of the effective date of the Agreement;
- iv. 200,000 common shares on or before the 3rd anniversary of the effective date of the Agreement:
- v. 250,000 common shares on or before the 4th anniversary of the effective date of the Agreement;

The incurrence of aggregated exploration expenditures on the Project was agreed as follows:

- i. \$500,00 in exploration expenditures, being a firm commitment to be completed on or before the 1st anniversary of the effective date of the Agreement;
- ii. An additional \$1,000,000 in exploration expenditures being a firm commitment to be completed on or before the 2^{nd} anniversary of the effective date of the Agreement;
- iii. an additional \$1,500,000 in exploration expenditures to be completed on or before the 3rd anniversary of the effective date of the Agreement; and
- iv. an additional \$2,000,000 in exploration expenditures to be completed on or before the 4th anniversary of the effective date of the Agreement.

4.2 Surface Rights and Permits

The Property is located on crown and private land to which Antimony Resources does not hold the surface rights. Agreements have been signed with surface rights holders overlapping parts of the Bond Road claim and the appropriate Work Authorizations have been issued by DNRED to Antimony Resources for their exploration activities. The Author is not aware of any underlying agreement(s) that may exist concerning licenses or agreement(s) between third parties.

No environmental permits are currently assigned to the Property for exploitation purposes; environmental permit(s) are required by law to fulfil environmental requirements with the goal of returning the land to a use whose value is at least equal to its previous value and to ensure the long term ecological and environmental stability of the land and its watershed. There are no protected natural areas or specific First Nation land claims within the Project area.

A map-staked mineral claim unit in New Brunswick measures 481 m \times 464 m and is valid for one year from the date of recording and can be renewed for any number of terms of one

year each, providing the required assessment work is done and reports submitted, and renewal fees paid prior to each anniversary of the recording date.

As at the effective date of the Report, the Bond Road claim is in good standing. The claim is currently in its twentieth term and is renewable on April 10, 2026. The rental fees required for the renewal of the entire holdings upon the next anniversary date total \$50 per claim unit or \$1,300 for the claim, whereas annual required work commitments are \$600 per claim unit or \$15,600 for the claim. The claim currently has \$5,396.78 in banked work credits that can be applied to the next renewal.

5 ACCESSIBILITY, CLIMATE, PHYSIOGRAPHY AND INFRASTRUCTURE

5.1 Access

The Property is easily accessible by paved and secondary roads, and tertiary trails accessible by all-terrain vehicle. All parts of the claim are within walking distance of these ingress routes (**Figure 5.1**).

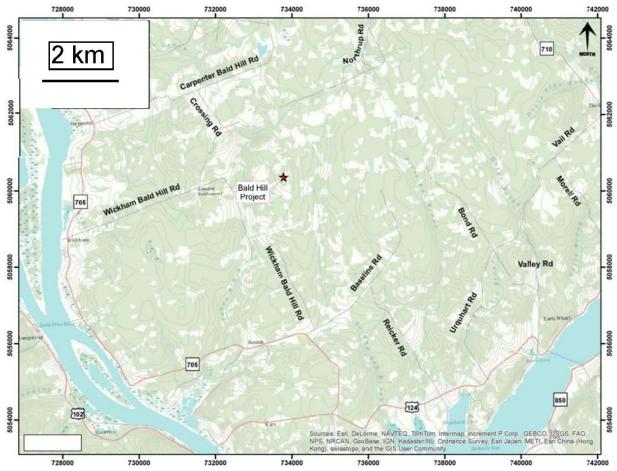


Figure 5.1: Location map showing local access routes to the Project area

5.2 Climate

The Bald Hill Work Area is in southern New Brunswick, an area considered "humid continental", typified by large seasonal temperature differences, with warm to hot and often humid summers, and cold, sometimes severely cold winters (the "humid" designation merely denotes that the climate is not dry enough to be classified as semi-arid or arid; humidity levels are not necessarily high). Seasonal temperatures average 17 °C in the summer and -7°C in the winter. Historically, January is the coldest month whereas July is the warmest. Approximately 300-500 mm of rainfall a year, is representative for the area (Environment Canada, 2010). The freezing period usually starts in December and usually lasts until the end of March (Environment Canada: 1971-2000 climate). Snow cover in the area, typically 3 m to 4 m per year, can be expected from December to April, but various exploration programmes (e.g., diamond-drilling, ground geophysical surveys) can be carried out year-round.

5.3 Physiography

The Project area lies in gently rolling farmland and woodland covering the local height-of-land, which gives way to Washademaoak Lake to the north, Belleisle Bay to the south and the Saint John River to the west, which are all considered part of the Saint John River system. The area has low relief with an average elevation in the vicinity of the Project between 50 and 200 m above sea level.

Typical boreal forest, chiefly balsam and spruce, covers most of the Property; however, some of the forested area has been clear-cut by foresting operations. Farming areas are developed around local villages and along secondary roads. Glacial overburden is typically between 0.3 m to 2.0 m. Outcrops comprises less than 1% of the land surface.

5.4 Local Resources and Infrastructure

The cities of Fredericton and Saint John are the nearest administrative centres, where heavy machinery, bulk fuel, other equipment and provisions can be obtained.

The nearby town of Sussex has an DNRED government office and local sources for mining supplies and expertise. Mining expertise is also available locally in the communities of Moncton, Miramichi, Bathurst, Saint John (see **Figure 4.1**). International airports are located in Fredericton and Moncton, and the Saint John airport provides regional air-services.

A provincial (NB Power) electrical transmission line and right-of-way is located approximately three (3) km south of the claim.

6 EXPLORATION HISTORY

The Bald Hill area has been explored for base metal potential since the late 1800s. The following summaries highlight the exploration history of the Project area, compiled from Reports of Work (ROW) submitted to DNRED, and available through their website. The ROW numbers referred to herein (i.e., ROW 47XXXX) have been assigned by DNRED.

6.1 <u>Historical exploration and development work</u>

1957 Fundy Bay Copper Mines Ltd (ROW 470165)

In 1957, Fundy Bay Copper Mines Ltd. completed a ground electromagnetic survey to confirm a previously outlined aerial geophysical anomaly. The ground survey identified two strong conductors trending southeast to northwest approximately 500 feet apart; the conductors were thought to be due to graphitic material. The survey was carried out just north of the current Bond Road claim.

1962 J. English (ROW 470164)

In 1962, James English analysed three rock samples on the former Enterprise Exploration Ltd. property, which partially overlapped the area of the current Bond Road claim. Analytical results returned: 0.4 oz/t Au, 0.46 oz/t Ag and 4.07% Cu.

1968-1970 Texas Gulf Sulphur Co. (ROW 470172, 470173, and 470174)

In the late 1960s, Texas Gulf Sulphur completed geological mapping, soil geochemistry, geophysical surveys, trenching and drilling three holes for massive sulphide potential. Holes W-1, W-2 and W-3 were drilled within the current Project area, in the so-called South Extension zone. Hole W-1 was designed to target sub-surface continuation of base-metal mineralization exposed during a trenching programme and encountered sulphide stockwork within a rhyolite that contained: 0.33% Cu, 2.5% lead (Pb), 2.52% zinc (Zn), and 0.58% Ag. The average over 2.4 metres was 0.19% Cu, 0.21% Pb and 0.40% Zn. Hole W-1 was design Texas Gulf did not assay for gold. Boulders of massive stibnite were reported to the west of the drilling sites, within a rock pile in a farmer's field. One boulder assayed 19% Sb; however, the source of the boulders was not investigated further.

1970 E.S. Dunphy (ROW 470163)

In 1970, Edward S. Dunphy explored north of the Texas Gulf Sulphur properties, completing fairly extensive trenching and blasting. Mr. Dunphy uncovered 5-inch (13 cm) wide quartz veins trending north to north-easterly that assayed 3.22% Cu, 0.9 oz/t Ag and 0.05 oz/t Au. The work was done on the central part of the current Bond Road claim.

1983-1994 Maritime Resource Research Associated Ltd. (ROWs 472944, 473057, 473198, 473173, 473728, 473919, 473927, 474217, 474228, 474362, 474478, 474592)

In the 1980s and early 1990s, Maritime Resource Research Associated Ltd. ("Maritime") explored the area for base-metals and gold. Completed soil and till sampling and geophysical surveys. The NE part of their property overlapped the area of the current Bond Road claim. Most of the exploration work was focused west of the current Bond Road claim.

Till sampling identified anomalous metal values in -250 mesh samples (60 cm depth) in the area of and north of Texas Gulf drilling. Au values from 50-2500 ppb and Sb values from 3.4 to 2100 ppb were noted. Follow up sampling identified 11,000 ppb Au and 13,000 ppb Au.

Maritime did not drill these anomalies but did drill anomalies along strike of Texas Gulf's basemetal discovery area and encountered low-grade gold values in all three areas: values ranged up to 0.0178 oz/t Au (0.61 g/t) over 2 feet. Sample results reflected the northwest trending fault as well as the east-west trending Sawyer Brook - Taylor Brook fault. Holes 83-1, 83-2, 83-3, 84-83-3, 84-6, 84-7 and 84-8 were drilled west of the current Bond Road claim.

Maritime discovered Au in three areas of copper mineralization in bedrock along the primary zone of the Texas Gulf drilling/trenching in the Southern Extension zone; samples ranged up to 2500 ppb Au. A surface zone of high-strain and brecciation containing pyrite, chalcopyrite, gold, and silver mineralization and coincident with a linear EM anomaly was defined along the same trend that was trenched and drilled by Texas Gulf & Sulphur in 1970. Further trenching was carried out to better expose bedrock in the vicinity of the Texas Gulf trench; however, no notable results were reported that would explain the source of the geochemical mineralization in the immediate vicinity.

Antimony in bedrock, up to 2100 ppm Sb, was discovered in the area of Dunphy's 1970 trenching. Hole 85-8 was drilled in this area.

A lineament compilation study of the region recognized a NE trending conductor coincident with the Taylor Brook fault that transects the current Bond Road claim.

A compilation of previous gold-oriented exploration work completed by Maritime in 1986 and 1987 indicated a large Sb soil anomaly ranging up to 1300 ppm Sb over 970 m long and up to 360 m wide in the Carpenter Brook area.

GSC Open File 1638 (Hornbrook and Friske, 1988)

In 1987, a Geological Survey of Canada stream sediment geochemical survey of the area was completed. One stream in the area to the southeast of massive antimony boulders contained anomalous arsenic (90 ppm As) and antimony (0.8 ppm Sb). This sample was collected outside of the area of the current Bond Road claim.

1989 Brunswick Mining & Smelting Corp. Ltd. (ROW 473805)

In 1989, Brunswick Mining & Smelting Corp. Ltd. collected 50 soil samples in the Bald Hill area; results delineated six scattered Au anomalies greater than 50 ppb Au and up to 1156 ppb Au and coincident weak Au, Sb, Pb, and Zn anomalies along the southern boundary of the claim block. The report noted that thick overburden and heavy sample weights could contribute to weak overall geochemical responses. The survey area was to the north of the current Bond Road claim.

2004 R.F. Thorn (ROW 475737)

In 1997, several boulders were discovered with high grade stibnite (up to 11.3% Sb and 310 ppm Au) in the immediate vicinity of the Dunphy and Texas Gulf showings. The Dunphy showing being in the central part of the current Bond Road claim and the Texas Gulf showing being within the so-called Southern Extension zone, within the current Project area.

In 2003 several boulders and sub-crop of rhyolite were discovered near the Dunphy trench containing approximately 7% tetrahedrite and arsenopyrite in a quartz stockwork. Massive stibnite boulders containing 7.6% Sb were found in the Dunphy trench in late 2003.

Soil sampling (n=115) was completed over a possible northwest-southeast trending fault zone. In 21 of the soil samples taken, three elements (Au, Ag and Sb) were noted in anomalous

concentrations. Soil samples collected (44) over the original J. English trench (ROW 470164) and Texas Gulf drill sites in the Southern Extension area indicated a possible link between antimony and the northwest trending fault, with scattered anomalous gold and arsenic values noted in several locations.

2007 Rockport Mining Corp. (ROW 476577)

In the summer of 2007 Rockport Mining Corp. ("Rockport") acquired the Bald Hill property, which includes the current Project area, and began various exploration techniques to further investigate anomalies outlined by previous exploration work. Work comprised prospecting and geological mapping, which uncovered a showing of massive stibnite. Follow-up exploration comprised soil sampling/geochemistry, a ground VLF-EM survey, and a 4-hole diamond-drilling programme, within the current Project area.

Following the discovery of the massive stibnite mineralization, a systematic soil-sampling and analysis programme was initiated to further define the mineralized trend along strike to the south- east and north-west. A total of 207 B-horizon soil samples were collected for analysis.

The soil assay results revealed an unexpected gold anomaly striking southwest-northeast, perpendicular to a strong antimony anomaly.

In the winter of 2008, a ground VLF-EM survey outlined a northwest trending anomaly coincident with the antimony-in-soil anomaly.

Additional detailed VLF-EM readings were taken over the two stibnite surface showings to aid in drill target selection; however, no conductors were detected, indicating that the stibnite showings were not associated with conductive mineralization in the area. A volt-meter test showed that the stibnite itself was not a conductor.

A four-hole, 623 metre, diamond-drilling campaign was carried out in early 2008. A summary of the programme is shown in **Table 6-1**.

Hole #	UTM NAD83, Zone 19		Length Azimuth		Dim	# of Commiss
	Easting	Northing	(m)	(True)	Dip	# of Samples
BH-08-01	732491	5061618	170	180°	45°	19
BH-08-02	732624	5061119	143	050°	45°	17
BH-08-03	732769	5061457	152	240°	45°	83
BH-08-04	732808	5061435	158	210°	45°	39
Totals			623			158

Table 6-1: Summary of 2008 Diamond-Drilling Programme (ROW 476577)

Holes BH-08-01, BH-08-03 and BH-08-04 all intersected rhyolite-dome flank sequences, with various intervals of volcanogenic sediments, whereas hole BH-08-02 was in rhyolite for the majority of the hole and therefore is believed to be within the rhyolite dome sequence. It is within the boundary of the volcanic sediments and rhyolite that mineralization has been found.

Hole BH-08-01 had little to no mineralization and hole BH-08-02 intersected dendritic veining of a black mineral thought to be fine-grained sulphides - mainly pyrite.

Hole BH-08-03 designed to test the subsurface continuation of the massive stibnite showing on surface. A large vein of stibnite, bounded by sediments up-hole and rhyolite down-hole, was intersected. The intersected width was 4.51 metres and graded 11.70% Sb.

Hole BH-08-04 was drilled to test the subsurface continuation of mineralization approximately 75 metres southeast of BH-08-03. Antimony mineralization hosted within a rhyolite breccia was encountered. The intersected mineralized zone was 3.0 metres (not true width) and graded 2.21% Sb overall. A summary of the best results in shown in **Table 6-2**.

	Table 6-2: Best	Results from	2008	Drilling Pr	rogramme (ROW	476577)
--	-----------------	--------------	------	--------------------	------------	-----	---------

Hole ID	From (m)	To (m)	Interval (m)	Sb (%)		
BH-08-01	no significant assays					
BH-08-02	no significant assays					
BH-08-03	85.81	90.32	4.51	11.70		
BH-08-04	73.00	76.00	3.00	2.21		

The exploration work completed in 2007-2008 by Rockport identified two separate mineralized trends of antimony (\pm gold) mineralization. Assay results ranged up to 48% Sb and 3.01 g/t Au. Soil geochemical results have suggested a large mineralized system with anomalous Sb, Au and Mo being evident. The drilling delineated one of the two mineralized trends over a strike length of 200 m and to a maximum depth of 204 m.

2008 Rockport Mining Corp. (ROW 476773)

Antimony Resources established a cut grid (28.5 line-km) over the area of a massive stibnite showing that had been discovered in 2007. A total of 749 B-horizon soil samples were collected along the cut lines with the analytical results showing a large, 1.5 km long, northwest trending antimony (Sb) and arsenic (As) anomaly, along with several isolated gold (Au) anomalies. Values of up to 3560 ppm Sb in soil were obtained. East- and northeast-trending gold-in-soil anomalies, up to 215 ppb Au, were noted in the southern part of the grid.

A total of 35 lithogeochemical samples were collected over the property. The best assays obtained were 1.51 g/t Au and 756 ppm Sb in sample W509-9. A ground Induced Polarization (IP) survey was completed on a total of 19.5 km of grid lines over the area of known mineralization.

A second campaign of diamond-drilling, summarized in **Table 6-3**, commenced at the end of April 2008 and comprised a 12-hole, 2,831 m programme in the area of previously drilled holes BH-08-03 and BH-08-04 (see ROW 476577).

