The Complete Picture — Coq Formalization and Commentary

Packaged theorems for nested hypergraphs, weighted tensors, dynamics, and universal connectivity

```
The complete picture (ASCII version):

For all n >= 1 and all x1,...,xn : U,
   if R_n(x1,...,xn) then there exist
   NG : NestedGraph, w : R, t : Time
   such that:
        - (x1,...,xn) ∈ hyperedges(outer_graph(NG)) [set membership; see code]
        - NestedWeightedTensor(NG, x1,...,xn, t) = w
        - There exists f : NestedGraph × Time -> NestedGraph with
        DynamicPreservation(f, NG, t, R_n)
        - For all x : U, there exist m >= 1 and y1,...,y_{m-1} : U such that
        R_m(x, y1,...,y_{m-1}).
```

Coq Source (Complete_Picture.v)

```
Complete_Picture.v
 ===========
 Two variants of the "Complete Picture" packaging theorems.
 1) LIST-ARITY VERSION (matches your working code)
 2) VECTOR-ARITY VERSION (type-safe arity, uses List.In explicitly to avoid clash)
* )
From Coq Require Import List Arith PeanoNat.
Import ListNotations.
(* ========== *)
(* ========== 1) LIST-ARITY VERSION ========== *)
(* ======== *)
Section ListArity.
 Parameter U: Type.
 Definition Hyperedge := list U.
 Record Graph := { hedges : list Hyperedge }.
 Record NestedGraph := {
   outer_graph : Graph;
   inner_graph : Hyperedge -> option Graph
 Parameter Time Weight: Type.
 Parameter NestedWeightedTensor : NestedGraph -> Hyperedge -> Time -> Weight.
 Definition Evolution := NestedGraph -> Time -> NestedGraph.
 Definition NaryRelation (n:nat) := Hyperedge -> Prop.
 Definition DynamicPreservation
   (n:nat) (Rel : NaryRelation n) (f:Evolution) (NG:NestedGraph) (t:Time) : Prop :=
   forall e, Rel e -> In e (hedges (outer_graph NG))
         -> In e (hedges (outer_graph (f NG t))).
 Axiom relation_implies_structure :
   forall (n:nat) (Rel:NaryRelation n) (xs:Hyperedge),
```

```
n > 0 \rightarrow length xs = n \rightarrow Rel xs \rightarrow
    exists (NG:NestedGraph) (w:Weight) (t:Time),
      In xs (hedges (outer_graph NG))
      /\ NestedWeightedTensor NG xs t = w.
Axiom structure_implies_dynamics :
  forall (n:nat) (Rel:NaryRelation n) (xs:Hyperedge) (NG:NestedGraph) (t:Time),
    Rel xs ->
    In xs (hedges (outer_graph NG)) ->
    exists (f:Evolution), DynamicPreservation n Rel f NG t.
Axiom universal_connectivity :
  forall (x:U),
    exists (m:nat) (Relm:NaryRelation m) (ys:Hyperedge),
      m > 0 /\ length ys = m /\ In x ys /\ Relm ys.
Theorem Complete_Picture :
  forall (n:nat) (Rel:NaryRelation n) (xs:Hyperedge),
    n > 0 \rightarrow length xs = n \rightarrow Rel xs \rightarrow
    (exists (NG:NestedGraph) (w:Weight) (t:Time),
        In xs (hedges (outer_graph NG))
     /\ NestedWeightedTensor NG xs t = w)
    /\ (exists (NG:NestedGraph) (t:Time),
            In xs (hedges (outer_graph NG))
          -> exists (f:Evolution), DynamicPreservation n Rel f NG t)
    \label{lem:nat} $$ \ (\mbox{forall x:U, exists (m:nat) (Relm:NaryRelation m) (ys:Hyperedge),} $$
            m > 0 /\ length ys = m /\ ln x ys /\ Relm ys).
Proof.
  intros n Rel xs Hn Hlen HRel.
  destruct (relation_implies_structure n Rel xs Hn Hlen HRel)
    as [NG [w [t [Hin Hwt]]]].
  assert (Hdyn_pack:
    exists NG' t',
      In xs (hedges (outer_graph NG')) ->
      exists f, DynamicPreservation n Rel f NG' t').
  { exists NG, t. intro Hin'.
    destruct (structure_implies_dynamics n Rel xs NG t HRel Hin') as [f Hpres].
    now exists f. }
  split.
  - now exists NG, w, t.
  - split.
    + exact Hdyn_pack.
    + intro x. apply universal_connectivity.
Qed.
Theorem Complete_Picture_strong :
  forall (n:nat) (Rel:NaryRelation n) (xs:Hyperedge),
    n > 0 \rightarrow length xs = n \rightarrow Rel xs \rightarrow
    (exists (NG:NestedGraph) (w:Weight) (t:Time) (f:Evolution),
        In xs (hedges (outer_graph NG))
     /\ NestedWeightedTensor NG xs t = w
     /\ DynamicPreservation n Rel f NG t)
    /\ (forall x:U, exists (m:nat) (Relm:NaryRelation m) (ys:Hyperedge),
            m > 0 /\ length ys = m /\ In x ys /\ Relm ys).
Proof.
  intros n Rel xs Hn Hlen HRel.
  destruct (relation_implies_structure n Rel xs Hn Hlen HRel)
    as [NG [w [t [Hin Hwt]]]].
  {\tt destruct\ (structure\_implies\_dynamics\ n\ Rel\ xs\ NG\ t\ HRel\ Hin)}
    as [f Hpres].
