

Name:

Group:

10 October 2023

STARBASE Code of Conduct

At **STARBASE**, we have a few important rules you need to know. Following the rules will ensure that you have a safe and enjoyable experience.

- 1. Have fun and learn a lot!
- 2. Use respectful language and behavior. Keep each other physically and emotionally safe. Keep hands, feet, and negative comments to yourself. Physical violence is cause for immediate dismissal.
- 3. Raise hand to be acknowledged. Listen respectfully when adults and students are speaking.
- 4. Food & Candy are not allowed in the classroom, especially sunflower seeds.

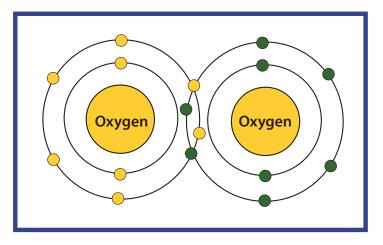
The STARBASE Code is one of Mutual Respect, Positive Attitude, and Enthusiastic Participation with a willingness to Learn, Help Team-Mates, and Have Fun!

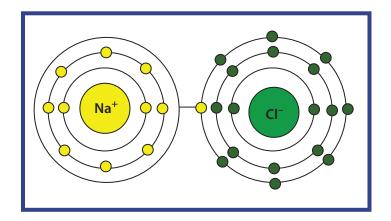
Disciplinary Consequences

The Three **"T"'s!**

- 1. Talk to student.
- 2. Time Out—sit out of fun activity.
- 3. **T**ermination—parent or principal pickup!

I fully understand the **STARBASE Code.**

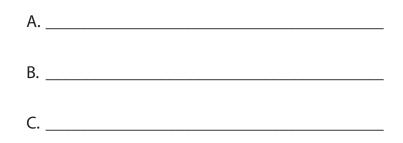

Your signature.


Molecular Models Activity

What's the Matter?

All matter is made of small partic	les called Atoms bond
together to form	If all atoms in the molecule are the
same kind, they form an	If two or more different kinds of
atoms bond together, they form a	a Most substances are

Direction: Identify which model represents an element and which represents a compound. What substance is represented by each model?


ACTIVITY LOG: Introduction to Robotics

- 1. A robot is any ______ that can be programmed to do work automatically.
- 2. The instructions that tell a robot what to do are

called the_____

3. All robots have these three things in common:

4. The _____

is the program that tells the robot what to do and when to do it.

5. The _____

can be any shape from a box to something with arms and legs; it houses the mechanisms that perform the action.

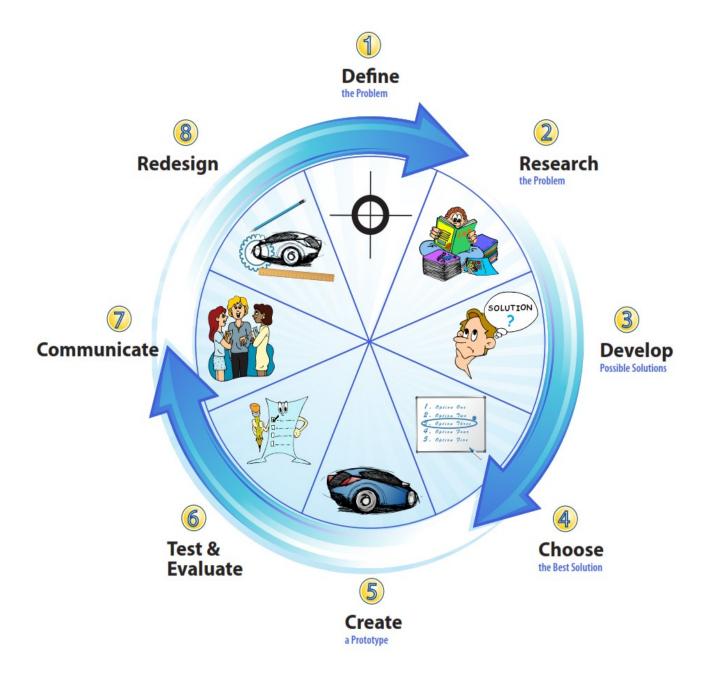
6. The _____

or output is the action that the robot will perform on its own, according to the directions given.