Table 6-3: Summary of 2008 Diamond-Drilling Programme (ROW 476773)

	UTM NAD8	3, Zone 19	Length	Azimuth		#of
Hole ID	Easting	Northing	(m)	(True)	Dip	Samples
BH-08-05	732691	5061555	275.5	240°	45°	86
BH-08-06	732635	5061609	290.0	240°	45°	53
BH-08-07	732840	5061380	50.3	210°	45°	7
BH-08-08	732837	5061392	149.0	210°	45°	26
BH-08-09	732402	5061584	202.0	070°	45°	14
BH-08-10	732807	5061471	206.0	240°	45°	38
BH-08-11	732828	5061481	224.0	210°	45°	47
BH-08-12	732850	5061504	335.0	240°	45°	16
BH-08-13	732731	5061573	437.0	240°	50°	54
BH-08-14	732899	5061475	338.0	210°	50°	59
BH-08-15	732773	5061548	128.0	240°	45°	10
BH-08-16	732701	5061625	196.5	240°	45°	26
Totals			2831.32			436

Noteworthy results were as follows:

- Hole BH-08-10 encountered two (2) significant intersects representing the two known zones. The first was 3.3 metres (not true width) grading 6.44% Sb; the second was 1.0 metre (not true width) grading 4.41% Sb;
- Hole BH-08-11 intersected 14.49% Sb over a core-interval of 2.03 metres;
- Hole BH-08-12 encountered 1.81 metres grading 1.77% Sb;
- Hole BH-08-13 intersected both known mineralized zones, as well as a new zone that graded 9.40 % Sb over 0.48 metres and 3.4 % Sb over 0.81 metres;
- Hole BH-08-15 intersected 6.40% Sb over 0.36 metres which was located 50 metres south of the new zone encountered in BH-08-13;
- Holes BH-08-14 and BH-08-16 did not intersect significant mineralization;

These holes were successful in expanding the deposit to 450 m along strike (130°) and to a vertical depth of approximately 300 m. A summary of best results from the 2008 drilling programme is shown in **Table 6-4**.

Table 6-4: Best Results from 2008 Drilling (ROW 476773)

Hole ID	From (m)	Sb (%)		
	204.35	207.90	3.55	2.97
BH-08-05	215.00	216.00	1.00	2.91
	219.50	224.50	5.00	1.72
including	219.50	221.00	1.50	3.49
and	223.00	224.50	1.50	2.20
BH-08-06	264.80	265.80	1.00	0.73
	37.00	38.00	1.00	2.52
BH-08-07	47.55	48.00	0.45	1.68
BH-08-08	46.08	47.00	0.92	0.57
BH-08-09	19.85	20.25	0.40	5.66
	124.70	128.00	3.30	6.74
BH-08-10	139.37	140.37	1.00	4.41
	132.00	138.00	6.00	5.53
BH-08-11	132.00	134.03	2.03	14.49
	136.30	138.00	1.70	2.10
BH-08-12	290.32	292.13	1.81	1.77
	56.52	57.00	0.48	9.40
	68.51	69.32	0.81	3.40
BH-08-13	363.06	363.36	0.30	17.40
	377.09	378.64	1.55	3.61
	399.76	400.30	0.54	2.87
	416.36	416.75	0.39	10.30
BH-08-14		no signific	ant assays	
BH-08-15	31.17	31.53	0.36	6.40
BH-08-16		no signific	ant assays	

2008 Rockport Mining Corp. (ROW 476777)

This report describes the logistics, data acquisition, processing and presentation of results of a DIGHEM airborne geophysical survey carried out for Rockport over the central part of their Bald Hill property and surrounding properties. The survey was conducted from May 28 to June 7, 2008. Survey coverage consisted of approximately 1,418 line-km, including 199 line-km of detailed infill, 53 km of cross lines (Bald Hill area), and 110 line-km of tie lines. Flight lines were flown in an azimuthal direction of 341° with a line separation of 100 m for the main block and 50 m for the infill block. Tie lines were flown orthogonally to the traverse lines with a line separation of 1,000 m. A small block over the Bald Hill area, was also flown with 100 m cross lines, using a line direction of 071°.

The purpose of the survey was to detect zones of conductive mineralization, to determine the geophysical signatures over known auriferous occurrences, and to provide information that could be used to map the geology and structure of the survey area. This was accomplished by using a DIGHEM V multi-coil, multi-frequency electromagnetic system, supplemented by a high-sensitivity cesium magnetometer. The information from these sensors was processed to produce maps that display the magnetic and conductive properties of the survey area. A GPS electronic navigation system ensured accurate positioning of the geophysical data with respect to the base maps.

The survey data was processed and compiled in the Fugro Airborne Surveys Toronto office. Map products and digital data were provided in accordance with the scales and formats specified in a Survey Agreement.

Interpreted results indicated that there are several conductors in the survey block that are typical of graphitic or massive-sulphide responses. Most anomalies in the area are moderately weak and poorly defined. Approximately 1,100 anomalies were attributed to conductive overburden or deep weathering, although a few of these were determined to be associated with magnetite-rich rock units. Others exhibit linear trends or coincide with magnetic gradients that may reflect contacts, faults or shears. Such structural breaks are considered to be of particular interest as they may have influenced mineral deposition within the survey area. The survey was also successful in locating many moderately weak or broad conductors that may also warrant additional work. More than 350 anomalous responses were attributed to probable or possible bedrock sources.

2010 Conestoga-Rovers & Associates (in ROW 477222)

In April 2010, Rockport retained Conestoga-Rovers & Associates ("CRA") to complete an NI 43-101 Technical Report (MacDonald, 2010) on the Bald Hill antimony deposit to support an application for listing on a national stock exchange. The CRA technical report is included as an appendix to ROW 477222.

Within the CRA technical report it was concluded that Rockport drilling had outlined a potential resource range (**Table 6-5**).

Zone	Metric Tonnes	Grade (%Sb)		
Main Zone	700,000 to 900,000	4.33% to 5.40%		
Parallel Zone	25,000 to 100,000	2.13% to 3.19%		
Total	725,000 to 1,000,000	4.11% to 5.32%		

Table 6-5: Potential Tonnages from Bald Hill Deposit*

Note: * The potential quantity and grade is conceptual in nature as there has been insufficient exploration to define a mineral resource and that it is uncertain if further exploration will result in the target being delineated as a mineral resource

2010 Rockport Mining Corp. (ROW 477222)

In 2010, Rockport engaged Conestoga-Rovers & Associates ("CRA") to complete

A summary of Rockport's 2010 trenching campaign is also summarized in this report. In August 2010, seven trenches (totalling 171 m) and one pit were excavated and 34 litho-samples collected to follow up an Sb soil anomaly and high-grade boulders discovered along strike. Quartz veining and altered bedrock were observed but no sulphides were noted. A section of moderately graphitic sedimentary rocks in trench BH-TR-11-08 were interpreted to be the source of a chargeability anomaly. Best antimony concentrations ranged from 1.9% to 13.2%, whereas best arsenic concentrations ranged from 3,520 ppm to 35,400 ppm. Channel sampling of an antimony vein and adjacent host rock in the main trench returned 3.53% Sb over 8.18 m, which included 13.2% Sb over 0.93 m.

In June 2011, Rockport drilled 4 holes (BH-11-17 to BH-11-20) totalling 314 m to test separate soil and geophysical anomalies along strike to the south of the Bald Hill antimony deposit. Hole BH-11-17 was drilled 25 m southwest of Trench BH-Tr-11-01 and intersected inter-bedded ash tuffs and rhyolite with some zones of quartz veining containing disseminated Sb. BH-11-18 tested a high chargeability and metal-factor anomaly along with elevated Sb in soil. This hole was dominantly shale with graphitic sections explaining the source of the IP, only trace stibnite was observed in the hole. BH-11-19 was designed to follow up a high Sb/As in soil anomaly and weak chargeability anomaly. The hole encountered mainly interbedded siltstone and ash tuffs with trace stibnite was observed in quartz veinlets at 17.15 m. BH-11-20 tested a weak chargeability and metal-factor anomaly and Au-Sb-As anomaly. This hole intersected interbedded rhyolite and ash tuffs with disseminated pyrite, arsenopyrite and trace stibnite within zones of quartz veining. BH-11-17 was drilled under the trench where the antimony vein was located and intersected over 30m of disseminated stibnite with the best intersection grading 1.37% Sb, from 32.0 to 33.0 m down hole. No other significant mineralized intervals were noted.

2011 Rockport Mining Corp. (ROW 477458)

This report includes results from a metallurgical report documenting preliminary metallurgical testing in 2010 for Tri-Star Resources ("Tri-Star") on samples of the Bald Hill antimony "ore" (see Item 13 in the Report for a comprehensive summary of results).

Tri-Star requested documentation of the textural features of the "ore" minerals, as well as feedback regarding liberation characteristics and amenability of the antimony "ore" to gravity concentration and/or flotation. Chemical analysis showed the samples to be enriched in antimony. The bulk mineralogy as determined by XRD showed that stibnite was the only antimony-bearing phase detected and arsenopyrite was the only arsenic-bearing phase. Optical examinations of the samples showed that a significant amount of the antimony occurs as coarse-grained (> 200 micron) stibnite particles. The stibnite also occurs as fine-grained (< 30 micron) veinlets that are filling fractures and/or grain boundaries within the quartz matrix. Trace amounts of pyrite, pyrrhotite, and copper sulphides (chalcopyrite, bornite, chalcocite) were also observed in most samples. The gravity separation tests produced a concentrate that contained ~37 weight % antimony; however, the majority of the antimony reported to the tails and a significant amount (14 %) reported to the -25 micron slime fraction.

Optical examinations of the gravity separation products showed that the majority of the antimony that reported to the tails was coarse-grained liberated stibnite particles. The loss of this material to the tails indicates that the gravity separation was too aggressive.

Tri-Star also contracted Wardell Armstrong International to complete some preliminary metallurgical test work. The Wardell test results achieved a concentrate grade of +60% and recoveries of +90%.

2014 Rockport Mining Corp. (ROW 477665 and ROW 477929)

From June 1, 2013 – April 1, 2014, Rockport carried out soil geochemical sampling, VLF-EM geophysical surveying and prospecting. On the South Extension area, soil geochemical surveys outlined wide and extremely anomalous Sb-in-soil geochemical anomalies, which in conjunction with the VLF – EM survey and historical prospecting results, supported a 1.5 km extension to the Bald Hill deposit trend. In the Bond Road grid area, soil geochemical and VLF – EM results in conjunction with previous Rockport prospecting results, outlined a possible new Sb mineralized trend.

A small bulk sample of antimony bearing mineralization (approximately 1.5 tonnes) was collected from an existing trench at Bald Hill and submitted to RPC Science and Engineering Laboratories in Fredericton, NB for metallurgical test work in December 2013 (see Item 13 in the Report for a comprehensive summary of results).

Appendix V of this ROW comprises a CRA report on the preliminary collection and analyses of stream-sediment and stream-water samples to establish background concentrations of various metallic elements for comparison with applicable Canadian Council of Ministers of the Environment, Environmental Quality Guidelines for surface water.

Surface-Water Studies (ROW 477929)

In June 2011, CRA collected surface water and stream sediment samples at five locations along Jones Brook (which runs generally parallel with the main Bald Hill mineralized zone) and its tributaries for baseline environmental purposes. Samples included three locations upstream of the main mineral exploration site, one within the principal exploration area, and one downstream from it. Subsequent rounds of surface-water sampling were completed on July 21, 2011, October 24, 2011, June 25, 2012, August 27, 2012, October 30, 2012, June 25, 2013, October 30, 2013 and May29, 2014.

Samples were submitted to Maxxam Analytics laboratory of Bedford, Nova Scotia for general chemistry, metals-in-water and metals-in-sediment content. Maxxam is approved to ISO Standard 17025 by the Standards Council of Canada. Metal concentrations in the five surface water samples collected in June 2012 were below CCME Freshwater Aquatic Life guidelines excluding aluminum, cadmium, copper and iron which is consistent with previous sampling events. Aluminum and iron are ubiquitous in the natural environment and concentrations of these two elements in surface water commonly exceed CCME guidelines throughout the province. Cadmium concentrations slightly exceeded the CCME FAL in four of the five samples collected, again consistent in location and approximate concentration with previous results. Copper exceeded at location S-1 which is also consistent with previous results. Metal concentrations in the four surface water samples collected in August 2012 were below CCME Freshwater Aquatic Life guidelines. Full results of CRA's water test-work are also appended to ROW 477458.

Species Studies

Appendix VI of this ROW comprises a CRA report regarding species of concern and environmentally significant areas that may exist within five kilometres of the Bald Hill project area using data from Atlantic Canada Conservation Data Centre (ACCDC). Included in the ACCDC

database are listings of provincially environmentally significant areas (ESAs), important bird areas (IBAs), provincial parks, Ducks Unlimited sites, etc. The data obtained from ACCDC was used to determine that there were no listed species at risk in the vicinity of the Bald Hill project area and that land development activities within the general boundaries of the Bald Hill project area were not expected to significantly impact any nearby IBAs.

2014 MRB & Associates Technical Report (Banks and Langton, 2014)

In 2014, Tri-Star retained MRB & Associates of Val-d'Or, Quebec ("MRB") to revise and update the 2010 CRA NI 43-101 Technical Report of MacDonald (2010). The updated NI 43-101 report substantiated the occurrence of a potential resource of economically interesting antimony mineralization and confirmed that the Bald Hill deposit comprises a valid exploration target that remained largely untested with respect to its full dimensions and its regional structural relationships.

2015 Rockport Mining Corp. (ROW 477853)

An exploration trenching programme was carried out in May and June of 2014 on the Bald Hill South Extension grid, approximately 1.0 km southeast of the main Bald Hill occurrence. Eight (8) trenches, totalling 715.5 metres were excavated (**Figure 6.1**), with 37 lithological samples collected. This programme, designed to evaluate the source of strong Sb-in-soil anomalies identified in late 2013 (see **ROW 477665**), uncovered significant antimony (stibnite) mineralization in a high-strain, hydrothermally altered, breccia zone. Channel samples of the mineralized zone returned assays of 9.04% Sb over a 2.60 metre interval that included 12.32% Sb over 1.70 metres (**Table 6-6**).

Table 6-6: Summary of Assay Results From 2014 Trenching Programme

Trench Location: 733272 East / 5060631 North (UTM NAD83, Zone 19)							
Sample ID	Sample width (m)	Sb %					
9568	0.8	2.78					
9569	0.1	3.41	9.04% Sb over 2.60 m (includes 12.32%				
9570	0.2	11.7	Sb over 1.70 m)				
9571	1.5	12.4					
9572	1	0.09					

The trenching also uncovered numerous, angular, mineralized boulders of massive to submassive stibnite that graded from 8.25% to 48.00% Sb. Of the 11 mineralized boulders sampled, 9 returned assays greater than 15.00% Sb (**Table 6-7**). The antimony mineralization within the bedrock zone and localized boulders occurs as disseminated, fracture/vein filling and sub-massive to massive stibnite.

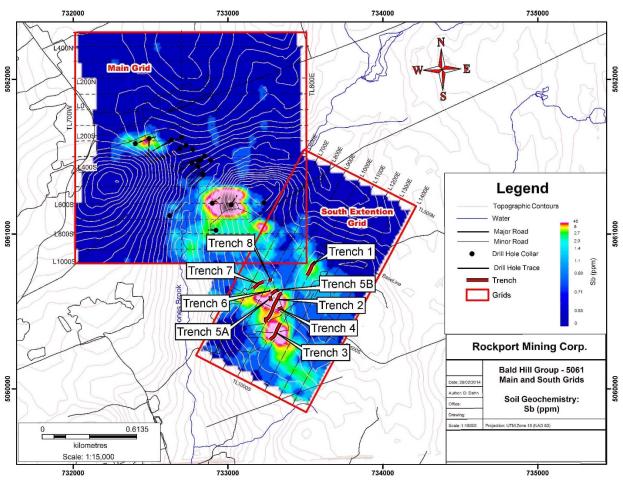


Figure 6.1: Sb-in-soils base map (from ROW 477665) of main and south extension grid areas showing location of 2014 trenches

Table 6-7: Summary of 2014, Boulder-In-Till Assay Results

Sample ID	UTM NAD	83, Zone 19	Sample width (m)	· \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	Easting	Northing	or grab sample		
9553	733318	5060568	0.65	33.3	
9554	733318	5060568	1.00	13.4	
9556	733318	5060568	0.90	8.2	
9557	733320	5060575	0.45	16.8	
9558	733317	5060573	0.40	34.9	
9559	733315	5060574	0.90	48.0	
9560	733318	5060570	grab	31.4	
9564	733277	5060612	grab	14.0	
9565	733266	5060624	grab	24.6	
9566	733266	5060624	grab	33.8	
9567	733266	5060624	grab	18.8	

As a follow-up to the trenching programme, diamond-drilling totalling 1,366.5 m in 14 holes was completed between December 8, 2014 and January 31, 2015. The first phase of drilling was carried out on the South Extension grid and consisted of 9 holes (BHS-14-01 to BHS-14-09) totalling 826 m. The second phase of drilling was completed on the main deposit and consisted of 4 new holes (BH-15-21 to BH-15-24) plus the deepening of existing hole BH-11-19 (BH-11-19EXT), for an aggregate of 540.5 m (**Figure 6.2**). A summary of the 2014-2015 drill programme is shown in **Table 6-8**.

