Beyond Alena: Predictions Uniquely Enabled by the UCF/GUTT

Filling the Local, Memoryless Gaps with Relational Nonlocality, Hysteresis, and Layer Coupling Prepared for integration into the UCF/GUTT specification

Date: August 17, 2025

Abstract. Alena's tensor construction, as typically presented in a local, classical GR/QFT formalism, induces an effective metric $h_{\alpha\beta}$ from the field tensor $F_{\mu\nu}$ by pointwise contractions. In contrast, the UCF/GUTT relational program replaces pointwise induction with kernelized, potentially nonlocal operators and introduces path dependence and cross-layer semantics through Nested Relational Tensors (NRTs). This note formalizes the containment (Alena as the δ -kernel, memoryless limit of UCF/GUTT) and lists concrete predictions that follow from UCF/GUTT but not from the local Alena model: vacuum scale dispersion, afterglow birefringence, gradient-texture birefringence, cross-layer anisotropy in near-surface "vacuum", thresholded propagation phases, retarded nonlocal stress sharing, strong-field regularization, and multi-field crosstalk without ad-hoc couplings. Each prediction is paired with a laboratory or astrophysical test and falsification criterion.

Conventions & Setup

Metric signature (-,+,+,+). Electromagnetic invariant I \equiv (1/2) F_{ $\mu\nu$ }F^{ $\mu\nu$ } = B² - E²/c². Standard EM Lagrangian: L_EM = -(1/4 μ) F_{ $\mu\nu$ }F^{ $\mu\nu$ }. Kernelized induction:

$$H_{\alpha\beta}(x) = \text{Norm}\left[\int F_{\alpha\mu}(x) K^{\mu\nu}(x, x') F_{\nu\beta}(x') d^4x'\right]$$

$$\xi^{-1}(x) = \frac{1}{4} g^{\alpha\beta}(x) h_{\alpha\beta}(x)$$

Memory law (effective hysteresis):

$$\dot{\xi}(t) = a_1 I + a_2 \partial_t I + b \int_0^\infty e^{-s/\tau} I(t-s) \, ds - c \, \xi$$

Conceptual Figure: δ -kernel (single cone) vs kernelized (fan of cones)

Reduction Theorem (Containment)

If $K^{\mu\nu}(x,x') = g^{\mu\nu}(x) \delta = (x-x')$ and ξ is static, the UCF/GUTT induced $h_{\alpha\beta}$, ξ , $\Lambda_{\rho} \propto F_{\mu\nu}F^{\mu\nu}$, and $T_{\alpha\beta}$ match the Alena forms. Stress—energy:

$$T_{\alpha\beta} = \varrho U_{\alpha}U_{\beta} - (c^{2}\varrho + \Lambda_{\rho})(g_{\alpha\beta} - \xi h_{\alpha\beta})$$

Predictions Beyond Alena (Gap \rightarrow Fill \rightarrow Test)

Vacuum Scale (Frequency) Dispersion. $K(\omega,k) \Rightarrow h(\omega,k)$. Expect tiny arrival-time spreads and polarization drifts vs frequency in strong structured fields (magnetars; petawatt pump–probe).

Memory & Afterglow Birefringence. Post-pulse anisotropy decays $\propto e^{-t/\tau}$ without material media. Absent in Alena/QED.

Gradient-Texture Nonlocal Birefringence. Same $|F|^2$, different textures \Rightarrow different polarization splitting.

Cross-Layer Near-Surface Anisotropy. Air-gap anisotropy linked to surface connectivity tensors (layer coupling).

Thresholded Phase Changes. Hysteretic jumps at I=I_c with up/down asymmetry.

Retarded Nonlocal Stress Sharing. Twin-cavity coupling after retarded delay even with EM leakage suppressed.

Strong-Field Regularization. Saturation of stresses; softened ringdown tails.

Unified Multifield Crosstalk. Parametric sidebands via layer mixing without new EM terms.

Causality & Unitarity Constraints (Kernel Postulates)

- (C1) Retarded support: K(x,x')=0 for t< t'; $K(\blacksquare)=\phi(\blacksquare)G_ret(\blacksquare)$.
- (C2) Lorentz invariance (or specified breaking): $K^{\mu\nu}(x,x')=\Theta(t-t') \kappa^{\mu\nu}(\sigma^2)$.
- (C3) Analyticity: $K(\omega,k)$ analytic for Im $\omega>0$ (Kramers–Kronig).
- (C4) Ghost-free: choose ϕ entire (e.g., $e^{-1/(\Lambda^2)}$) to avoid new poles.
- (C5) Cluster decomposition: decay for spacelike separations; integrable kernel.
- (C6) Positivity/passivity: sign constraints; FDT for open-system embeddings.

Quantization Routes (Sketch)

- 1) EFT with causal form factors: entire $\phi(\blacksquare)$, retarded support, unitarity within cutoff Λ .
- 2) In-in (Schwinger–Keldysh): integrate out an auxiliary relational field Y coupled to I; yields causal nonlocal term and an effective hysteresis law; CPT intact.

Order-of-Magnitude Estimates (Magnetars)

Quantity	Symbol	Fiducial value	Note
Magnetic field	В	1×10¹ ■ T	magnetar
QED birefringence	Δn_QED	2.5×10■■	from B/B_c ≈ 2.3
Kernel running	ε	1×10 ■ ³	per octave
Change in index	δ(Δn)	2.5×10■■	ε×Δn
Path length	L	10³–10 ■ km	grazing zone
Arrival-time spread	Δt	0.8–8 ns	L δ(Δn)/c

Empirical Fit Protocol (Datasets → **Parameters)**

- Magnetar/pulsar polarimetry & timing → (ε, ■) via multi-band polarization and timing residuals (after QED & plasma subtraction).
- Lab pump–probe afterglow (dark-interval) $\rightarrow \tau$ from exponential tail fits; Alena/QED predict no tail.
- Intensity sweep (up/down) \rightarrow (I_c, \triangle) via hysteresis loop area in polarization or group delay.
- Near-surface anisotropy over patterned media \rightarrow StOr proxies from connectivity invariants at fixed bulk ϵ , μ .

Observational Readiness (2025–2030)

Astro: IXPE magnetar polarization; ns-µs pulsar/FRB timing; SKA Science Verification (~2027) with strong polarimetry; FAST/CPTA polarization.

Lab: Petawatt pump–probe facilities and precision cavities for afterglow and hysteresis tests; look for dark-interval tails and path-dependent loops.

References (selection)

- Ogonowski, P. (2023). Developed Method... arXiv:2306.14906.
- Lai, D. (2022, 2023). IXPE magnetar polarization. arXiv:2209.13640; PNAS 120 e2216534120.
- Hankins et al. (2003). Nature 422, 141–143. Jessner et al. (2010). A&A 524 A60.
- Kader et al. (2022). Phys. Rev. D 106, 043016 (FRB ns analyses).
- SKAO documents (2025); FAST/CPTA polarization (2025).

Acknowledgments

Thanks to the relational existence.com community and contributors to UCF/GUTT for foundational insights.