ACTIVITY LOG: Robotics Challenge

Scoring Rubric

Goal: Move your robot from home to school without being tardy.


Time Limit: 20 seconds

Team Name:_____

Team Members: _____

POINTS	DESCRIPTION	EARNED POINTS		
PUINTS	DESCRIPTION	Practice	Challenge	
+50	Moved at least 50 cm from home (measured by the front wheels of the robot).			
+100	Completed mission (parked in front of the school in the road).			
+25	Reached a specified destination.			
-1	For every second you are tardy.			
-10	Ran over obstacles.			
-10	Hit Gopher's brand new car.			
-10	Hit the barrier.			
-50	Entire robot left the road.			
Eliminated	Robot left the mat.			
	TOTAL POINTS			

Introduction to EDP

Introduction to EDP

The Engineering Design Process

- 1. **Define:** The Engineering Design Process always begins with a need, or a problem that must be solved. It may also involve an improvement to an existing design. The initial challenge is to define exactly what the need is, including any specific requirements. A complete understanding of the need will make the solution easier to design.
- 2. **Research:** Once a need has been established, the next step is to ask questions about the nature of the problem and do background research. Other people may have tried to solve a similar problem in the past. Engineers may incorporate this work into their own design process, but they must be careful to not use someone else's ideas without permission.
- 3. **Develop:** This is the brainstorming phase of the process. This phase give engineers the chance to be creative. It's important to remember there may be more than one solution to a problem. In many cases, there are multiple solutions. Once a list of ideas has been generated, the engineers can select the most promising one.
- 4. **Choose:** Planning involves taking an idea and filling in all the details that will bring the idea to life. While developing the idea, engineers will break the design into smaller parts to determine exactly how each part will function, draw diagrams, and compile a list of necessary materials. As they develop their solutions, engineers often call on their own knowledge of math and science, but they may have to do additional research to complete their design.
- 5. **Create:** After the planning stage is complete, engineers build a *prototype* of their design and come up with effective ways to test it.
- 6. **Test and Evaluate:** Once the design has been tested, they use the results as a basis for possible *improvements*. Engineers examine what worked, what didn't work, and what could work better.
- 7. **Communicate:** In this stage, engineers use the data from their tests to make improvements on their design. This is also a good time for peer review and feedback.
- 8. **Redesign:** Upon receiving feedback, engineers may make further improvements on their design until they are satisfied with the final version.

The process seems linear, but in practice, the steps may blend into each other, occur out of order, or repeat several times. *Engineering is the process of trying, creating, testing, and then re-trying until the design works.* It can be a lengthy and drawn-process. It is rare that a design works perfectly the first time.

Budget Math: Redesign of Restraint System for Eggbert

MISSION:

Eggbert has volunteered to gather information about the conditions near the area of the Kilauea eruption on Hawai'i, which the STARBASE team can use in planning missions. The dilemma Eggbert faces is that the landing will be very quick, and the glider will crash. To ensure the success of this mission, your crew will need to design a safety restraint system that will help Eggbert survive the landing.

Good Luck.

DIRECTIONS:

Your team has a budget of \$1000.00 to spend on the materials for the redesign. Each item has a cost. You must discuss what materials you will purchase, keeping within your budget.

You must also **ALL** agree on a team design.

REMEMBER:

If more than one team has a successful design, the least expensive design will be selected as the winner.

ltems Available for Purchase	Cost Per Item
Plastic Bag	\$120.50
Rubber Band (2)	\$99.25
String (30 cm)	\$49.75
Cotton Ball (2)	\$101.25
Foam (2)	\$96.50
Egg (additional)	\$100.00
Bubble Wrap	\$83.00
Pipe Cleaners	\$65.70
Sponge	\$110.50
Egg Carton	\$55.75

Happy Designing!