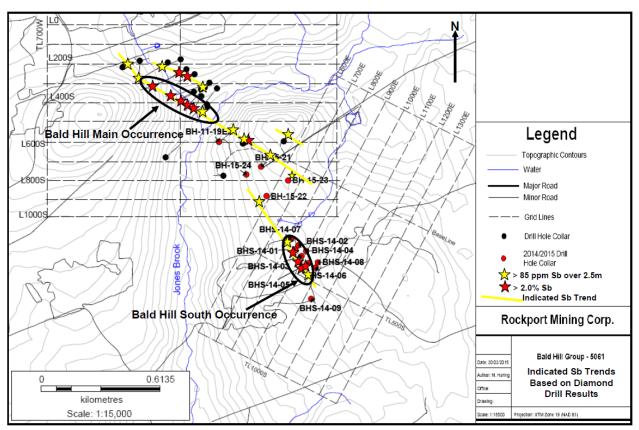


Figure 6.2: Base map showing location of 2014-2015 drill holes

Table 6-8: Summary of 2014-2015 Phase 1 and Phase 2 Drill Holes

	UTM NA	D 83, Zone 19					
Hole #	Easting	Northing	Elevation	Azimuth (True)	Dip	Length (m)	# of Samples
Phase 1: Bald Hill South Extension						1	
BHS-14-01	733292	5060645	114	225	-45	63	10
BHS-14-02	733308	5060665	119	225	-45	86	5
BHS-14-03	733325	5060610	119	225	-47	83	11
BHS-14-04	733348	5060635	114	225	-55	98	8
BHS-14-05	733361	5060573	130	225	-65	62	16
BHS-14-06	733396	5060550	124	225	-52	101	8
BHS-14-07	733271	5060697	117	225	-55	65	5
BHS-14-08	733408	5060577	123	240	-62	110	6
BHS-14-09	733374	5060389	122	220	-45	158	12
Phase 2: Bald Hill Main Grid							
BH-15-21	733116	5061071	116	40	-45	126	32
BH-15-22	733144	5060920	117	225	-45	134	31
BH-15-23	733255	5061000	121	40	-45	86	19
BH-15-24	733040	5061030	106	225	-45	89	10
BH-11-19EXT	732899	5061199	87	52	-45	185	23

The 2014-15 diamond-drilling programme successfully defined a new, mineralized NW-SE trending structure/breccia over a drilled strike length of approximately 450 m - the "South Trend". In addition, the programme extended the strike length of the "Bald Hill Main Trend" by approximately 300 m to the southeast.

Phase 1 Drilling

Significant drill results, of up to 4.78% Sb over 2.95 metres, were obtained in three holes (BHS-15 -1, BHS15-3 and BHS15-5) over a strike length of ~100 m, at shallow depth along the so-called South Trend (**Table 6-9**).

Hole No.	Easting	Northing	Azimuth	Dip	From (m)		From (m) T	From (m) To (n	To (m)	Width (m)	Sb %
BHS-14-1	733292	5060645	225	-45							
						23.60	24.40	0.80	2.84%		
					including	24.15	24.40	0.25	8.30%		
BHS-14-3	733325	5060610	225	-47							
						29.40	30.20	0.80	3.43%		
					including	29.40	29.62	0.22	6.68%		
BHS-14-5	733361	5060573	225	-65	Upper	29.95	30.30	0.35	6.53%		
					Main	40.77	43.72	2.95	4.78%		
					including	40.77	43.10	2.33	5.93%		
					or	41.83	43.10	1.27	8.53%		

Table 6-9: Summary of Best Results from Phase 1 Drilling

The characteristics of the mineralized zone observed in drill core are similar to that seen in the foregoing trenching programme. The antimony mineralization is related to a hydrothermally altered breccia zone along and crossing (at low angles) the lower (western) contact of a mafic intrusive dyke (possible lamprophyre). Mineralization in drill core is observed in both Carpenter Brook sedimentary rocks and dyke intrusions.

Phase 2 Drilling

Hole BH 15-21 intersected the antimony mineralized breccias from 88 to 89 m down-hole. Stibnite was observed primarily as fracture fillings. A wide, 13.6 m interval (not true width) returned anomalous Sb and As values averaging 82 ppm Sb and 1,524 As. The mineralized breccia assayed 167 ppm Sb and 19,600 ppm As. Hole BH 15-22 intersected a mafic intrusive dyke (possible lamprophyre) at 72 m down-hole adjacent to a quartz/rhyolite breccia zone from 74.85 to 75.23 m. Trace amounts of stibnite were noted. Analytical values of 331 ppm Sb over 3.1 m were obtained. Hole BH 11-19EXT was extended to 185 m depth. The highest concentration of Sb occurs between the 133.2 and 140.0 m down-hole, which assayed 117 ppm Sb and 404 ppm As. BH 15-23 encountered a similar sequence as hole BH 15-21; however, no significant mineralization was encountered. BH 15-24 failed to locate the Bald Hill South Extension dyke or breccia system encountered in other holes. All assays were less than 15 ppm Sb.

2021 Globex Mining Enterprises Inc. (ROW 479056)

Globex acquired the Bald Hill claims (Claim 4633) in early 2021 from Rockport and immediately began planning a drill programme on the property. According to the report, five holes were drilled on the North Zone in December of 2021. Two deeper holes were drilled, one in the north and one in the south, the latter testing the North Zone further south than previous drilling.

The first hole (BH-21-25) encountered mixed felsic and intermediate volcanic tuffs, with the latter predominating, and toward the bottom of the hole a sedimentary assemblage of reworked tuffs predominates. The hole ended in a good marker horizon of purple siltstone. Mineralized sections occurred in quartz breccias within buff coloured ash tuffs and contained a mixture of Mn and Sb, as well as spotty pyrite and possibly very fine arsenopyrite, from 312 to 316 metres down-hole. A weaker mineralized section occurs in similar host from 107 to 116 metres down-hole. No logging results from the other drill holes are available as at the effective date of the Report, nor are any analytical results presented for any of the drilling.

2023 Globex Mining Enterprises Inc. (ROW 479624)

In June of 2022 Novatem was contracted to fly a high-definition airborne magnetic survey over claim 4633. Results of the survey showed a felsic intrusion that dominates the northeastern part of the claim to be strongly magnetic, causing masking of more subtle features nearby, including a significant part of the Bald Hill mineralized zone. Despite this, the survey delineated a subtle linear magnetic trend that coincides with the mineralization. A strong, small isolated anomaly occurs at, or near, the northern end of this weak trend. To the southeast, the weak trend is seen to continue to the claim boundary. In the southern half of the survey, there are a couple of weak to moderate NW-SE trending linear anomalies, including one just south of the Bald Hill mineralized trend, at a slightly different azimuth, causing an intersection with the main trend further south. In the Southern Extension zone, a known felsic intrusion has an associated strong, irregular magnetic response, with a single, short NW magnetic trend and at least two EW. At the far SW boundary there is a strong ENE trend that coincides with some mafic volcanic rocks (**Figure 6.3**).

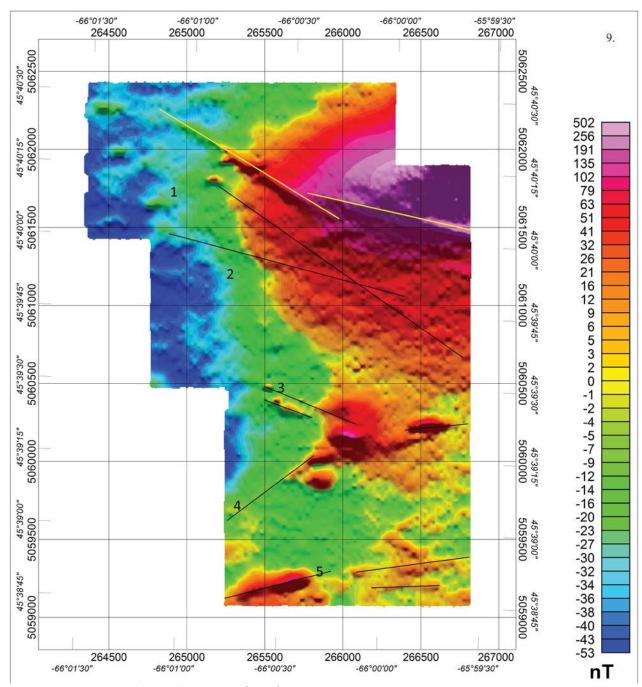


Figure 6.3: Reduced to pole (RTP) map of the Novatem magnetometer survey (Bond Road claim)

7 GEOLOGICAL SETTING AND MINERALIZATION

7.1 Regional Geology

New Brunswick is located at the northeastern end of the Appalachian Orogen, which records a complex history that culminated in continental collision events. Four main tectonostratigraphic blocks underlie New Brunswick: the Grenville, Humber, Gander/Dunnage, and Avalon Zones (**Figure 7.1**).

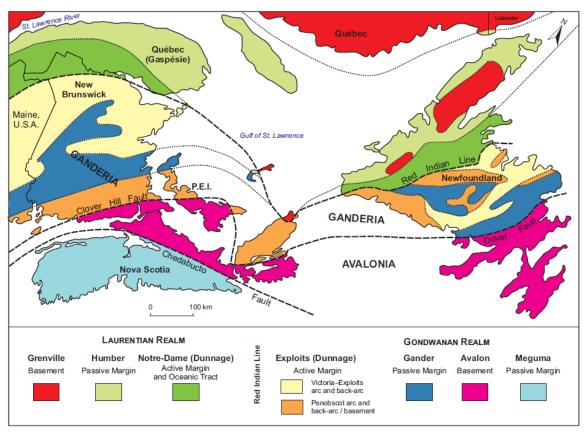


Figure 7.1: Regional geology map of northern Appalachian Orogen

The Grenville and Humber zones formed the eastern North American craton and continental margin. The Gander/Dunnage Zone represents a mobile belt of Cambro-Ordovician tracts of ocean floor, island arcs and back-arc basins, with vestiges of continental margin. The Avalon Zone comprises Precambrian and Cambrian arc- and extension-related volcanic and sedimentary rocks overlain by a thick sequence of shallow marine sedimentary and sub-aerial volcanic rocks. These terranes were deformed and sequentially accreted to the continental margin during the closure of lapetus in the Ordovician and Silurian (Thorne and McLeod, 2003).

The boundary between the Gander/Dunnage and Avalon Zones in New Brunswick is represented by a cryptic suture and is concealed by Middle Paleozoic and younger rocks. This boundary zone has undergone multiple episodes of reactivation and focused fluid flow and has established potential environments for the formation of economic mineral deposits (Thorne and McLeod, 2003).

Southern New Brunswick is divided into five lithotectonic belts based on contrasts in stratigraphy and magmatic history and include: the Neoproterozoic and early Paleozoic St. Croix, Annidale, New River, Brookville and Caledonia terranes (**Figure 7.2**). These terranes are overlain by early to Late Silurian rocks of the Mascarene Basin and Fredericton Trough, and by Carboniferous deposits of the Maritimes Basin.

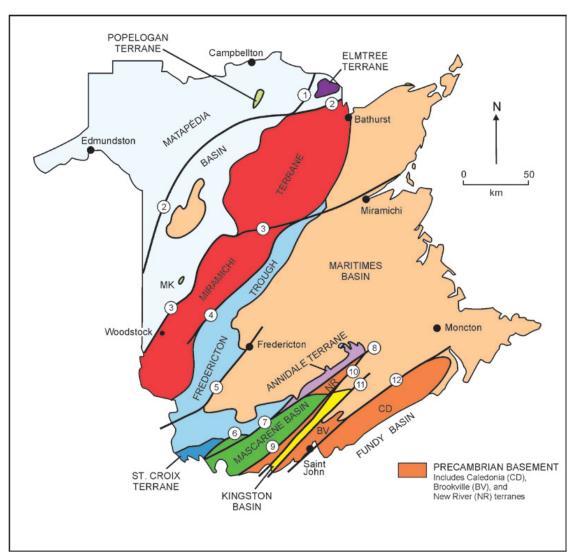


Figure 7.2: Lithotectonic terranes and cover sequences of New Brunswick. Faults: (1) Jacquet River; (2) Rocky Brook-Millstream; (3) Catamaran-Woodstock; (4) Bamford Brook-Hainesville; (5) Fredericton; (6) Sawyer Brook; (7) Turtle Head-Pendar Brook; (8) Falls Brook-Taylor Brook; (9) Wheaton Brook-Back Bay; (10) Belleisle-Beaver Harbour; (11) Kennebecasis-Pocologan; and (12) Caledonia-Clover Hill. Abbreviations: MK = Markey Brook inlier; NR = New River terrane; BV = Brookville terrane; CD = Caledonia terrane.

The Project area is underlain mainly by the Annidale Terranes, which is situated along the boundary between the Avalon and Gander-Dunnage zones and consists of a sequence of

deformed Ordovician volcanic and sedimentary units, intruded by felsic to mafic igneous rocks (McLeod et al., 1992).

7.2 Local Geology

The Bald Hill Work Area is located in Annidale Group north of the Mascarene Cover Sequence, and north of the northeast-trending Taylors Brook Fault Zone; considered to be the contact between the Annidale Group and the Mascarene Cover. The northern boundary of the Annidale Group is proximal to another northeast trending fault, the Albright Brook Fault (McLeod et al., 1992 and Johnson et al., 2009) (Figure 7.3 and Figure 7.4).

The Late Cambrian-Early Ordovician Annidale Group, is a sequence of interbedded mafic to felsic volcanic rocks with clastic sedimentary and volcanogenic sedimentary assemblages. Zircon U-Pb values from two samples in the Annidale Group have yielded ages of 493 \pm 2 Ma and 497 \pm 10 Ma. Carboniferous cover sequences unconformably overlie the Annidale Group to the north and northeast. The metamorphic grade of the Annidale Group is restricted to the chlorite-grade or locally biotite-grade facies.

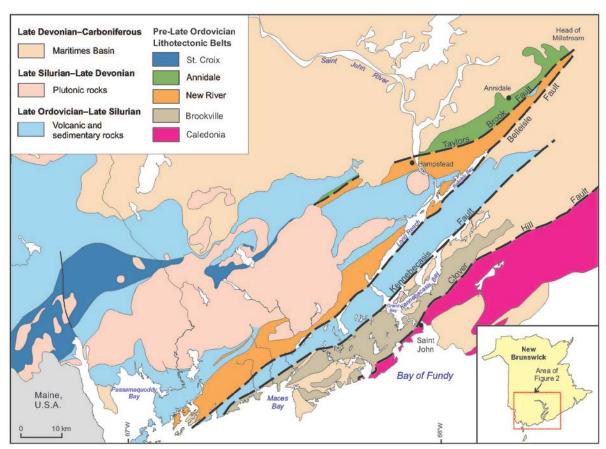


Figure 7.3: Lithotectonic Subdivisions of the south-western New Brunswick (from Johnson et al., 2009).

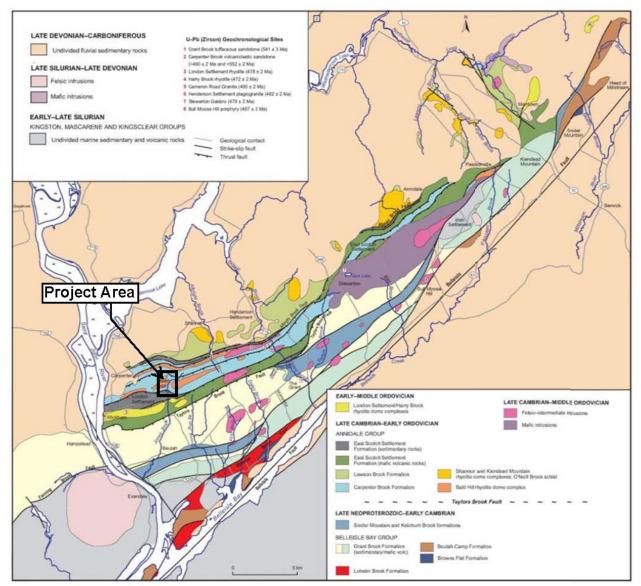


Figure 7.4: Local geology map of the Bald Hill Property area.

7.3 Stratigraphy

Annidale Group

The Annidale Group comprises fine-grained, dark grey to dark green and black shale and siltstone, with minor basalt.

The Project area is underlain mainly by Carpenter Brook Formation and associated Bald Hill rhyolite dome complex units. The Carpenter Brook Formation is a new name proposed for a largely sedimentary sequence with felsic volcanic intrusions located south of the Albright Brook Fault, formerly classified as part of the Queen Brook Formation. Field relationships and new radiometric data suggest that the Carpenter Brook Formation and associated rhyolite domes of the Bald Hill suite are the oldest units in the Annidale Group.

Carpenter Brook Formation

The sedimentary rocks of the Carpenter Brook Formation include a proximal sandstone-siltstone facies and a distal, deeper water siltstone-shale facies. The proximal facies includes fine- to medium-grained, light to dark greyish green quartzose sandstone, interbedded with more minor dark purple volcaniclastic sandstone and laminated purple and green siltstone and slate. The proximal facies grades laterally and upward (southward) into the distal facies of light to medium grey silty sandstone and dark grey shale.

The proximal facies is intercalated with felsic volcanic rocks that are part of the Bald Hill Suite of rhyolite domes. Mafic volcanic rocks are included within the Carpenter Brook Formation, although more rarely; although a thin but laterally continuous basaltic tuff horizon is present in the Bald Hill area.