  split.
  - exists NG, w, t, f. repeat split; assumption.
  - intro x. apply universal_connectivity.
Oed.
Corollary Complete_Picture_binary :
  forall (Rel2:NaryRelation 2) (xy:Hyperedge),
    length xy = 2 \rightarrow Rel2 xy \rightarrow
    exists NG w t f,
      In xy (hedges (outer_graph NG))
```

```
/\ NestedWeightedTensor NG xy t = w
    /\ DynamicPreservation 2 Rel2 f NG t.
 Proof.
   intros Rel2 xy Hlen Hrel.
   assert (Hpos : 2 > 0) by exact (Nat.lt_0_succ 1).
   destruct (Complete_Picture_strong 2 Rel2 xy Hpos Hlen Hrel) as [H _].
   exact H.
 Qed.
End ListArity.
(* ======== *)
(* ========== *)
From Coq Require Import Vectors. Vector.
Import VectorNotations.
Section VectorArity.
 Parameter UV : Type.
 Definition HEdge (n:nat) := Vector.t UV n.
 Definition SigEdge := { n : nat & HEdge n }.
 Record GraphV := { hedgesV : list SigEdge }.
 Record NestedGraphV := {
   outer_graphV : GraphV;
   inner_graphV : SigEdge -> option GraphV
 }.
 Parameter TimeV WeightV: Type.
 Parameter NestedWeightedTensorV : NestedGraphV -> SigEdge -> TimeV -> WeightV.
 Definition EvolutionV := NestedGraphV -> TimeV -> NestedGraphV.
 Definition NaryRelV (n:nat) := HEdge n -> Prop.
 (* IMPORTANT: use List.In to avoid the vector In/arity mismatch *)
 Definition DynamicPreservationV
   (n:nat) (Rel:NaryRelV n) (f:EvolutionV) (NG:NestedGraphV) (t:TimeV) : Prop :=
   forall (e:HEdge n),
     Rel e ->
     List.In (existT _ n e) (hedgesV (outer_graphV NG)) ->
     List.In (existT _ n e) (hedgesV (outer_graphV (f NG t))).
 Axiom relation_implies_structureV :
   forall (n:nat) (Rel:NaryRelV n) (e:HEdge n),
     n > 0 \rightarrow Rel e \rightarrow
     exists (NG:NestedGraphV) (w:WeightV) (t:TimeV),
       List.In (existT _ n e) (hedgesV (outer_graphV NG))
       /\ NestedWeightedTensorV NG (existT _ n e) t = w.
 Axiom structure_implies_dynamicsV :
   forall (n:nat) (Rel:NaryRelV n) (e:HEdge n) (NG:NestedGraphV) (t:TimeV),
     Rel e ->
     List.In (existT _ n e) (hedgesV (outer_graphV NG)) ->
     exists (f:EvolutionV), DynamicPreservationV n Rel f NG t.
 Axiom universal_connectivityV:
   forall (x:UV),
     exists (m:nat) (Relm:NaryRelV m) (e:HEdge m),
       /\ List.In x (Vector.to_list e)
       /\ Relm e.
 Theorem Complete_Picture_V :
   forall (n:nat) (Rel:NaryRelV n) (e:HEdge n),
     n > 0 \rightarrow Rel e \rightarrow
     (exists (NG:NestedGraphV) (w:WeightV) (t:TimeV),
```

```
List.In (existT _ n e) (hedgesV (outer_graphV NG))
       /\ NestedWeightedTensorV NG (existT _ n e) t = w)
      /\ (exists (NG:NestedGraphV) (t:TimeV),
              List.In (existT _ n e) (hedgesV (outer_graphV NG))
           -> exists (f:EvolutionV), DynamicPreservationV n Rel f NG t)
      /\ (forall x:UV, exists (m:nat) (Relm:NaryRelV m) (e':HEdge m),
              m > 0 /\ List.In x (Vector.to_list e') /\ Relm e').
 Proof.
   intros n Rel e Hn HRel.
   destruct (relation_implies_structureV n Rel e Hn HRel)
     as [NG [w [t [Hin Hwt]]]].
    assert (Hdyn_pack :
     exists NG' t',
        List.In (existT _ n e) (hedgesV (outer_graphV NG')) ->
        exists f, DynamicPreservationV n Rel f NG' t').
    { exists NG, t. intro Hin'.
      destruct (structure_implies_dynamicsV n Rel e NG t HRel Hin') as [f Hpres].
      now exists f. }
    split.
    - now exists NG, w, t.
    - split.
      + exact Hdyn_pack.
      + intro x. apply universal_connectivityV.
 Qed.
 Theorem Complete_Picture_V_strong :
    forall (n:nat) (Rel:NaryRelV n) (e:HEdge n),
      n > 0 \rightarrow Rel e \rightarrow
      (exists (NG:NestedGraphV) (w:WeightV) (t:TimeV) (f:EvolutionV),
         List.In (existT _ n e) (hedgesV (outer_graphV NG))
       /\ NestedWeightedTensorV NG (existT _ n e) t = w
       /\ DynamicPreservationV n Rel f NG t)
      /\ (forall x:UV, exists (m:nat) (Relm:NaryRelV m) (e':HEdge m),
              m > 0 /\ List.In x (Vector.to_list e') /\ Relm e').
 Proof.
    intros n Rel e Hn HRel.
   destruct (relation_implies_structureV n Rel e Hn HRel)
      as [NG [w [t [Hin Hwt]]]].
   destruct (structure_implies_dynamicsV n Rel e NG t HRel Hin)
     as [f Hpres].
    split.
    - exists NG, w, t, f. repeat split; assumption.
    - intro x. apply universal_connectivityV.
  Qed.
End VectorArity.
```