ACTIVITY LOG: Eggbert

1. Sketch and label the parts of your team's design.

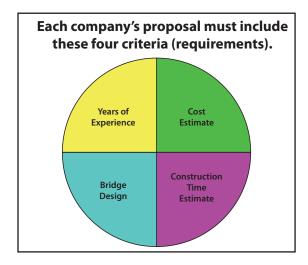
- 2. How well did your design work?
 - □ Survival (no damage)
 - □ Living...with cracked skull (shell cracked)
 - □ Unconscious with brain damage (yolk broke)
 - **Totally scrambled** (everything is broken)
- 3. How could your group modify your design to make it better?

4. How did your group work as a team? What was the most difficult part?

Activity Log

Company D

Listed below are the criteria (requirements)


each company's proposal actually included:

Company B

Company C

Figure That!

PROBLEM 1: WHICH COMPANY'S PROPOSAL BEST MEETS THE CRITERIA?

1. Quantify the data by showing each company's proposal information as a fraction, decimal, and percent.

2. In a fraction, is the total number of

criteria represented by the *numerator* or *denominator*? CompanyFractionPercentDecimal
EquivalentABCD

Company A

3. Company B's proposal includes only 2 out of 4 criteria, or $\frac{2}{4}$.

Write this as a reduced fraction. _____

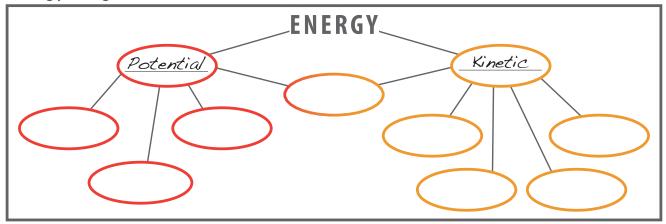
4. What fraction of the companies submitted proposals include at least 75% of the required

proposal criteria? ______ Write this fraction as a decimal. _____

- 5. What percentage of companies that submitted proposals meet all the criteria?
- 6. Which company's proposal would you choose based on the data? _____

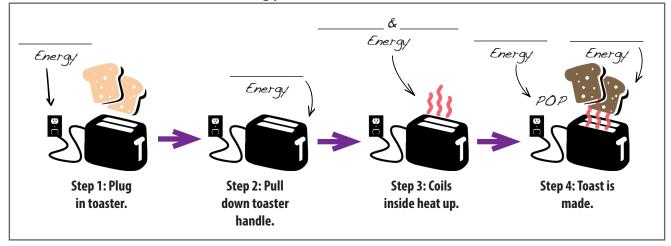
Why? _____

PROBLEM 2: WHICH TYPE OF BRIDGE IS BEST?


	Criteria for Bridge (Requirements that must be met)							
Bridge Type	Span (200 meters)	Load (Light Loads)	Construction Time (Quick)	Can it be temporary?				
Beam			(Can be, but not always.)	(Can be, but not always.)				
Suspension								
Arch								
Floating								

Quantify the Data
What fraction, percent, and decimal equivalent of the criteria are met by each type of bridge?

Bridge Type	Fraction	Percent	Decimal Equivalent
Beam			
Suspension			
Arch			
Floating			


F	igure That!	Activity Log
1.	If one bridge meets $\frac{2}{4}$ of the criteria and another bridge meets can you make a decision on which bridge is <u>best</u> based on this informa	2
	Yes or NO	
	Why?	
2.	If you were eliminating the bridge types that meet only 50% or less of fraction of the bridge types would you eliminate?	the criteria, what
3.	If you wanted a temporary bridge with quick construction time, which choose based on the data provided?	-
	Why?	
4.	Describe how using fractions, decimals, and percents help in solving p	problems.

ACTIVITY LOG: Energy Explorations

Energy Diagram: Fill in the missing energy types in your chart below.

Law of Conservation of Energy: Fill in the missing energy types in the series below.

ΑCTIVITY	Chemical	Electrical	Mechanical	Gravitational	Radiant/Light	Sound	Thermal
A. Magic Balloon							
B. Solar Fountain							
C. Go, Go Gears							
D. Turn on the Lights							
E. Color It Hot or Cold							
F. Food Lights Me Up							
G. Spouting Bowl							
H. Tune & Hammer							
I. Energy of the Future							

Witnessing Energy Activities: As you complete each activity, mark which types of energy you witness!