Bald Hill Suite

The Bald Hill Suite is a suite of peralkaline rhyolite dome complexes that are spatially and temporally associated with the Carpenter Brook Formation and are parallel to the regional northeast-trending fabric. Grey to tan felsic ash tuff, red to grey felsic pyroclastic breccia and rhyolite flows are included in the suite. Rhyolite flows can be spherulitic, containing spherulites up to 4 cm in diameter (and also observed by CRA during the drill core inspection). The felsic volcanic and sedimentary units are also locally intruded by a reddish to greyish pink microgranite; microgranite fragments occur within the felsic pyroclastic breccia, indicating a close temporal relationship between the intrusive and extrusive phases.

The Bald Hill suite is commonly enriched in sulphides including pyrite, arsenopyrite, and locally massive stibnite and gold. Felsic intrusions are located in the Project area and are generally small, commonly granitic in composition and are aphanitic to medium-grained.

7.4 Structural Geology

All rocks within the Annidale belt have undergone multiple episodes of faulting and deformation. The predominant large-scale structural features are the steeply-dipping to vertical, northeast trending faults and kilometre-scale shear zones that parallel the regional northeast-trending fabric such as the Taylor Brook Fault, which is interpreted as an Early Ordovician, low-angle thrust fault that was steepened during later transpressive movement. Younger northeast- and northwest-trending, steeply-dipping faults, commonly defined by shear zones, are associated with economic mineral occurrences in quartz-carbonate vein systems and alteration zones.

The Bald Hill Project is located in the area of the Taylor Brook Fault. Many of the units in this area are affected by a single, well-developed, east-northeast to northeast striking cleavage that dips moderately to steeply towards the southeast. This cleavage is prominent in finer grained, clastic and tuffaceous units, and was formed mostly under lower greenschist metamorphism, with chlorite and/or muscovite-sericite defining the fabric.

The regional cleavage is generally developed sub-parallel to bedding, but folds directly related to this fabric are rarely observed. At a few localities, in the fine-grained sequences within the Albright Brook-Taylors Brook thrust panel, the fabric is axial-planar to cm-scale, tight to isoclinal, shallowly plunging, first generation folds (F1). Bedding typically dips steeply to the southeast or northwest, strikes sub-parallel to the prominent northeast-trending cleavage, and youngs to the southeast, generally dipping at a steeper angle that the fabric.

The regional fabrics are commonly refolded in most sedimentary and tuffaceous units within the high-strain zones associated with major faults. These fabrics are collectively interpreted to be related to the north-directed tectonic transport along intra-unit and unit-bounding thrust zones in the Annidale group. Fabric development is likely a function of this northward-directing thrusting within a progressive thrust front; steeper, high-angle reverse faulting would have preceded an episode of shallower dipping thrusting.

The age and tectonic history of the Annidale Group is comparable with that of the Penobscot arc/back-arc complex of the Exploits Subzone in Newfoundland. The timing of thrusting and juxtaposition of the Annidale Group and New River basement coincides with the timing of the Penobscottian obduction onto the Gander margin in Newfoundland.

7.5 Mineralization

The antimony-bearing stibnite mineralization has been outlined in float, outcrop and drill-core. The mineralization encountered consists of massive antimony-bearing stibnite, veins, and stibnite-bearing breccia. The breccia contains fragments of the enclosing metasedimentary and metavolcanic rocks.

The main mineralized zones, which comprise at least three antimony-bearing breccias and hydrothermal veins systems, trend to the northwest, and generally dip sub-vertically to the southwest obliquely cross-cutting the local geology, which strikes to the northeast. Changes in the nature breccia and mineralization are noted as the mineralized zones cross different rock units, although this has not been systematically evaluated. Mineralized zones are typically surrounded by sericite, silica and carbonate alteration.

Mineralization is structurally controlled within zones that manifest as lineaments, which are discernible from metal-in-soil anomalies and from geophysical surveys, likely representing fault zones. Drill-core intersections show widths of the mineralized zones vary from less than a metre to over three metres. Individual historical intersections range as high as 17.4 % Sb over 0.30 m (363.06-363.36 m down-hole) in hole BH-08-13 and 11.7 % Sb over 4.51 m (85.81-90.32 m down-hole) in hole BH-08-03 (ROW 476577 and ROW 476773). The reader is referred to Item 10 for a comprehensive summary of Antimony Resources' best drilling results.

The Main Zone mineralization has been defined over 700 m of strike and to a depth of at least 400 m, and is open in both these directions.

A possible extension of the Main Zone approximately 450 m to the southeast returned values from surface channels of 2.90% Sb over 8.18 m, which included 5.79% Sb over 1.75m and 8.47% over 1.53 m. Historical drilling in this area confirmed the presence of antimony bearing stibnite mineralization similar to the Main Zone. This area remains relatively underexplored.

8 DEPOSIT MODEL

The antimony (Sb) mineralization on the Project is a vein-style mineralization associated with a northwest trending fault zone/lineament. Sporadic gold mineralization is also present in lower-grade Sb mineralized zones, either due to pre-existing gold mineralization associated with an earlier deformation event, or remobilization during the stibnite-vein forming event.

The genetic model of stibnite vein-type deposits is not well documented; however, deposits closely resemble low-sulphide gold-quartz mesothermal veins (Seal et al., 1995). Stibnite veins are found in fault and shear zones, notable fault splays and fault related breccia in any orogenic area, particularly where large-scale fault structures are present (Panteleyev, 2005). Their origin is thought to be from dilute CO_2 -rich fluids generated by metamorphic dehydration. Structural channels funnel the hydrothermal fluids during regional deformation (Seal et al., 1988). Ore bodies occur as massive to disseminated infillings in fault and fracture zones and as replacement bodies, often in close proximity to felsic or intermediate intrusions. Zoning of copper, zinc, arsenic and sulphur is common both laterally and vertically, and wall rock alteration in the form of feldspathization, sericitization, argillation, and bleaching is frequently developed adjacent to the mineralization (Craig and Vaughan, 1994).

It is noted that the Beaverbrook antimony mine, located 60 km southwest of Gander, in central Newfoundland (NL), is similar in age and lithological host rock suite to the Bald Hill antimony deposit, and is within the same Appalachian tectono-stratigraphic zone. The Beaver Brook mine area is underlain by Silurian-Ordovician sediments consisting of siltstone, sandstone, greywacke and graphitic shale that were formed in a turbidite environment and exhibit lower greenschist-facies metamorphism. The sediment units are striking northeast-southwest, and are parallel to the axial planes of local scale open folds. Approximately 1 km northwest of the mine, the sedimentary rocks are intruded by the Mount Peyton batholith, consisting of gabbro, diorite and monzonite phases. The Sb mineralization of the East Zone deposit at the Beaver Brook mine includes a system of stibnite bearing fault breccias, stockwork fracture zones and fracture zones. Vein contacts with the wall rocks are sharp and their occaisionally converging hanging and footwall contacts suggest pinching and swelling of the veins. Very little antimony is found disseminated in the wall rocks.

The Beaver Brook deposit model is being applied to the Bald Hill deposit by Antimony Resources, and will continue to be developed as exploration progresses.

9 SUMMARY OF WORK

As at the effective date of the Report, Antimony Resources has not completed and exploration work on the Project other that diamond-drilling, which is summarized in Item 10 of the Report. Historical exploration in the area of the Project has been compiled in Item 6.

10 DRILLING

Diamond-drilling work to date by Antimony Resources comprises sixteen NQ-sized diamond-drill holes totalling 3,160 m that targeted the main Bald Hill mineralized zone (**Table 10-1** and **Figure 10.1**). This first stage of drilling was carried out from mid-April to late July, 2025. All stated mineralized intervals are intersection widths and not true widths.

Table 10-1: Summary of 2025 Diamond-Drilling by Antimony Resources

Hole ID	UTM N	AD83 Z19	Azimuth	DID (%)	Length
noie ib	Easting	Northing	(°True)	DIP (°)	(m)
BH-25-01	732738	5061524	210	-45	125
BH-25-02	732738	5061524	210	-60	176
BH-25-03	732761	5061472	210	-45	158
BH-25-04	732761	5061472	210	-60	191
BH-25-05	732690	5061540	210	-45	140
BH-25-06	732690	5061540	210	-60	227
BH-25-07	732654	5061579	210	-45	176
BH-25-08	732718	5061499	210	-45	155
BH-25-09	732718	5061499	210	-55	200
BH-25-10	732654	5061579	210	-55	269
BH-25-11	732738	5061524	210	-50	161
BH-25-12	732753	5061550	210	-45	266
BH-25-13	732813	5061404	210	-45	173
BH-25-14	732853	5061378	180	-45	169
BH-25-15	732814	5061466	215	-45	167
BH-25-16	732742	5061562	240	-50	407

The drilling was contracted to Les Forages Chapais Diamond Drilling Inc. ("FCDD") of Penobsquis, NB using a 2023 Marcotte HTM2500 drill rig to produce NQ (47.6 mm diameter) drill core. A Caterpillar D6N LGP wide track, John Deere 750 XLT and a rubber tracked Moroooka MST 800VD were used to service and mobilize the rig and clear drill sites. Drill collar sites were spotted using a handheld Garmin 66i GPS. For each hole, the drill rig was lined up using a REFLEX TN14 gyrocompass for final azimuth alignment.

Down-hole attitude of the holes was determined using a REFLEX EZ-TRAC survey instrument. Down-hole readings were recorded at approximately 50 m intervals.

All holes were drilled towards the southwest and have dips varying from 45° to 60°. An Antimony Resources' geologist was present at the drill to shutdown each hole.

After completion of a hole, a run of drill collar casing(s) was left in place. These casings were sealed, capped and labelled. Orange metal flags (approximately 1 metre long) were welded to each collar cap by FCDD personnel with the hole numbers printed on aluminum tags and attached to the flag. Once the rig had moved, the collar location of the hole was re-surveyed with the Garmin GPS unit. Coordinate accuracies are deemed to be \pm 3-5 m.

The drilled core was transported by FCDD personnel to the DNRED core facility at 207 Picadilly Road in Sussex, NB on a daily basis, for logging and storage.

Significant intersections from the 2025 drilling programme are summarized in **Table 10-2**.

Table 10-2: Summary of Significant Core Intervals from 2025 Drilling Programme

Hole ID	Sb (%)	Length (m)	From (m)	To (m)
BH-25-03	2.76	2.80	78.20	81.00
including	19.00	0.40	78.20	<i>7</i> 8.60
BH-25-03	1.25	5.55	104.80	110.35
including	6. <i>7</i> 8	1.00	108.35	109.35
BH-25-04	28.80	0.50	107.30	107.80
BH-25-04	21.90	0.40	110.00	110.40
BH-25-04	2.97	2.50	111.50	114.00

Hole ID	Sb (%)	Length (m)	From (m)	To (m)
including	17.90	0.40	115.50	115.90
BH-25-05	1.10	14.50	108.80	123.30
including	32.50	2.80	108.80	111.60
BH-25-08	14.90	3.00	88.80	91.80
BH-25-08	7.39	1.00	138.75	139.75
BH-25-09	9.85	4.30	103.60	107.90
BH-25-09	1.44	2.00	119.00	121.00
BH-25-09	6.80	0.25	186.75	187.00
BH-25-10	1.15	0.70	254.90	255.60
BH-25-11	3.62	1.10	133.40	134.50
BH-25-11	5.27	4.95	140.35	145.30
including	11.30	0.95	140.35	141.30
BH-25-12	19.00	0.40	30.00	30.40
BH-25-12	7.52	0.40	181.05	181.45
BH-25-12	5.82	2.65	255.45	258.10
including	9.47	0.60	257.50	258.10
BH-25-13	1.11	7.36	36.40	43.76
including	5.55	0.63	39. <i>4</i> 5	40.80
BH-25-14	11.40	5.80	43.00	48.80
BH-25-15	0.70	4.80	105.30	110.10
BH-25-15	8.77	0.70	122.80	123.50
BH-25-16	8.62	0.30	269.15	269.45
BH-25-16	0.53	5.20	395.00	400.20
including	1.21	1.50	398.70	400.20

10.1 **Summary**

The 2025 diamond-drilling completed by Antimony Resources on the Project comprised a total of 3,160 m in 16 drillholes. High-grade antimony-bearing Stibnite ("Sb") was intersected in 75% of the drill holes.

In the Author's opinion, there are no drilling, sampling or recovery factors that would materially impact the accuracy and reliability of the drilling results.

11 SAMPLE PREPARATION, ANALYSES, AND SECURITY

The Author reviewed the publicly available technical data covering historical exploration work on the Project with special emphasis on the Quality Assurance and Quality Control (QA/QC) procedures employed by Antimony Resources.

According to Antimony Resources, drill core was placed sequentially in wooden core boxes at the drill. The core boxes were transported by FCDD personnel on a daily basis to the core logging facility in Sussex, NB.

Upon arrival, the core boxes were arranged in sequential order on the logging tables and opened. Qualified geo-technicians checked down-hole meterage markers, box numbers, and carefully reconstructed the core by rotating section within their boxes to maintain a consistent view and cutting orientation, aligned with the preferential fabric. This initial procedure ensures consistent core orientation for visual documentation and later sampling.

The core was measured systematically, with wax crayon marks applied at every half-metre interval to facilitate precise length referencing within the drill hole. Accurate core measuring and marking are essential for establishing a reliable framework for subsequent data collection during core logging. The core recovery (CR) was then calculated.

Comprehensive drill hole logs were compiled, detailing lithological units, mineralization, structural features, and alteration characteristics, rock quality designation, and reflex tests and sample descriptions for assay. A full photographic record was also taken.

Procedures for collecting each core log metric were as follows:

Magnetic Susceptibility

Magnetic Susceptibility readings were collected at 50 m depths along the length of the drill hole. The purpose of the measurements was to identify a possible magnetic signature for each geological unit. Magnetic susceptibility standards were incorporated in the data collection to ensure the reliability of the measurements. Magnetic Susceptibility results are recorded in the drill log spreadsheets.

Core Angles

Foliation measurements, contacts, and fault orientations were recorded as part of the logging process and recorded in the drill log spreadsheets.

Rock Quality Designation

Rock Quality Designation (RQD) estimates, and the core recovery estimate were completed. RQD and core recovery results are recorded in the drill log spreadsheets.

Sample Designation

Core samples selected for analysis were marked with wax crayon indicating the start and end of each sample interval. The sample depths, lengths and intervals were recorded in sample ticket books with each sample assigned a unique sequential sample number. One portion of the sample ticket with the unique sample number was stapled in the core box at the end of the sample.

Core Photographs

All drill core was photographed. Drill core photos are not submitted with the assessment report but are retained by the company as part of the record of diamond drilling.

11.1 Sampling

The core was logged by Antimony Resources geologists; noting lithologies, structure, alteration and mineralization. Logging and sampling information was entered into a spreadsheet-based template that could be easily integrated into the project digital database. Prior to sampling, all drill core was photographed using a standardized format and digital camera to provide a permanent pre-sampling record of each hole.

Core-intervals to be cut and sampled were chosen by the geologist along sections of interest and were selected to best separate contrasting lithologies, mineralization, alteration and structural contacts.

Once sample intervals were selected the sample material was collected by cutting the drill core in half along the core axis using a core saw. One half of the core was then returned to the core box and retained as a permanent record, whereas the other was allocated to a labelled sample bag, specific to that sample interval. An assay tag was added to the sample bag for that interval, and the sample bag was then sealed. Assay tags were also stapled into core boxes at the end of each sample interval. Sample bags were then sealed in rice bags for shipment to Activation Laboratories Ltd. ("Actlabs"), in Fredericton, New Brunswick. Actlabs is independent of Antimony Resources and is accredited to ISO/TEC 17025.

Sample preparation at Actlabs Fredericton included weighing, drying, crushing / pulverizing, dividing (riffle splitting), and homogenization. Sample pulps were then sent to the Actlabs main laboratory in Ancaster, Ontario, for analysis.

All samples were subjected to a 4-acid digestion followed by inductively coupled plasma/ optical emission spectrometry (ICP/MS) analysis and instrumental neutron activation analysis (INAA) methods (Code 1H INAA + TD-ICP) for a 48-element suite (**Table 11-1**). Gold was assayed using fire assay atomic absorption (FA-AA) methods. High grade Sb results (i.e., >10,000 ppm Sb) were analyzed by Actlabs' high-precision "Code 8" package.

A total of 1,484 core samples, from intervals ranging from 0.25–1.50 m, and 355 quality assurance / quality control ("QA/QC") samples were sent for analysis. The interval samples represented a cumulative core length of 1,333 m of core.

The core from Antimony Resources' drilling is stored and secured at the DNRED core storage facility in Sussex.