What the Coq Code Proves

The Coq file proves a packaged theorem suite that turns relational truths into existential witnesses for structure, dynamics, and connectivity. Under three axioms, any valid n-ary relation Rel on a hyperedge implies:

- a NestedGraph NG with the hyperedge in its outer graph, a time t, and a weight w from the NestedWeightedTensor;
- an evolution f that preserves Rel-hyperedges (DynamicPreservation);
- universal participation of all entities in some relation.

The strong variants unify these under the same NG and t, and the vector form adds type-safety. Proofs destruct axioms to construct witnesses; the binary corollary specializes to n = 2.

Meaning of the Proof

The theorems provide a usable interface: from Rel e you obtain witnesses for topology (NG), annotation (w), evolution (f), and connectivity. Relations are operational—fit for reasoning in physics or social models. Lists support variable arity; vectors enforce arity at the type level. The strong form emphasizes coherence: structure and dynamics are packaged together, embodying "relation as the unit of reality."

Significance of the Proof

This suite acts as a contract for UCF/GUTT-style instantiations: given the axioms, any domain instantiation yields a coherent model. Dual arity demonstrates robustness and scalability. It synthesizes prior propositions into a machine-verifiable backbone, making the relational theory computable and suitable for invariants, simulations, and extraction to programs.

Implications of the Proof

- Representational completeness: true relations embed concretely in nested hypergraphs.
- Dynamical adequacy: preservation enables stability metrics (Φ) and forecasting.
- No isolation: global connectivity guarantees every entity participates.
- Practical workflow: destruct witnesses for proofs and simulations; instantiate U, Rel_n, Weight, Time, and f for concrete domains (atoms/bonds, agents/trust, particles/interactions).
- Multi-scale modeling: inner graphs carry mechanisms/contexts; outer graphs capture macro ties.

Author's Note

"I've already test driven this engine... which is to be expected... I'm happy with the ride."