NEWTON'S LAWS of MOTION

First Law

An object at rest stays at rest and an object in motion stays in motion, unless acted upon by an unbalanced force. Isaac Newton realized that an object in motion would continue to move in a straight line until a force interfered and caused a change in the motion. He also determined that an object that was not moving would remain motionless until an outside force acted upon it. He called this resistance to change "inertia" [ih - nur - shuh].

Second Law

F=ma or Force is equal to the product of the mass times the acceleration. Newton's second law explains that the more quickly you want something to speed up or slow down or to accelerate, the more force you'll need. It also explains that the more mass you're trying to move, the more force you'll need to apply.

Third Law

For every action, there is an equal and opposite

reaction. Whenever two objects interact, there is a **pair of forces** acting between them. The size of the force acting on the first object is equal to the size of the force acting on the second object. Likewise, the direction of the force acting on the first object is opposite to the direction of the force on the second object.

Introduction to Motion & Force

Rocketry

According to **Newton's 1st Law, an object at rest will** stay at rest unless acted upon by an outside force.

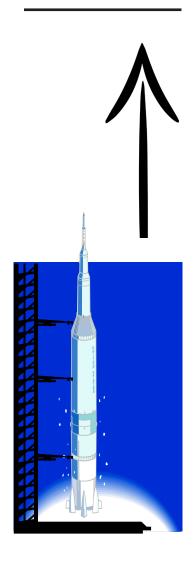
The engines of a rocket create the force of *thrust* which makes the rocket go upward or forward. Before thrust is applied to our rocket, it is an object at _____. Once a force (thrust) is applied, the rocket becomes an object in _____.

Newton also explained that **an object in motion will continue in motion unless acted upon by an outside force.**

What outside force slows a rocket down?

What outside force helps bring a rocket down to the surface of the Earth? _____

Newton's 2nd Law states that F=ma. If you *increased* the *mass* of the rocket, what would happen to the acceleration if the force remains the same?


What would you need to do if you wanted to **increase** the amount of **acceleration** of your rocket? To increase the acceleration you could ______ of the rocket or you could ______ of


Newton's 3rd Law explains that for every action, there is an equal and opposite reaction.

Applying this law to launching your rocket,

the *action* is _____

and the **reaction** is _____

Launch: Mass as Variable								
Predict								
1. As I <i>increase</i> the amount of <i>mass</i> on the rocket but keep the applied force the same, the rocket will								
□ travel a	longer distance	🗆 trave	el a shorter dista	nce				
	Mass of Rocket	Force Applied	Launch Angle	Distance Traveled				
Launch 1								
Launch 2								
Launch 3 (optional)								
	·			·				

Launch: Force as Variable

Predict

1. As I *increase* the amount of *force* on the rocket but keep the mass the same, the rocket will

□ travel a longer distance □ travel a shorter distance

	Mass of Rocket	Force Applied	Launch Angle	Distance Traveled
Launch 1				
Launch 2				
Launch 3 (optional)				

Rocket Launch

		Dista Mass as	nce of s Indep						
Type of rocket lau	unched: _							-	
Constant:								-	
Dependent Varia	ble:							-	
I									
								- A	
	_								
(unit of measurement:									
neasul									
lit of n						-			
un (un			1					* <u>*</u>	
Y-axis: ((
X-axis:									
	(unit of measurement:)								