Table 11-1: Actlab's Code 1H INAA Multi-Element Suite

	INAA+ICP-OES (ppm)	INAA + ICP-OES + ICP-MS (ppm)	INAA+ICP-MS (ppm)
Package	1H	Ultratrace 3	Ultratrace 5
Ag	0.3 - 10,000	0.05 - 10,000	0.05 - 100,000
Al	0.01 -50 %	0.01 - 50 %	
As	0.5 - 10,000	0.5 - 10,000	0.5 - 10,000
Au	2 - 30,000 ppb	2 - 30,000 ppb	2 - 30,000 ppb
Ba	50 - 500,000	1 - 100,000	1 - 100,000
Be	1 - 10,000	0.1 - 1.000	0.1 - 1,000
Bi	2 -10,000	0.02 - 10,000	0.02 - 2,000
Br	0.5 -5,000	0.5 - 5,000	0.5 - 5,000
Ca	0.01 - 70 %	0.01 - 70 %	0.01 - 50 %
Cd	0.3 - 2,000	0.1 - 2,000	0.1 - 1,000
Ce	3 - 10,000	0.1 - 10,000	0.1 - 10,000
Co	1 - 5,000	1 - 5,000	0.1 - 5,000
Cr	2 - 100,000	1 - 10,000	1 - 100,000
Cs	1 - 10,000	0.05 - 5,000	0.05 - 5,000
Cu	1 - 10,000	0.2 - 10,000	0.2 - 10,000
Dy	-	0.1 - 5000	0.1 - 5000
Er		0.1 - 1,000	0.1 - 1,000
Eu	0.2 - 10,000	0.05 - 1,000	0.05 - 100
Fe	0.01 - 70 %	0.01 - 70 %	0.01 - 50 %
Ga	-	0.1 - 500	0.1 - 500
Gd	-	0.1 - 500	0.1 - 5,000
Ge	-	0.1 - 500	0.1 - 500
Hf	1 -5,000	0.1 - 5,000	1 - 5,000
Hg	1 - 1,000	1 - 1,000	1 - 1,000
Но		0.1 - 1,000	0.1 - 1,000
In		0.1 - 100	0.1 - 100
lr.	5 - 10,000 ppb	5 - 10,000 ppb	0.1 - 100
	0.01 - 10 %		0.01 - 5 %
K		0.01 - 10 %	
La	0.5 - 10,000	0.5 - 10,000	0.1 - 10,000
Li	1 - 10,000	1 - 10,000	0.5 - 400
Lu	0.05 - 10,000	0.1 - 100	0.1 - 100
Mg	0.01 - 50 %	0.01 - 50 %	0.01 - 10 %
Mn	5 - 100,000	5 - 100,000	1 - 10,000
Mo	1 - 10,000	0.2 - 10,000	0.05 - 10,000
Na	0.01 - 50 %	0.01 - 20 %	0.01 - 20 %
Nb		0.1 - 500	0.1 - 500
Nd	5 - 10,000	0.01 - 10,000	0.1 - 10,000
Ni	1 - 100,000	0.5 - 100,000	0.5 - 100,000
P			
	0.001 - 10 %	0.001 - 10 %	
Pb	3 - 5,000	0.5 - 5,000	0.5 - 5,000
Pr	-	0.1 - 1,000	0.1 - 1,000
Rb	15 -10,000	0.2 - 5,000	0.2 - 5,000
Re	-	0.001 - 100	0.001 - 100
S +	0.01 - 20 %	0.01 - 20 %	
Sb	0.1 - 10,000	0.1 - 10,000	0.1 - 10,000
Sc	0.1 - 1,000	0.1 - 1,000	0.1 - 1,000
Se	3 - 10,000	0.1 - 10,000	0.1 - 10,000
Sm	0.1 - 10,000	0.1 - 100	0.1 - 100
Sn	0.02 - 20 %	1 - 200	1- 200
Sr	1 - 10,000	0.2 - 1,000	0.2 - 1,000
Ta	0.5 - 10.000	0.1 - 10,000	0.1 - 10,000
Tb	0.5 - 10,000	0.1 - 5.000	0.1 - 100
Te		0.02 - 500	0.1 - 500
Th	0.2 - 10,000	0.1 - 10,000	0.1 - 10,000
Ti	0.01 - 10 %	0.01 - 10 %	
TI	-	0.05 - 500	0.05 - 500
Tm		0.1 - 1,000	0.1 - 1,000
U	0.5 - 10,000	0.1 - 10,000	0.1 - 10,000
V	2 - 10,000	2 - 10,000	1 - 1,000
w	1 - 10,000	1 - 10,000	1 - 10,000
Y	1 - 1,000	0.01 - 10,000	0.1 - 10,000
		0.1 - 5,000	
Yb	0.2 - 10,000		0.1 - 5,000
Zn	1 - 100,000	0.5 - 100,000	0.5 - 100,000
Zr		1 - 5,000	1 - 5,000
Price:	\$47.25	\$61.75	\$48.25

11.2 QA/QC

QA/QC programs have two components. Quality Assurance (QA) deals with the prevention of problems using established procedures while Quality Control (QC) aims to detect problems, assess them, and take corrective actions. QA/QC programs are implemented, overseen, and reported on by a Qualified Person as defined by NI-43-101.

QA programs should be rigorous, applied to all types and stages of data acquisition and include written protocols for: sample location, sample collection and handling procedures; laboratories and analysis; data management and reporting.

QC programs are designed to assess the quality of analytical results for accuracy, precision, and bias. This is accomplished through the regular submission of standards, blanks, and duplicates with batches of samples submitted to the analytical laboratory(s), and the submission of batches of samples to a second laboratory for check assays.

The materials conventionally used in mineral exploration QC programs include "Standards", "Blanks" and "Duplicates", as follows:

- Standards, also referred to as Certified Reference Material (CRM) are samples of known composition that are inserted into sample batches to independently test the accuracy of an analytical procedure. They are acquired from a known and trusted commercial source. Standards are selected to fit the grade distribution identified for the type of mineralization being sought;
- Blanks consist of material that is predetermined to be free of elements of economic interest to monitor for potential sample contamination during analytical procedures at the laboratory;
- Duplicate samples are submitted to assess both the analytical precision (repeatability)
 and to assess the homogeneity of mineralization. Duplicates can be submitted from all
 stages of sample preparation with the expectation that better precision is demonstrated
 by duplicates further along in the preparation process.

11.3 Project QA/QC

Antimony Resources included Standard, Blank, Core Duplicate and Pulp Duplicate samples into the submitted core-sample stream to assess the accuracy of Actlabs' analytical results.

A total of 355 QA/QC samples were collected and submitted for analysis. Rates of control-samples employed are summarized in **Table 11-2**.

Certified Reference Material (CRM) "OREAS 292" purchased from AnalytiChem Canada Inc. was used as a Standard. Blank material comprised a simple lime product purchased from a local hardware store in Sussex NB.

Table 11-2: Rates of Control Samples Inserted into the Sample Stream

Number of DDH:	16
Number of Assays:	1839
Number of Standards:	89
% of Standards:	4.84%
Number of Blanks:	89
% of Blanks:	4.84%
Number of Core Duplicates	88
% of Duplicates	4.78%
Number of Pulp Duplicates	89
% of Duplicates	4.84%
Total Number of control samples	355
% of control samples	19.30%
In-stream Frequency	1:5.2

11.3.1 Standards

Three (3) sequential samples (1734205, 1734225 and 1734245) reported anomalously high antimony and low gold results. It is assumed that these three outliers were the result of unusual treatment of the CRM material by the lab, as flanking samples in the stream did not show similar anomalous results. Five (5) other samples within a sequence of 12 samples reported gold concentrations between 9050 ppm and 9960 ppm (0.91 gpt to 1.00 gpt). It is assumed that these outliers were due to the analytical method applied for gold determination (i.e., Fire Assay-AA), as the concentration for antimony was within 3xstandard deviation ("3SD"). The remaining 81 samples showed acceptable correlation, within or close to 3SD for antimony, gold, silver and copper (**Table 11-3**).

Assays for arsenic are an order of magnitude lower than expected. Antimony Resources has contacted Actlabs for a possible explanation and have sent a separate batch of OREAS 292 Standards for verification analysis. As at the effective date of the Report, no explanation has been found for the low arsenic assays and results of the verification analyses are pending.

Table 11-3: QA/QC Analytical Results for CRM Standard OREAS 292 (n=89)

SAMPLE	QAQC	Sb (%)	Au (g/t)	As (ppm)	Ag (ppm)	Cu (ppm)
1734005	Standard	4.52	11.0	40	0.6	64
1734025	Standard	4.81	NA	28	0.6	65
1734045	Standard	4.77	NA	25	0.6	63
1734065	Standard	4.81	NA	32	0.6	64
1734085	Standard	4.82	10.8	28	0.6	61
1734105	Standard	4.27	NA	37	0.6	61
1734125	Standard	4.36	11.4	36	0.6	60
1734145	Standard	4.25	11.2	39	0.6	62
1734165	Standard	4.42	NA	45	0.7	60
1734185	Standard	4.54	11.2	36	0.6	64

SAMPLE	QAQC	Sb (%)	Au (g/t)	As (ppm)	Ag (ppm)	Cu (ppm)
1734205	Standard	10.30	4.4	41	0.6	61
1734225	Standard	10.80	4.7	38	0.6	60
1734245	Standard	10.90	4.7	39	0.7	61
1734265	Standard	4.53	NA	61	0.6	62
1734285	Standard	4.79	10.5	37	0.6	60
1734305	Standard	4.74	10.2	60	0.6	61
1734325	Standard	4.60	11.4	65	0.6	60
1734345	Standard	4.52	10.5	39	0.7	62
1734365	Standard	4.45	10.0	49	0.6	59
1734385	Standard	4.37	10.3	40	0.6	62
1734405	Standard	4.90	11.0	19	0.7	64
1734425	Standard	4.72	10.5	21	0.7	59
1734445	Standard	0.98	10.9	18	0.7	63
1734465	Standard	4.66	NA	20	0.7	62
1734485	Standard	1.00	10.3	16	0.7	63
1734605	Standard	4.88	10.7	21	0.6	63
1734625	Standard	4.73	10.7	14	0.7	65
1734645	Standard	4.75	10.9	20	0.7	61
1734665	Standard	4.81	10.3	15	0.7	62
1734685	Standard	4.73	10.6	12	0.7	60
1734705	Standard	0.92	10.2	14	0.7	59
1734725	Standard	0.91	NA	14	0.7	62
1734745	Standard	4.80	NA	71	0.7	61
1734815	Standard	0.93	10.2	23	0.7	62
1734835	Standard	4.63	NA	19	0.7	61
1734865	Standard	4.74	11.3	55	0.7	63
1734885	Standard	4.73	NA	36	0.7	62
1734905	Standard	4.70	10.4	44	0.7	62
1734925	Standard	4.70	NA	39	0.7	60
1734945	Standard	4.92	11.1	40	0.7	63
1734975	Standard	4.73	11.3	45	0.7	60
1734995	Standard	4.78	NA	33	0.7	61
1735015	Standard	4.84	11.2	37	0.6	62
1735035	Standard	4.87	13.0	25	0.7	62
1807055	Standard	4.79	11.2	28	0.7	61
1807090	Standard	4.95	11.2	40	0.7	63
1807110	Standard	4.73	11.2	36	0.7	63
1807130	Standard	4.69	10.5	24	0.7	63
1807150	Standard	4.65	11.3	40	0.7	62
1807170	Standard	4.82	11.4	40	0.7	61
1807190	Standard	4.48	11.2	132	0.6	65
1807210	Standard	4.58	10.9	48	0.5	61

SAMPLE	QAQC	Sb (%)	Au (g/t)	As (ppm)	Ag (ppm)	Cu (ppm)
1807230	Standard	4.56	11.0	76	0.5	66
1807250	Standard	4.66	10.6	92	0.5	63
1807270	Standard	4.62	10.5	61	0.5	64
1807290	Standard	4.71	10.8	54	0.6	63
1807310	Standard	4.59	10.6	97	0.5	62
1807330	Standard	4.69	11.0	63	0.6	64
1807350	Standard	4.67	10.4	58	0.6	64
1807370	Standard	4.33	11.1	40	0.6	62
1807390	Standard	4.39	11.5	38	0.6	61
1807410	Standard	4.29	11.7	37	0.6	63
1807430	Standard	4.41	11.3	64	0.6	64
1807450	Standard	4.50	11.5	41	0.6	61
1807470	Standard	4.46	11.3	45	0.6	63
1807490	Standard	4.44	11.3	66	0.5	61
1807510	Standard	4.26	11.3	42	0.6	63
1807530	Standard	4.41	11.2	52	0.6	61
1807550	Standard	4.40	11.1	36	0.7	68
1807560	Standard	4.35	11.3	44	0.6	60
1807580	Standard	5.81	10.9	65	0.6	60
1807600	Standard	5.37	11.2	46	0.6	61
1807620	Standard	6.05	11.2	56	0.7	63
1807640	Standard	4.36	11.6	61	0.6	61
1807660	Standard	4.47	6.2	66	0.7	63
1807680	Standard	5.33	11.2	60	0.7	61
1807700	Standard	4.95	11.3	59	0.6	56
1807720	Standard	5.51	11.2	78	0.6	63
1807740	Standard	5.19	11.0	70	0.7	64
1807760	Standard	5.29	11.3	69	0.7	62
1807780	Standard	4.46	8.8	66	0.6	62
1807800	Standard	4.03	11.0	48	0.7	64
1807820	Standard	4.56	10.8	68	0.7	64
1807840	Standard	4.50	11.1	65	0.7	60
1807860	Standard	5.10	11.0	78	0.7	62
1807880	Standard	4.64	11.1	84	0.7	64
1807900	Standard	4.52	10.7	55	0.6	63
1807940	Standard	4.32	NA	65	0.7	64
1808030	Standard	4.37	10.9	39	0.7	65
CRM Values		4.54	11.1	495	0.760	58
CRM 3SD*	Low	3.90	10.0	271	0.467	44
	High	5.32	12.1	718	1.052	72
*3xStandard Deviation		ſ	NA=Not Avail	able		

11.3.2 Blanks

The material for the Blank QA/QC samples submitted during the drilling programme comprised a lime product purchased from a local hardware store in Sussex NB. A total of 89 blanks were assayed representing 4.84% of all the submitted samples. Most results show concentrations of antimony, gold, arsenic and silver are lower than 5x detection limit (**Table 11-4**). Eight samples had notable Sb concentrations, nine had notable As concentrations, and thirty-two samples had notable Cu concentrations, indicating possible contamination; however, it was noted that the majority of samples with anomalous concentrations (especially copper) are in the latter half of the collection stream, suggesting that the Blank material used in later sampling differed in composition from the earlier material and may contain deleterious material.

Table 11-4: QA/QC Analytical Results for Blank Samples (n=89)

	al Results for Blank Samples (n=89)					
SAMPLE	QAQC	Sb (ppm)	Au (ppb)	As (ppm)	Ag (ppm)	Cu (ppm)
1734010	Blank	< 2	< 5	< 2	< 0.2	5
1734030	Blank	< 2	< 5	< 2	< 0.2	< 1
1734050	Blank	< 2	< 5	< 2	< 0.2	3
1734070	Blank	< 2	< 5	< 2	< 0.2	< 1
1734090	Blank	< 2	5	< 2	< 0.2	2
1734110	Blank	2	< 5	3	< 0.2	2
1734130	Blank	< 2	< 5	< 2	< 0.2	< 1
1734150	Blank	< 2	5	< 2	< 0.2	3
1734170	Blank	< 2	< 5	4	< 0.2	< 1
1734190	Blank	< 2	< 5	< 2	< 0.2	< 1
1734210	Blank	< 5	2	3	< 0.2	< 1
1734230	Blank	< 5	< 2	< 2	< 0.2	2
1734250	Blank	< 2	< 5	< 2	< 0.2	< 1
1734270	Blank	< 2	< 5	< 2	< 0.2	< 1
1734290	Blank	< 2	< 5	< 2	< 0.2	< 1
1734310	Blank	< 2	5	< 2	< 0.2	< 1
1734330	Blank	9	< 5	6	< 0.2	< 1
1734350	Blank	< 2	< 5	< 2	< 0.2	1
1734370	Blank	3	< 5	2	< 0.2	2
1734390	Blank	3	< 5	< 2	< 0.2	1
1734410	Blank	4	< 5	4	< 0.2	2
1734430	Blank	6	< 5	< 2	< 0.2	1
1734450	Blank	14	10	21	< 0.2	< 1
1734470	Blank	8	< 5	4	< 0.2	< 1
1734490	Blank	4	< 5	2	< 0.2	< 1
1734610	Blank	5	< 5	3	< 0.2	< 1
1734630	Blank	4	< 5	< 2	< 0.2	2
1734650	Blank	5	< 5	3	< 0.2	6
1734670	Blank	3	< 5	2	< 0.2	5

SAMPLE	QAQC	Sb (ppm)	Au (ppb)	As (ppm)	Ag (ppm)	Cu (ppm)
1734690	Blank	2	< 5	2	< 0.2	4
1734710	Blank	< 2	< 5	< 2	< 0.2	2
1734730	Blank	< 2	< 5	< 2	< 0.2	9
1734750	Blank	4	< 5	3	< 0.2	4
1734820	Blank	4	8	4	< 0.2	4
1734840	Blank	7	< 5	4	< 0.2	3
1734870	Blank	96	< 5	19	< 0.2	5
1734890	Blank	5	< 5	< 2	< 0.2	5
1734910	Blank	3	< 5	< 2	< 0.2	11
1734930	Blank	61	< 5	< 2	< 0.2	3
1734950	Blank	46	< 5	12	< 0.2	4
1734980	Blank	6	< 5	< 2	< 0.2	9
1735000	Blank	5	< 5	2	< 0.2	11
1735020	Blank	8	< 5	< 2	< 0.2	4
1735040	Blank	5	< 5	4	< 0.2	5
1807060	Blank	6	< 5	< 2	< 0.2	3
1807065	Blank	2	6	2	< 0.2	4
1807095	Blank	6	< 5	5	< 0.2	3
1807115	Blank	5	< 5	2	< 0.2	7
1807135	Blank	6	< 5	< 2	< 0.2	4
1807155	Blank	< 2	< 5	< 2	0.4	2
1807175	Blank	4	< 5	5	< 0.2	2
1807195	Blank	3	6	< 2	< 0.2	1
1807215	Blank	3	5	< 2	< 0.2	10
1807235	Blank	4	5	< 2	< 0.2	5
1807255	Blank	41	< 5	8	< 0.2	13
1807275	Blank	7	< 5	< 2	< 0.2	15
1807295	Blank	27	< 5	8	< 0.2	35
1807315	Blank	2	6	< 2	< 0.2	2
1807335	Blank	3	< 5	6	< 0.2	3
1807355	Blank	< 2	< 5	2	< 0.2	6
1807375	Blank	3	< 5	3	< 0.2	7
1807395	Blank	7	< 5	3	< 0.2	6
1807415	Blank	< 2	< 5	4	< 0.2	17
1807435	Blank	4	5	6	< 0.2	14
1807455	Blank	3	< 5	< 2	< 0.2	6
1807475	Blank	2	< 5	3	< 0.2	18
1807495	Blank	3	< 5	4	< 0.2	3
1807515	Blank	< 2	< 5	< 2	< 0.2	13
1807535	Blank	< 2	< 5	9	< 0.2	8
1807565	Blank	21	< 5	12	< 0.2	7
1807585	Blank	5	5	< 2	< 0.2	7

SAMPLE	QAQC	Sb (ppm)	Au (ppb)	As (ppm)	Ag (ppm)	Cu (ppm)
1807605	Blank	9	< 5	3	< 0.2	5
1807625	Blank	7	< 5	4	< 0.2	3
1807645	Blank	8	< 5	10	< 0.2	3
1807665	Blank	10	5	< 2	< 0.2	2
1807685	Blank	8	5	< 2	< 0.2	9
1807705	Blank	88	< 5	80	< 0.2	10
1807725	Blank	106	< 5	13	< 0.2	63
1807745	Blank	13	5	22	< 0.2	6
1807765	Blank	8	< 5	19	< 0.2	6
1807785	Blank	5	< 5	2	< 0.2	8
1807805	Blank	4	6	< 2	< 0.2	7
1807825	Blank	3	< 5	3	< 0.2	16
1807845	Blank	5	6	2	< 0.2	21
1807865	Blank	4	< 5	5	< 0.2	2
1807885	Blank	4	< 5	< 2	< 0.2	8
1807910	Blank	3	8	16	< 0.2	5
1807950	Blank	3	5	9	< 0.2	5
1808040	Blank	8	< 5	2	< 0.2	8

11.3.3 Core Duplicates

> 5 x detection limit

Core duplicate samples were inserted into the sample stream directly after the original sample and were prepared and analysed using the same methods as the originals. The core duplicate samples were obtained by splitting the original half-core interval at the core logging facility in Sussex by Antimony Resources personnel. A total of 88 core duplicates were assayed representing 4.78% of all the submitted samples. A comparison of the original versus duplicated assay is presented in **Table 11-5**. There is a high degree of correlation between the results of the duplicated core samples.

Table 11-5: QA/QC Analytical Results for Core Duplicates (n=88)

	Core Assays						Core	-Duplica	ate Assay	'S	
SAMPLE	Sb (ppm)	Au (ppb)	As (ppm)	Ag (ppm)	Cu (ppm)	SAMPLE	Sb (ppm)	Au (ppb)	As (ppm)	Ag (ppm)	Cu (ppm)
1734014	9	< 5	4	< 0.2	15	1734015	14	< 5	2	< 0.2	23
1734035	10	< 5	10	< 0.2	14	1734036	12	6	10	< 0.2	15
1734054	25	< 5	18	< 0.2	25	1734055	28	< 5	20	< 0.2	32
1734074	23	< 5	32	< 0.2	33	1734075	18	< 5	19	< 0.2	34
1734094	7	< 5	< 2	< 0.2	13	1734095	7	8	4	< 0.2	12
1734114	24	7	9	< 0.2	55	1734115	30	6	12	< 0.2	88
1734134	20	< 5	7	< 0.2	34	1734135	15	< 5	5	< 0.2	22
1734154	137	6	60	< 0.2	191	1734155	104	9	52	< 0.2	125
1734174	25	< 5	80	< 0.2	< 1	1734175	26	< 5	83	< 0.2	< 1
1734194	3060	224	18500	< 0.2	6	1734195	13200	293	22400	< 0.2	8

		Core As	ssays				Core	-Duplica	ate Assay	/S	
SAMPLE	Sb (ppm)	Au (ppb)	As (ppm)	Ag (ppm)	Cu (ppm)	SAMPLE	Sb (ppm)	Au (ppb)	As (ppm)	Ag (ppm)	Cu (ppm)
1734214	10	23	370	< 0.2	< 1	1734215	6	25	322	< 0.2	< 1
1734234	< 5	18	34	< 0.2	7	1734235	8	16	33	< 0.2	8
1734254	5	< 5	< 2	< 0.2	28	1734255	4	< 5	3	< 0.2	23
1734274	20	7	7	< 0.2	35	1734275	28	5	13	0.2	46
1734294	22	< 5	15	< 0.2	41	1734295	23	< 5	21	< 0.2	28
1734314	98	< 5	45	< 0.2	4	1734315	123	< 5	52	< 0.2	4
1734334	72	22	119	< 0.2	31	1734335	82	23	122	< 0.2	25
1734354	20	< 5	22	< 0.2	27	1734355	67	< 5	15	< 0.2	30
1734374	37	< 5	39	< 0.2	21	1734375	38	< 5	42	< 0.2	21
1734394	15	9	5	< 0.2	33	1734395	12	< 5	4	< 0.2	15
1734414	17	< 5	12	< 0.2	20	1734415	15	< 5	13	< 0.2	18
1734434	116	< 5	36	< 0.2	40	1734435	119	6	39	< 0.2	42
1734454	18000	58	6680	< 0.2	7	1734455	40300	44	2880	< 0.2	7
1734474	94	< 5	83	< 0.2	30	1734475	116	< 5	116	< 0.2	26
1734494	7	5	6	< 0.2	4	1734495	8	10	6	< 0.2	8
1734614	23	< 5	18	< 0.2	39	1734615	21	< 5	16	< 0.2	36
1734634	99	9	867	< 0.2	199	1734635	65	< 5	549	< 0.2	122
1734654	25	< 5	7	< 0.2	41	1734655	24	12	6	< 0.2	36
1734674	8	< 5	32	< 0.2	41	1734675	9	< 5	22	< 0.2	44
1734694	56	5	35	< 0.2	108	1734695	71	< 5	43	< 0.2	132
1734714	6	< 5	9	< 0.2	21	1734715	6	< 5	6	< 0.2	18
1734734	21	7	19	< 0.2	31	1734735	19	< 5	8	< 0.2	28
1734804	78	< 5	53	< 0.2	4	1734805	83	< 5	68	< 0.2	3
1734824	66	13	114	< 0.2	31	1734825	70	11	80	< 0.2	26
1734852	5	< 5	106	< 0.2	6	1734853	71	< 5	57	< 0.2	76
1734874	70	< 5	41	< 0.2	30	1734875	69	< 5	47	< 0.2	30
1734894	13	< 5	31	< 0.2	8	1734895	12	< 5	21	< 0.2	8
1734914	35	< 5	49	< 0.2	9	1734915	32	< 5	45	< 0.2	8
1734934	59700	871	7450	< 0.2	15	1734935	46500	830	24600	< 0.2	15
1734954	438	34	871	0.3	62	1734955	309	75	2500	0.2	66
1734983	71	9	49	< 0.2	28	1734984	65	< 5	53	< 0.2	25
1735004	215	< 5	39	< 0.2	30	1735005	43	< 5	41	< 0.2	32
1735024	52	< 5	136	< 0.2	31	1735025	43	< 5	101	< 0.2	33
1735044	131	< 5	64	< 0.2	26	1735045	43	< 5	39	< 0.2	21
1807069	14	< 5	10	< 0.2	33	1807070	15	< 5	10	< 0.2	37
1807074	9	< 5	< 2	< 0.2	20	1807075	13	< 5	3	< 0.2	31
1807099	15	8	16	< 0.2	27	1807100	15	8	18	< 0.2	31
1807119	42	< 5	38	< 0.2	52	1807120	34	< 5	26	< 0.2	46
1807139	35	< 5	13	< 0.2	36	1807140	29	< 5	8	< 0.2	31
1807159	96	< 5	53	< 0.2	38	1807160	92	< 5	47	< 0.2	39

		Core As	ssays				Core	-Duplica	ate Assay	'S	
SAMPLE	Sb (ppm)	Au (ppb)	As (ppm)	Ag (ppm)	Cu (ppm)	SAMPLE	Sb (ppm)	Au (ppb)	As (ppm)	Ag (ppm)	Cu (ppm)
1807179	129	12	73	< 0.2	6	1807180	117	13	66	< 0.2	5
1807199	32	< 5	9	< 0.2	50	1807200	34	< 5	8	< 0.2	52
1807219	11	5	3	< 0.2	12	1807220	13	8	2	< 0.2	14
1807239	119	33	309	< 0.2	36	1807240	933	14	605	< 0.2	29
1807259	197	14	118	< 0.2	26	1807260	190	< 5	52	< 0.2	24
1807279	12	9	< 2	< 0.2	7	1807280	10	6	2	< 0.2	5
1807299	45	< 5	23	< 0.2	30	1807300	33	5	21	< 0.2	26
1807319	41	6	38	< 0.2	19	1807320	37	< 5	35	< 0.2	20
1807339	157	44	229	< 0.2	27	1807340	56	59	288	< 0.2	26
1807359	17	6	28	< 0.2	7	1807360	12	< 5	19	< 0.2	6
1807379	45	10	49	< 0.2	17	1807380	37	9	40	< 0.2	18
1807399	67	9	41	< 0.2	24	1807400	63	< 5	39	< 0.2	24
1807419	63	557	9920	< 0.2	10	1807420	62	619	10400	< 0.2	13
1807439	156	< 5	52	< 0.2	28	1807440	89	8	81	< 0.2	26
1807459	3590	430	9350	< 0.2	20	1807460	4430	297	7350	< 0.2	16
1807479	18	121	1450	< 0.2	3	1807480	18	102	1490	< 0.2	3
1807499	6	10	14	0.3	< 1	1807500	6	9	14	0.2	2
1807519	16	10	53	< 0.2	< 1	1807520	15	11	53	< 0.2	< 1
1807539	5	6	54	< 0.2	1	1807540	5	5	54	< 0.2	2
1807569	106	61	2550	< 0.2	4	1807570	83	74	529	< 0.2	5
1807589	5	11	8	0.4	3	1807590	6	11	7	0.3	2
1807609	25	221	60	0.3	32	1807610	9	170	51	< 0.2	5
1807629	12	13	82	< 0.2	1	1807630	14	11	82	< 0.2	2
1807649	9	11	13	0.6	3	1807650	7	8	11	0.6	4
1807669	14	< 5	5	< 0.2	16	1807670	11	< 5	3	< 0.2	14
1807689	18	9	4	< 0.2	31	1807690	17	10	4	< 0.2	27
1807709	19600	1010	9630	0.2	22	1807710	7120	1820	19800	0.3	33
1807729	32	12	20	0.2	2	1807730	36	13	21	0.2	2
1807749	22	14	78	< 0.2	2	1807750	24	26	114	< 0.2	3
1807769	17	13	34	0.3	3	1807770	17	10	43	0.4	2
1807789	52	19	1030	< 0.2	37	1807790	65	23	1460	< 0.2	41
1807809	22	6	10	< 0.2	32	1807810	22	< 5	11	< 0.2	29
1807829	7	5	7	< 0.2	41	1807830	7	< 5	8	< 0.2	23
1807851	22	5	16	< 0.2	32	1807850	24	6	29	< 0.2	31
1807869	59	7	450	< 0.2	33	1807870	80	7	477	< 0.2	43
1807889	37	11	44	< 0.2	31	1807890	38	< 5	42	< 0.2	26
1807919	59	57	4030	< 0.2	40	1807920	62	101	4940	< 0.2	34
1808009	135	< 5	58	< 0.2	46	1808010	165	< 5	82	< 0.2	47

11.3.4 Pulp Duplicates

Pulp duplicates were inserted into the sample stream directly after the original sample and were prepared and analysed using the same methods as the originals. The pulp duplicates were prepared by the laboratory after the drying process and split to produce two samples. A total of 89 pulp duplicates were assayed representing 4.84% of all the submitted samples. A comparison of the original versus duplicated assay is presented in **Table 11-6**. There is a high degree of correlation between the results of the duplicated pulp samples.

Table 11-6: QA/QC Analytical Results for Pulp Duplicates (n=89)

	Pulp-Assays							icate Pu	ılp-Assay	rs	
SAMPLE	Sb (ppm)	Au (ppb)	As (ppm)	Ag (ppm)	Cu (ppm)	SAMPLE	Sb (ppm)	Au (ppb)	As (ppm)	Ag (ppm)	Cu (ppm)
1734019	13	< 5	2	< 0.2	23	1734020	16	< 5	3	< 0.2	23
1734039	11	< 5	14	< 0.2	16	1734040	10	< 5	14	< 0.2	16
1734059	33	< 5	25	< 0.2	31	1734060	31	< 5	26	< 0.2	32
1734079	16	< 5	15	< 0.2	19	1734080	16	< 5	10	< 0.2	20
1734099	12	< 5	31	< 0.2	4	1734100	12	6	26	< 0.2	4
1734119	4	25	20	< 0.2	12	1734120	4	6	19	< 0.2	11
1734139	19	< 5	13	< 0.2	53	1734140	18	5	12	< 0.2	50
1734159	1280	1280	39700	0.3	19	1734160	1300	1290	40100	0.3	19
1734179	16	13	335	< 0.2	1	1734180	15	7	313	< 0.2	1
1734199	27	25	210	< 0.2	< 1	1734200	27	27	204	< 0.2	< 1
1734219	< 5	16	75	< 0.2	3	1734220	11	17	80	< 0.2	3
1734239	66	103	11700	< 0.2	8	1734240	78	111	13600	< 0.2	10
1734259	6	5	< 2	< 0.2	13	1734260	6	< 5	2	< 0.2	12
1734279	13	< 5	7	< 0.2	40	1734280	12	< 5	6	< 0.2	39
1734299	28	< 5	20	< 0.2	20	1734300	29	< 5	20	< 0.2	19
1734319	109	< 5	17	< 0.2	2	1734320	77	6	17	< 0.2	2
1734339	41	7	54	< 0.2	24	1734340	43	6	56	< 0.2	24
1734358	72	< 5	31	< 0.2	17	1734360	88	< 5	34	< 0.2	20
1734379	14	16	9	< 0.2	33	1734380	14	19	8	< 0.2	34
1734399	16	< 5	3	< 0.2	30	1734400	17	< 5	< 2	< 0.2	30
1734419	24	5	20	< 0.2	28	1734420	23	5	20	< 0.2	26
1734439	97000	1040	45400	< 0.2	26	1734440	95300	1030	44200	0.3	27
1734459	216	14	98	0.3	31	1734460	176	21	98	0.4	41
1734479	58	< 5	51	< 0.2	34	1734480	59	< 5	53	< 0.2	35
1734499	13	5	5	< 0.2	19	1734500	12	6	3	< 0.2	18
1734599	10	< 5	44	< 0.2	12	1734600	12	< 5	58	< 0.2	12
1734619	15	< 5	16	< 0.2	32	1734620	15	5	17	< 0.2	31
1734639	29	< 5	49	< 0.2	33	1734640	32	< 5	58	< 0.2	37
1734659	28	17	759	< 0.2	28	1734660	26	18	702	< 0.2	27
1734679	16	< 5	4	< 0.2	16	1734680	17	< 5	3	< 0.2	17
1734699	29	7	34	< 0.2	26	1734700	27	< 5	31	< 0.2	25