Data Analysis

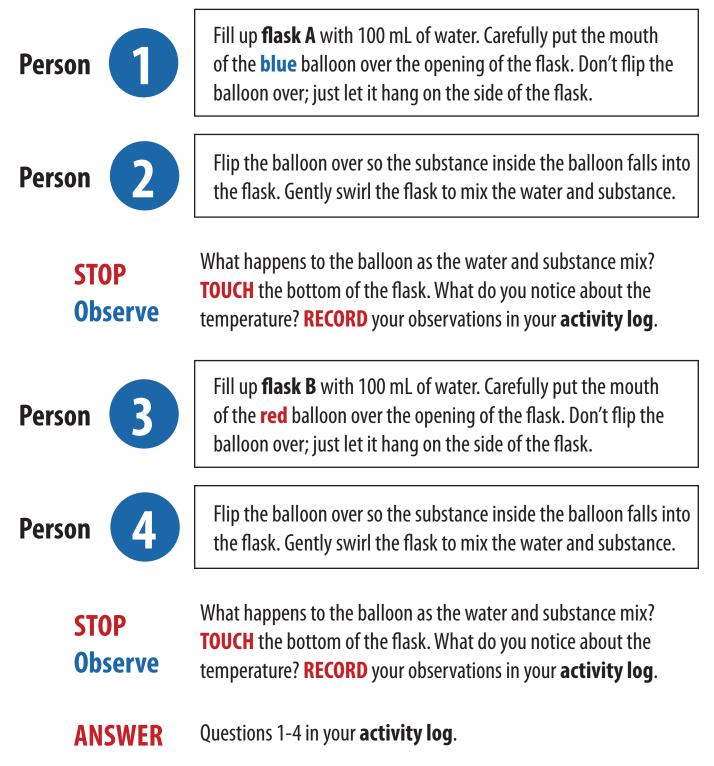
When applying an equal amount of force, the rocket with greater mass will travel a distance

 \Box further than \Box less than

the rocket with less mass.

Physical and Chemical Change Experiments

Transfer of Energy Fill in the blanks with the appropriate word from the bank below. Physical changes require a transfer of energy either through a transfer of or applying a ______. Chemical changes occur as energy is transferred when molecules _______. _______. Word Bank: bond break force heat rearrange


Identify the pictures as examples of **Physical (P)** or **Chemical (C)** changes.

P or C	P or C
P or C	P or C
P or C	P or C

Unknown Substance Analysis

You must determine which substance changes chemically and which changes physically. We have placed a small amount of an unknown substance into the blue and red balloons. Substance A = Blue, Substance B = Red. **Put on your safety goggles.**

Determine who will be person 1, 2, 3 and 4 in your group and follow directions very carefully.

Substance	What does the balloon do?	Temperature (hot or cold)
A - Blue Balloon		
B - Red Balloon		

When **Substance A** and water mix, it fizzes. This is because a **chemical change** occurs; the new matter is different from the old matter. One of the ways you know that a **chemical change** has occurred is when the reaction gives off a gas.

Substance B is soluble in water. Even though we may not be able to see it anymore, it is still there, only going through a **physical change** from a solid to a liquid.

An **EXOTHERMIC REACTION** is one that gives off heat and becomes hotter.

An **ENDOTHERMIC REACTION** is one that takes in heat and becomes cooler

Determine the change of the substance:

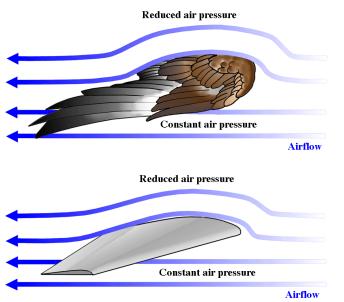
1. Substance A is a ______ change because _____

2. Substance B is a ______ change because ______

Determine the type of reaction:

3. Substance A is **COLD** which means it is an ______ reaction.

4. Substance B is **HOT** which means it is an ______ reaction.


Fluid Mechanics & Aerodynamics Activity Key

Bernoulli's Principle

Daniel Bernoulli, a Swiss mathematician, expanded on Newton's ideas and further explored the motion of fluids. Bernoulli's equation describes the basic principle of airflow pressure.

Bernoulli's principle, simply stated, says, "as the velocity of a fluid (air) increases, its internal pressure decreases." Bernoulli's principle is derived from Newton's second law of motion which states the requirement of an unbalanced force (in this case, pressure) to produce an acceleration (velocity change).

How an Airfoil Works

These pictures of bird wings and airplane wings moving through the air show how its shape, or airfoil, affects

the airflow. The airflow passing over the wing's curved upper surface is *faster* than the airflow passing over the lower surface. This causes a difference in pressure, which **lifts** or sucks the wing

Fast air Always exerts _____ pressure!

upwards.