		Pulp-As	ssays				Dupl	icate Pu	ılp-Assay	rs	
SAMPLE	Sb (ppm)	Au (ppb)	As (ppm)	Ag (ppm)	Cu (ppm)	SAMPLE	Sb (ppm)	Au (ppb)	As (ppm)	Ag (ppm)	Cu (ppm)
1734719	8	< 5	< 2	< 0.2	43	1734720	7	< 5	3	< 0.2	48
1734739	19	8	11	< 0.2	23	1734740	18	7	10	< 0.2	25
1734809	2820	104	10400	< 0.2	22	1734810	2440	108	11900	< 0.2	22
1734829	52	9	99	< 0.2	38	1734830	43	10	91	< 0.2	35
1734859	34	< 5	34	< 0.2	12	1734860	33	< 5	33	< 0.2	14
1734879	237	< 5	161	< 0.2	359	1734880	206	< 5	164	< 0.2	387
1734899	15	< 5	17	< 0.2	12	1734900	15	6	12	< 0.2	12
1734919	118	< 5	110	< 0.2	11	1734920	116	< 5	88	< 0.2	9
1734939	138	326	1310	< 0.2	29	1734940	131	288	1230	< 0.2	27
1734969	84	34	1400	< 0.2	28	1734970	84	34	1260	< 0.2	27
1734989	55	< 5	42	< 0.2	29	1734990	54	8	39	< 0.2	27
1735009	41	< 5	21	< 0.2	38	1735010	39	< 5	23	< 0.2	38
1735029	43	< 5	61	< 0.2	32	1735030	47	< 5	64	< 0.2	35
1735049	6580	27	2310	< 0.2	22	1735050	6140	31	2290	< 0.2	23
1807084	8	< 5	< 2	< 0.2	20	1807085	7	< 5	3	< 0.2	19
1807104	19	< 5	6	< 0.2	37	1807105	17	9	7	< 0.2	38
1807124	46	< 5	23	< 0.2	60	1807125	46	5	20	< 0.2	67
1807144	24	5	31	< 0.2	27	1807145	27	< 5	33	< 0.2	27
1807164	137	8	105	< 0.2	3	1807165	137	< 5	98	< 0.2	3
1807184	16	5	61	< 0.2	18	1807185	15	6	60	< 0.2	17
1807204	9	109	13	< 0.2	21	1807205	10	108	13	< 0.2	21
1807224	19	< 5	10	< 0.2	23	1807225	17	7	9	< 0.2	24
1807244	154	12	61	< 0.2	29	1807245	151	< 5	62	< 0.2	29
1807264	46	9	96	< 0.2	28	1807265	44	8	98	< 0.2	28
1807284	41	7	24	< 0.2	59	1807285	40	12	25	< 0.2	56
1807304	42	< 5	45	< 0.2	33	1807305	26	8	25	< 0.2	20
1807324	106	9	101	< 0.2	42	1807325	114	12	106	< 0.2	44
1807344	37	20	495	< 0.2	31	1807345	37	19	467	< 0.2	30
1807364	45	< 5	106	< 0.2	36	1807365	43	7	91	< 0.2	35
1807384	63	< 5	22	< 0.2	54	1807385	70	8	21	< 0.2	67
1807404	68	12	47	< 0.2	20	1807405	68	13	48	< 0.2	20
1807424	56	24	270	< 0.2	8	1807425	52	20	238	< 0.2	8
1807444	67	< 5	41	< 0.2	39	1807445	67	< 5	41	< 0.2	36
1807464	408	94	581	< 0.2	17	1807465	326	94	581	< 0.2	16
1807484	6	67	40	< 0.2	2	1807485	5	76	36	< 0.2	2
1807504	18	181	2260	< 0.2	2	1807505	15	169	1900	< 0.2	2
1807524	14	10	96	< 0.2	< 1	1807525	13	11	85	< 0.2	< 1
1807544	5	< 5	20	0.3	4	1807545	5	< 5	19	0.4	4
1807554	121	220	535	< 0.2	70	1807555	90	224	603	< 0.2	54
1807574	14	< 5	232	< 0.2	< 1	1807575	14	9	250	< 0.2	< 1

		ssays			Duplicate Pulp-Assays						
SAMPLE	Sb (ppm)	Au (ppb)	As (ppm)	Ag (ppm)	Cu (ppm)	SAMPLE	Sb (ppm)	Au (ppb)	As (ppm)	Ag (ppm)	Cu (ppm)
1807594	7	13	21	0.3	3	1807595	6	13	20	0.3	3
1807614	7	45	52	< 0.2	2	1807615	7	37	48	< 0.2	2
1807634	7	6	28	< 0.2	2	1807635	7	6	26	< 0.2	2
1807654	8	9	99	< 0.2	2	1807655	8	9	91	< 0.2	2
1807674	18	< 5	6	< 0.2	58	1807675	16	6	6	< 0.2	45
1807694	18	< 5	16	< 0.2	31	1807695	18	< 5	12	< 0.2	31
1807714	77	29	197	< 0.2	7	1807715	67	29	187	< 0.2	7
1807734	45	24	315	< 0.2	< 1	1807735	45	25	348	< 0.2	< 1
1807754	33	69	1770	< 0.2	2	1807755	32	73	1560	< 0.2	2
1807774	11	6	21	0.4	5	1807775	13	6	22	0.4	5
1807794	42	15	24	< 0.2	53	1807795	39	12	19	< 0.2	53
1807814	18	5	12	< 0.2	25	1807815	19	6	13	< 0.2	29
1807834	24	7	39	0.3	43	1807835	26	6	25	0.3	44
1807854	20	7	5	< 0.2	28	1807855	20	6	3	< 0.2	27
1807874	37	< 5	17	< 0.2	34	1807875	29	< 5	15	< 0.2	34
1807894	47	6	45	< 0.2	48	1807895	51	7	44	< 0.2	49
1807929	57	5	22	< 0.2	40	1807930	51	7	17	< 0.2	40
1808019	77	< 5	91	< 0.2	38	1808020	81	< 5	88	< 0.2	37

11.4 Comments

The Author is satisfied the methods employed for the security, preparation, analytical determination and QA/QC procedures employed are satisfactory for the purpose of the Report. CRM analysis shows data to be suitably accurate over the grade ranges tested. Core and pulp duplicates showed a strong degree of analytic correlation. It is recommended that a more uniform Blank material be used, going forward and that it be tested prior to its use to determine its analytical uniformity.

12 DATA VERIFICATION

A review of all the pertinent and available ROWs from DNRED was completed. The relevant reports published by and for previous workers that contain information relevant to the Project and its immediate surroundings have been reviewed, and the information therein is deemed to be accurate. It is the Author's opinion that the data used in the Report are adequate for the purposes of the Report.

The Author validated the digitally compiled data by performing the following checks:

- Several hole locations provided by Antimony Resources were field-checked during the Author's site visit. The recorded coordinates, dip and azimuth of the collars were corroborated on-site;
- Copies of original assay certificates were obtained directly from Actlabs and compared with the assay values published by Antimony Resources, and were found to be identical;
- Core-interval samples collected by the Author during the site visit. Analytical results from these samples were found to be in close agreement with original results;
- Analytical results from Antimony Resources' core samples were validated using Standards, Blanks and duplicates that are inserted into the sample streams at a ratio of approximately 1:5 (see **Table 11-1**).

12.1 Site Visit

The Author conducted a site visit of the Project on September 14, 2025. The on-site visit, explored the general landscape and surface features of the Project area and examined a number of drill-sites. All the examined drill collars had intact metal identification flags, and were correctly identified. On September 16, 2025, Mr. Langton reviewed drill core from Antimony Resources' 2025 drilling campaign stored at the DNRED's secure core storage facility in Sussex, New Brunswick accompanied by Antimony Resources geologist Wazir Khan. The Sussex facility is surrounded by chain link fencing and a locked gate. It was noted that drill core from the Project is stored in sheltered outdoor core racks and all boxes could be properly identified by metal tags secured to the core boxes. Observation suggest that the core cutting/splitting was well done, sample tags were noted as being in place, and the tags and sampled sections corresponded to those indicated in the core logs. The Author also examined plans and sections of the Bald Hill Project, and reviewed Antimony Resources' logging methods, sample-preparation procedures and sample security protocols with Mr. Khan. During the inspection visit Mr. Langton collected nine (9) core interval samples for analytical verification purposes.

12.2 **Drill-Core Check Sampling**

To verify the analytical results of from Antimony Resources' 2025 drilling programme, nine (9) intervals from four of the sixteen holes were quartered and sent for re-assay at Actlabs. The results of the independent re-assays are presented in **Table 12-1**. Analytical results from the re-sampling were found to be in close agreement with original results.

Table 12-1: Verification Results of Original and Re-sample Analyses

		From	То	Interval	Original	Check-	Original	Check-	Original	Check-
Sample ID	Hole	(m)	(m)	(m)	Assay	Assay	Assay	Assay	Assay	Assay
		(111)	(111)	(111)	Sb ppm	Sb ppm	Au ppb	Au ppb	As ppb	As ppb
1001550		106.60	107.30	0.70	488	106	26	11	3560	33
1001551	BH-25-04	107.30	107.80	0.50	28.8%	29.0%	593	714	225	391
1001552		107.80	108.80	1.00	258	167	<5	13	32	33
1001553	BH-25-08	111.00	112.00	1.00	5620	1270	29	22	773	570
1001554	ВП-25-08	112.00	113.00	1.00	93	82	11	21	164	155
1001555	DU 25 10	262.35	263.25	0.90	356	348	7	14	113	136
1001556	BH-25-10	263.25	264.35	1.10	7250	5630	399	372	6510	8160
1001557	DII 25 14	38.60	39.15	0.55	121	205	804	795	7830	9470
1001558	BH-25-14	39.15	40.00	0.85	9280	9410	408	290	7650	5240

13 MINERAL PROCESSING AND METALLURGICAL TESTING

Antimony Resources has not carried out any processing or metallurgical test work on material from the Project.

The following section summarizes historical metallurgical and process test work was carried out by Rockport in 2011 and 2014 (ROW 477458 and ROW 477665). Antimony Resources does not consider the results presented to meet NI 43-101 standards of reporting as these data have not been validated by a QP.

13.1 Historical Test Work (ROW 477458 and ROW 477665)

Preliminary processing and metallurgical test-work of Bald Hill lithological drill-core and bulk samples was commissioned by Tri-Star in 2011. The work comprised metallurgical test work, preliminary ore-characterization, mineralogical and chemical profiling, and optical ore examinations (ROW 477458 and ROW 477665). A total of 6 samples were collected for metallurgical test work. Particulars of the methods employed and results obtained are summarized herein.

Metallurgic | Test Work (ROW 477458)

FLSmidth Ore Characterization & Process Mineralogy Labs ("FLS") were contracted to perform a base-line characterization of six (6) representative samples. Tri-Star requested bulk mineralogy, basic chemical profiling, textural features of the ore minerals, and preliminary analysis of liberation characteristics and amenability of the ore to gravity concentration and/or flotation. Results of FLS's test work are appended to ROW 477458.

Wardell Armstrong International (WAI) was commissioned by Tri-Star to undertake a programme of metallurgical characterization test work on a sample of antimony "ore" from the Bald Hill deposit.

Testing consisted of detailed chemical and mineralogical characterization of the ore and testwork to determine the response of the material to concentration by means of froth flotation. Results showed that the material responded exceptionally well to the utilized regimes, with grades of up to 68.3% Sb, at recoveries in excess of 99%. WAI concluded that further developmental work would be required in order to optimize the processing methodology.

Results of the two flotation tests performed on the Bald Hill sample showed that recoveries of up to 95.5% with a grade of 70% Sb could be achieved by means of flotation. The levels of antimony recovery achieved were, however, clearly dependent on the quantity of reagents added. The data also showed that the additional reagents had an impact on final concentrate grades with values rising from a maximum of 67.7% in test one to 70.3% in test two. With respect to the arsenic, the results showed that when antimony grades were at their highest, grades of circa 0.80% As at 82.5% recovery were achieved. Given that the mineralogy indicated that approximately 50% of the arsenic bearing arsenopyrite was associated with the stibnite, it is unlikely that this amount could be reduced significantly.

Bulk Sample (ROW 477665)

On December 8th, 2013, two 0.75 tonne bulk samples of antimony mineralization, were collected from the previously excavated BH-TR-11-01 trench (see ROW 477222), which had been subsequently filled in. One sample came from the "West Zone" and one from the "East Zone" in the trench.

The East Zone comprises fine grained, disseminated stibnite and quartz intergrowths in fractures and narrow "stockworks". Very little brecciation is observed and the rock type on either side of the mineralized zone is altered rhyolite. The East Zone mineralized sample material graded 6.84% Sb.

The West Zone antimony mineralization, located between pink rhyolite and black shale country rock, is coarse-grained, with stibnite crystals up to 2.0 cm, and contains a higher percentage of massive mineralization than the East Zone. This zone contains brecciated clasts of both host rock types in a matrix of stibnite and quartz, suggesting brittle faulting/fracturing during mineralization. Overall, the stibnite mineralization occurs primarily as veins (brecciated host rock clasts within stibnite +/-quartz matrix), vein stockworks, fractures and disseminations. The West Zone mineralized sample material graded 8.17% Sb. The bulk samples were sent to RPC Science and Engineering Laboratories ("RPC") in Fredericton, NB for metallurgical test work.

Antimony Resources retained RPC to complete a preliminary scoping study to examine opticalsorting methods that could be adopted, on a commercial scale, to process potential feed from the Bald Hill Project antimony deposit.

The test work at RPC involved crushing, screening and hand-sorting conducted by Rockport geologists on the two bulk samples.

Once crushed and screened to $-6" + \frac{1}{2}"$ size range, the material from each bulk sample was respectively hand-sorted and categorized into: "massive mineralization"; "good mineralization"; "poor mineralization", and "waste", based on visual estimation.

Each category of sample produced was subsequently crushed and screened by RPC to a $-2" + \frac{1}{2}"$ size range and again sub-sampled for chemical analyses.

The prepared $-2'' + \frac{1}{2}''$ size range samples were again sorted according to mineralization (i.e., massive, good, poor and waste). All fractions were then re-weighed and subjected to chemical analyses by RPC.

Mass balance flow sheet designs and results are presented in Figure 13.1 and Table 13-1.

East Sample:

The East sample consisted of 1.1% "massive" mineralization, 55.9 % "good" mineralization, 24.8% crushed fines and 2.1 % natural fines, with "waste" comprising 0.5 % (**Table 13-1a**).

The highest Sb grade obtained (55.94%) was in the "good-massive" fraction; however, this represents only 2.5 % of the total Sb and 0.3 % of the total mass. The total "massive" fraction contained 47.77 % Sb at a distribution of 7.4 %. Most of the Sb finally reported to the "good" fraction (60.7 % distribution) at a Sb grade of 7.42%. A large fraction of Sb was also lost to the Crushed Fines fraction (24.0 % distribution), which graded of 6.61% Sb.

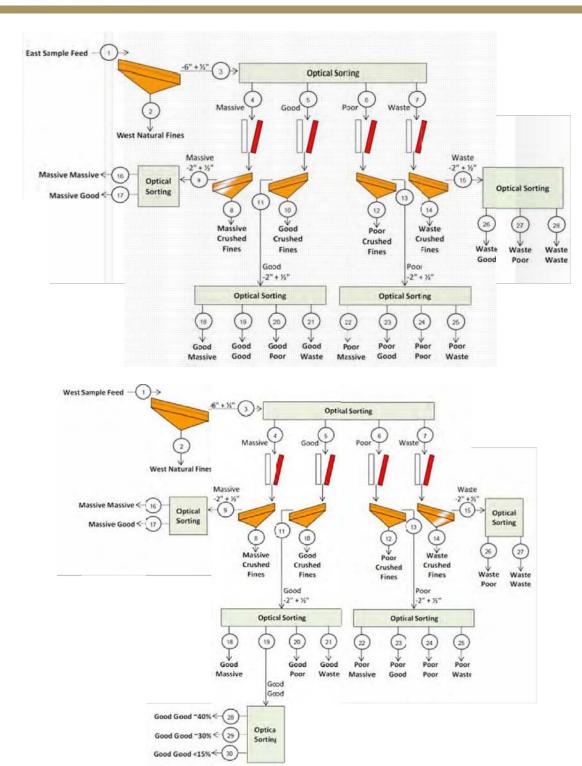


Figure 13.1: Mass balance flow sheets for East and West bulk samples (from RPC Report MIS-J1915, Assessment Report 477665)

Table 13-1: Mass Balance Results from East (a) and West (b) Bulk Samples (a)

No.	Stream Name	Mass (%)	Sb Grade (%)	Sb Dist. (%)	No.	Stream Name	Mass (%)	Sb Grade (%)	Sb Cist. (%)
1	East Sample Feed	100.0	6.84	100.0	18	Good Massive	0.3	55.94	2.5
2	East Natural Fines	2.1	7.39	2.3	19	Good Good	360	8.71	45.9
3	-6" + 1/2"	97.9	6.82	97.7	20	Good Poor	3.3	4.50	2.5
4	Massive	2.4	21.25	7.4	21	Good Waste	0.0	2.34	0.02
5	Good	53.7	8.40	66.0	22	Poor Massive	0.1	37.41	0.5
6	Poor	40.7	4.02	23.9	23	Poor Good	185	4.91	13.3
7	Waste	1.1	2.09	0.3	24	Poor Poor	11.4	1.75	2.9
8	Massive Crushed Fines	0.5	21.23	5.8	25	Poor Waste	0.1	1.43	0.02
9	Massive -2" + 1/3"	1.9	17.66	5.0	26	Waste Good	0.2	3.83	0.1
10	Good Crushed Fires	13.5	7.62	15.1	27	Waste Foor	0.5	2.17	0.2
11	Good -2" + 1/3"	40.1	8.67	50.9	28	Waste Waste	0.3	0.82	C.04
12	⊃oor Crushed Fines	10.5	4.65	7.2	8+10+12+14	Total East Crushed Fines	248	6.61	24.0
13	Poor -2" + 1/3"	30.1	3.80	16.7	16+18+22	Total East Massive	1.1	47.77	7.4
14	Waste Crushed Fines	0.2	2.40	0.1	17+19+23+26	Total East Good	55 9	7.42	60.7
15	Waste -2" + 1/2"	1.0	2.03	0.3	20+24+27	Total East Poor	156	2.43	5.6
16	Massive Massiva	0.7	45.39	4.4	21+25+28	Total East Waste	0.5	1.12	0.1
17	Massive Good	1.2	7.83	1.4					

(b)

No.	Stream Name	Mass (%)	Sb Grade %)	Sb Dist. (%)	No.	Stream Name	Mass (%)	Sb Grade (%)	Sb Dist. (%)
1	West Sample Feed	100.0	8.17	100.0	19	Good Good	21.7	16.15	42.9
2	West Natural Fines	2.4	9.48	2.8	20	Good Poor	17.6	2.43	5.3
3	-6" + 1/2"	97.6	8.14	97.2	21	Good Waste	(.3	0.95	D.04
4	Massive	2.8	25.40	8.8	22	Poor Massive	(.2	43.74	1.3
5	Good	51.6	13.60	66.9	23	Poor Good	5.4	13.45	8.9
6	Poor	41.7	4.12	21.1	24	Poor Poor	19.1	1.98	4.6
7	Waste	1.4	2.26	0.4	25	Poor Waste	7.1	0.85	0.7
8	Massive Crushed Fines	0.6	25.45	1.8	26	Waste Poor	(.5	4.61	0.3
9	Massive -2" + 1/2"	2.3	25.14	7.0	27	Waste Waste	0.7	0.92	0.1
10	Good Crushed Fines	11.3	11.16	15.5	28	Good Good ~40% Stibnite	3.6	30.58	13.6
11	Good -2" + 1/2"	40.3	10.44	51.4	29	Good Good ~30% Stibnite	€.6	21.25	17.1
12	Poor Crushed Fines	9.8	4.57	5.5	30	Good Good <15% Stibnite	11.5	8.68	12.2
13	Poor -2" + 1/2"	32.0	3.98	15.6	31=8+10+12+14	Total West Crushed Fines	21.9	8.51	22.8
14	Waste Crushed Fines	0.2	1.47	0.04	32=16+18+22	Total West Massive	1.5	43.55	8.3
15	Waste -2" + 1/2"	1.2	2.40	0.3	33=17+19+23	Total West Good	23.7	15.69	55.1
16	Massive Massive	0.7	42.90	3.7	34=20+24+26	Total West Poor	37.3	2.23	10.2
17	Massive Good	1.6	17.04	3.3	35=21+25+27	Total West Waste	8.2	0.86	0.9
18	Good Massive	0.6	44.23	3.2	2+31+32+33	Total Excl. Poo- & Waste	54.4	13.23	B9.0

West Sample:

The West sample contained 1.5 % "massive" material, 28.7 % "good", 37.3 % "poor" material, 21.9% crushed fines and 2.4% natural fines, with "waste" comprising 8.2 %.

The highest Sb grade obtained (44.23%) was in the "good-massive" fraction; however, the Sb distribution to this fraction was only 3.2%, representing just 0.6 % of the total mass. The Sb content distributed mainly into the "good" fractions (55.1% total distribution grading 15.69%

Sb), although a significant portion also reported to the "crushed fines" fraction (22.8% grading 8.51% Sb). The Sb grade of the "massive" fraction was 43.55 % (8.3 % mass distribution).

Notably, 89.0 % total Sb distribution in 54.4 % of the mass (rejecting 45.6 % mass) at a total grade of 13.23 % Sb was achieved through liberation to -2" with two stages of sorting. The product included natural-fines, crushed-fines, and all "massive" and "good" material.

Higher grades were achieved for both samples with greater liberation (i.e., finer grind); however, increased liberation generates a larger portion of finer material and therefore seemingly higher relative recovery percentages in the less liberated (-6" + $\frac{1}{2}$ ") fractions at low (<12 %) Sb grades.

The test-work completed by RPC demonstrated the potential to pre-concentrate (beneficiate) material similar to the west bulk sample, as 89.0% recovery was achieved, while decreasing the mass by 45.6 %.

Complete documentation of the RPC's preliminary metallurgical test work completed during 2013 - 2014 is included as Appendix VI in ROW 477665.

14 MINERAL RESOURCE ESTIMATES

The historical work done on the Property to date has been of the early exploratory nature and there are currently no defined NI 43-101 mineral resources or reserves on the Property.

A 2010 Technical Report by Conestoga-Rovers & Associates (CRA) of Fredericton, NB (MacDonald, 2010) included an estimate of potential quantity and grade of the antimony mineralization at the Bald Hill Property (**Table 14-1**). Details of the methodology employed for the estimate calculation are included in the 2010 Technical Report by CRA (MacDonald, 2010). The potential quantity and grade estimates were completed by CRA using a manual polygonal method to estimate antimony grades and tonnages for each composited interval block ("block"). Composited intervals were calculated for each drill hole and surface outcrop. Each interval had to meet the criteria of being greater than or equal to the minimum true thickness of 1.0 metres, and to be greater than or equal to the cut-off grade of 1% or 2% antimony.

Zone	Metric Tonnes	Grade (%5b)
Main Zone	700,000 to 900,000	4.33% to 5.40%
Parallel Zone	25,000 to 100,000	2.13% to 3.19%
Total	725,000 to 1,000,000	4.11% to 5.32%

Table 14-1: Potential Quantity and Grade Ranges* (from MacDonald, 2010)

*The reader is cautioned that this potential quantity and grade estimate are strictly conceptual in nature as there has been insufficient exploration to define any mineral resources on the Property. Furthermore, it is uncertain whether further exploration will result in the target being delineated as a mineral resource.

Antimony Resources commissioned Orix Geoscience Inc. of Toronto Ontario ("Orix") to re-evaluate the potential exploration target, based on the additional data from the 2025 drilling programme. Orix completed the potential quantity and grade estimates using a volume estimate from a 3D block model prepared by Orix using results from over 40 historical and new drill holes, totalling over 9,000 m. An estimated grade range of 3% to 4% Sb, over an average width of 3 to 4 metres was used, and a density of 2.65 was calculated for the mineralized zone based on the ratio of stibnite to quartz in the breccia. The estimate of potential tonnage and grade by Orix is summarized in **Table 14-2**.

Although it is understood that the quantity and grade calculations are conceptual in nature, tit should be noted that:

- 1. Realistic minimum mining widths for the Bald Hill type deposit would likely be closer to 2.0 m, rather than 1.0 m;
- 2. CRA used lower cut-off grades of 1% to 2% Sb to calculate their quantity and grade ranges, whereas Orix employed a lower cut-off grade of 0.05% Sb. Neither estimate applied a high-assay cut-off value for their estimate.

Table 14-2: Potential Quantity and Grade Ranges* (from Orix, 2025)

7000	Volume (m³)	Tommoo	Tonnes Antimony			
Zone	volume (m³)	Tonnes	at 3.0% Sb	at 4.0% Sb		
1	2,040,200	769,887	23,097	30,795		
2	4,349,300	1,641,245	49,237	65,650		
3	333,080	125,691	3,771	5,028		
4	466,730	176,125	5,284	7,045		
Totals	7,189,310	2,712,947	81,388	108,518		

^{*}The reader is cautioned that this potential quantity and grade estimate is strictly conceptual in nature as there has been insufficient exploration to define a mineral resource on the Property. Furthermore, it is uncertain whether further exploration will result in the target being delineated as a mineral resource.

ITEMS 15 TO 22 – NOT APPLICABLE TO THIS REPORT

23 ADJACENT PROPERTIES

Various other Junior exploration/mining companies hold mineral rights adjacent to the Project, all of which host greenfield exploration projects prospective for antimony and base- and precious-metals. Some of these properties host similar style antimony mineralization with similar geological and structural characteristics, supporting the interpretation that the Bald Hill deposit may be part of a larger, regional mineralization system; however, this has not been verified by a QP and Antimony Resources does not consider that the mineralization on the adjacent properties is indicative of mineralization on the Project.

24 OTHER RELEVANT DATA AND INFORMATION

The Author is not aware of any additional technical data that might lead an accredited investor to a conclusion contrary to that set forth in this report.

25 INTERPRETATION AND CONCLUSIONS

Antimony Resources is in the process of exploring the Bond Road mineral concession in the western Annidale Belt of south-central New Brunswick (the Project) to evaluate it for its potential to host a high-quality antimony deposit with reasonable prospects for economic extraction. A preliminary diamond-drilling campaign comprising 16 holes totalling 3,160 m has been completed and has corroborated the existence of a antimony-mineralized zone underlying the Project.

The exploration work shows that the main zone mineralization on the Project comprises an antimony vein system hosted by sediments, tuffs and rhyolites of the Carpenter Brook Formation and Bald Hill Suites, north of the Taylors Brook Fault. The fault-fill type veining trends generally northwest, orthogonal to the regional north-easterly structural trend, and is interpreted to be associated with a fault system.

Antimony Resources' drilling on the Bald Hill main grid has confirmed the Sb mineralization over a significant area of approximately 700 m along strike surface and to 400 m depth. Historical documentation of surface mineralization and soil geochemical anomalies indicate that the mineralization extends for at least 1,500 m, along strike from the delineated mineralized zones. A 2014 trenching program by Rockport Mining Corp., located approximately 1.0 km along strike to the southeast from the main zone, exposed new antimony mineralization grading 9.04% Sb over 2.60 metres (Dahn, 2015 – ROW 477853).

The work completed by Antimony Resources on the Bald Hill Project substantiates that it is prospective for an economic antimony deposit. The Project is a valid exploration target that remains largely untested with respect to its full dimensions and its regional structural relationships.

26 RECOMMENDATIONS

The Author believes that the Bald Hill Project is one of merit, warranting further exploration and investigation. Efforts should focus on expanding the extent of the known mineralized zones by following up on known surface showings, historical antimony-in-soil anomalies, and induced polarization (IP) and electromagnetic (EM) geophysical anomalies that have associated anomalous soil-assays.

The priority targets are the main Bald Hill mineralized zone and the so-called Southeast Extension.

The recommended exploration programmes should aim to establish an NI 43-101 antimony Mineral Resource in the Inferred Mineral Resource category through additional surface excavation and diamond drilling, including drilling of the known zones at closer drill spacing.

The two priority areas that most warrant this work are:

- 1. the main Bald Hill zone, and;
- 2. the Southeast Extension zone, approximately 1.0 km southeast of the Bald Hill main zone.

An initial Phase I exploration budget totalling approximately \$200,000 is recommended in order to complete an initial shallow-drilling campaign, consisting of 8 holes totalling 750 m on the Southeast Extension and to carry out further surface exploration work (i.e., soil sampling and pre-drill preparation) at the main Bald Hill deposit.

The Phase II programme, which is contingent on positive results of the Phase I exploration programme, should be designed to test both the main zone and the prospective Southeast Extension. A 40-hole, 5,850 metre diamond-drilling programme is proposed for Phase II (a). Depending on the success of Phase II(a) drilling, the defined mineralization grade and/or thickness controls will be applied to a similarly budgeted Phase II(b) drilling campaign. The objective of the Phase II drilling programme should aim to allow calculation of a NI 43-101 maiden Mineral Resource Estimate.

The estimated budget for the recommended Phase II(a) and –(b) programmes is \$3,000,000 (\$1,500,000 for each).

A review of available data suggests that the Project contain a potential antimony resource, the true grade and amount of which have yet to be determined and should be the subject of continued exploration.

The Author is of the opinion that the recommended exploration programme is appropriate, consistent with those of other mineral exploration programmes, and are required in order to help determine the mineral potential of the Property.

27 REFERENCES

Banks P. and Langton J.P. 2014

National Instrument 43-101 Technical Report, Bald Hill Antimony Project (Claim Group 5061) Southern New Brunswick, CANADA NTS Map Sheets 21G/09 and 21H/12. Prepared for Tri-Star Antimony Canada Inc.

Carlin, J.F. 2010.

Antimony, U.S. Geological Survey, Mineral Commodity Summaries, January 2010.

Craig, J.R. and Vaughan, D.J. 1994.

Ore Microscopy and Ore Petrography, Second Edition, John Wiley & Sons, Inc., New York. Environment Canada, 2010 on-line (Climate Data): http://atlanticweb1.ns.ec.gc.ca/climatecentre/default.asp?lang=En&n=7A6129C7-1

Dahn, R. 2015

Assessment Report on Bald Hill Claim Group, Wickham-Bald Hill-Bond Road Area. Department of Natural Resources and Energy Development, Report of Work 477853.

Hornbrook, E.H.W. and Friske, P.W.B. 1988.

Regional stream and lake sediment and ater geochemical data, southern New Brunswick. Geological Survey of Canada, Open File 1638

Johnson, S.C., McLeod, M.J., Fyffe, L.R. and Dunning, G.R. 2009.

Stratigraphy, geochemistry, and geochronology of the Annidale and New River belts, and the development of the Penobscot arc in southern New Brunswick. In Geological Investigations in New Brunswick for 2008. Edited by G.L. Martin. New Brunswick Department of Natural Resources; Minerals, Policy and Pl nning Division, Mineral Resources Report 2009-2, p. 141-218.

MacDonald, H. 2010.

National Instrument 43-101 Technical Report Bald Hill Antimony Project Southern New Brunswick, Canada, NTS Map Sheets 21G/09 AND 21H/12. Conestoga-Rovers & Associates, Fredericton, New Brunswick (Canada), f r Antimony Resources Mining Corporation.

McLeod, M.J., Ruitenberg, and Krogh, T.E. 1992.

Geology and U-Pb geochronology of the Annidale Group, southern New Brunswick: Lower Ordovician volcanic and sedimentary rocks formed near the southeastern margin of Iapetus Ocean. Atlantic Geology, Volume 28, p. 181-192.

MRB & Associates, 2003.

Technical Report, Antimony Mineral Property, Central Newfoundland, NTS 2D/11, prepared for VVC Exploration Corp., December 19, 2003.

Mineral Information Institute, 2010.

Antimony website: http://www.mii.org/Minerals/photoant.html National Research Council Canada, 2010.

Panteleyev, A., 2005.

Stibnite Veins and Disseminations, 109, British Columbia Geological Survey, May 30, 2005.

Seal, R.R., II, Clark, A.H., and Morrissy, C.J. 1988.

Lake George, southwestern New Brunswick: a Silurian, multi-stage, polymetallic (SB-W-Mo-Au- base metal) hydrothermal centre; in Recent Advances in the Geology of Granite-Related Mineral Deposits; Taylor, R.P. and Strong, D.F., Editors, Canadian Institute of Mining and Metallurgy, CIM Special Volume 39, pages 252-264.

Seal, R.R., Bliss, J.D., and Campbell, D.L. 1995.

Stibnite-Quartz Deposits, in Preliminary compilation of descriptive geo-environmental mineral deposit models, U.S. Geological Survey, Open File Report 95-831, p. 204-208.

Thorne, K. and McLeod, M. 2003.

Gold deposits associated with felsic intrusions in southwestern New Brunswick – Field guidebook. New Brunswick Department of Natural Resources and Energy; Minerals, Policy and Planning Division, Open File 2003-4, 83p.

28 SIGNATURE PAGE

John Langton, M.Sc., P.Geo.

This certificate applies to the NI 43-101 technical report titled "NATIONAL INSTRUMENT 43-101 TECHNICAL REPORT: BALD HILL ANTIMONY PROJECT, SOUTHERN NEW BRUNSWICK, CANADA NTS 21G/09" (the "Technical Report"), prepared for Antimony Resources Corp., dated October 24, 2025, with an effective date of September 16, 2025.

I, John Langton, M.Sc., P. Geo., as the Author of the Technical Report, do hereby certify that:

- 1. I am a Geologist and consultant with JPL GeoServices Inc., with an office at 133 Graveyard Hill, Stanley, New Brunswick, Canada, E6B 1T9.
- 2. I am a graduate of the University of New Brunswick (1985) with a B.Sc. in Geology, and Queen's University, Kingston, Ontario (1993) with an M.Sc. in Geological Sciences, and I have practiced my profession continuously since 1985.
- 3. I am a member in good standing of APEGNB (#8766); PGO (#3967) and EGBC (#64373).
- 4. My relevant experience for the purpose of the Technical Report is over eighteen years of consulting in the field of mineral exploration.
- 5. I have read the definition of "qualified person" set out in the NI 43-101 Standards of Disclosure for Mineral Projects ("NI 43-101") and certify that, by reason of my education, affiliation with a professional association, and past relevant work experience, I fulfil the requirements to be a qualified person for the purposes of NI 43-101.
- 6. I am independent of Antimony Resources Corp. applying all the tests in Section 1.5 of NI 43-101.
- 7. I am the author and responsible for the preparation of all Items of the Technical Report.
- 8. I visited the Property that is the subject of the Technical Report, on September 15-16, 2025.
- 9. I co-authored the 2014 technical report (Banks and Langton, 2014) on the Project that is the subject of this Technical Report.
- 10. I have read NI 43-101 and the sections of the Technical Report for which I am responsible have been prepared following NI 43-101 rules and regulations.
- 11. As at the effective date of the Technical Report, to the best of my knowledge, information and belief, the Technical Report contain all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

Dated this 28th day of October, 2025.

(Signed) John P. Langton, M.Sc., P. Geo.,