ACTIVITY LOG: Bernoulli's Principle Experiments

Activity A: Lift

	Blower Off	Blower Slow Speed	Blower High Speed
Digital Scale			
Reading			

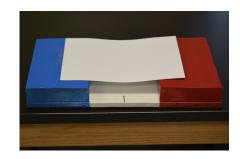
- 1. How did the scale reading change as you increased the blower speed?
- 2. Explain your observations.

3. Were you surprised by the changes you observed? Explain.

Activity F: Paper Tent

- 1. What do you expect to happen?
- 2. What happens when you blow air under the tent?
- 3. Why do you think the tent moved the way it did?

ACTIVITY LOG: Bernoulli's Principle Experiments


Activity D: Ping and Pong

- 1. Predict what will happen when you blow a steady stream of air between the two ping pong balls.
- 2. What actually happened?
- 3. Why do you think the ping pong balls moved the way they did?

Activity E: Paper Bridge

- 1. Predict what will happen when you blow a steady stream of fast air underneath the paper bridge.
- 2. What actually happened?
- 3. Why do you think the paper reacted that way?

Activity Log

Chromatography C.S.I.

Someone used a black marker to write a mean message on the bathroom wall, criticizing the cafeteria food. It has to be one person from a group of four students who left the cafeteria early. Each of the four students has a different brand of black marker. Discover which marker was used to write the message.

You will use the analytical chemistry process called chromatography. Using chromatography, you will investigate each marker's solubility, or how easily it dissolves.

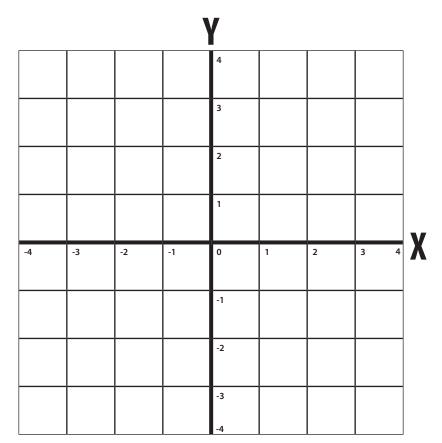
- 1. Water is the substance, or ______, you use to make the ink dissolve.
- 2. The ink is the substance, or _____, you will dissolve.
- 3. The filter paper is the ______ that holds the substance.

Student Identifier	Marker Brand	Matching Chromatogram
1		
2		
3		
4		

4. The chromatogram of the marker used to write the message was _____

5. Which student's marker matched that chromatogram?

- 6. Is this conclusive evidence that the student who owned the marker was the one who wrote the message?
 Yes No
- 7. Why or why not?_____


yucky

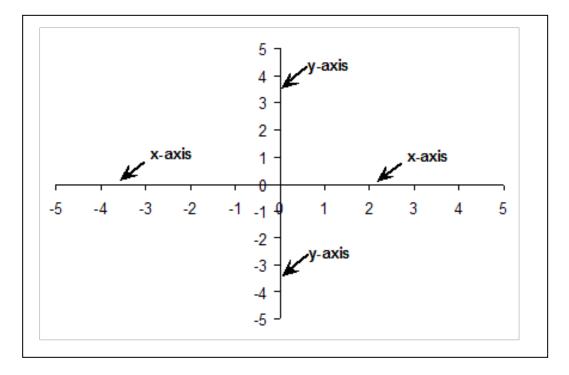
- Of the pigments mixed to create the black ink in the marker, which pigment do you think is the most soluble? ______ Why? ______
- 9. Which do you think is the least soluble? _____Why?_____

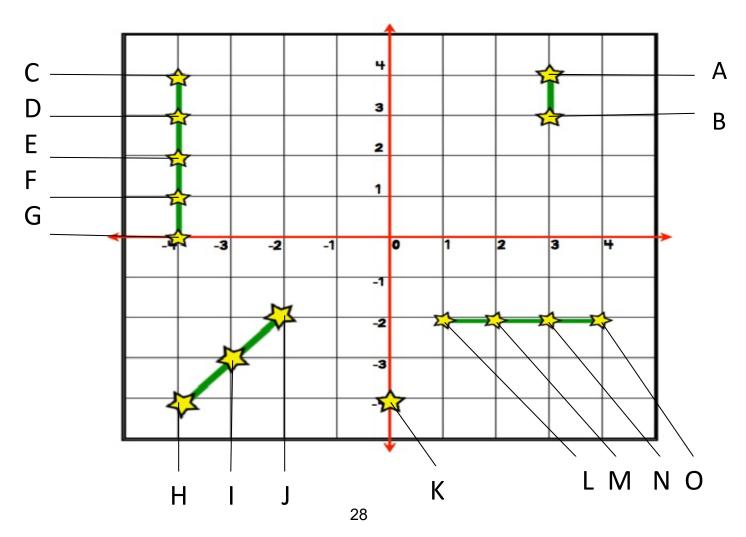
Fly on the Ceiling

FIND THE AIRPLANES!

Try to locate the STARBASE airplane fleet!

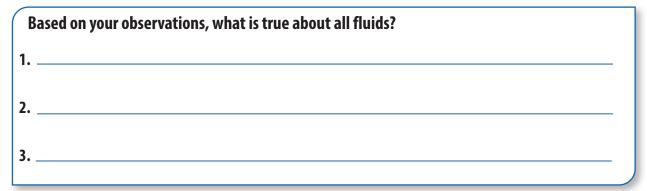
STARBASE GRID (Keep track of your team's guesses here!)

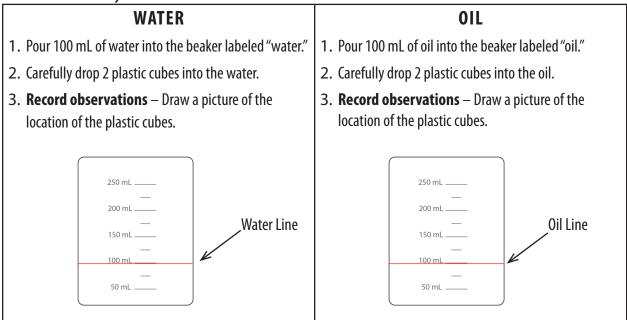

DIRECTIONS


STARBASE will place 5 airplanes on their grid: ✓ G-5 (5 points long)	Each student gets to guess one set of (X,Y)
c	
✓ Space Shuttle (4 points long)	The instructor will tell you whether or not you found a part of an airplane.
✓ F-16 (3 points long)	found a part of an airplane.
✓ Cessna (2 points long)	Mark ● on the grid for misses
✓ Paper Airplane (1 point long)	✓ Mark × on the grid for correct guesses

If you find all five airplanes, you win! If you don't, STARBASE wins!

Activity Log

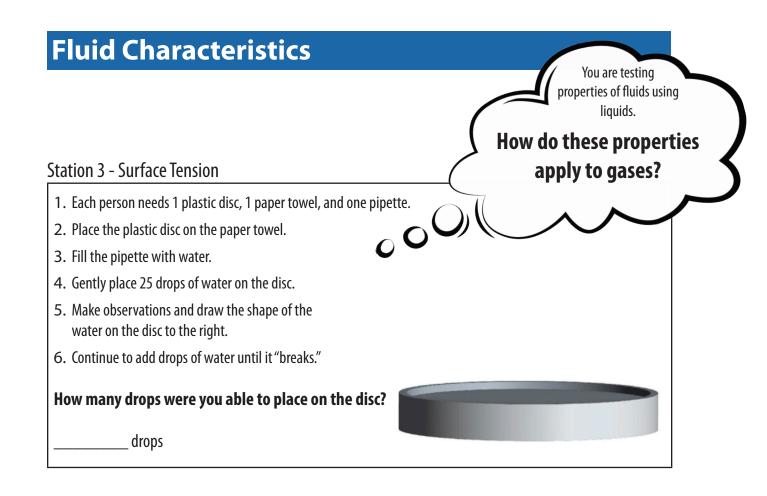

Fly on the Ceiling


Activity Log

Exploring Fluid Mechanics

Fluid Stations

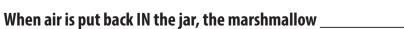
Station 1 - Density


What is different about water and oil that caused differences in the location of the plastic cubes?

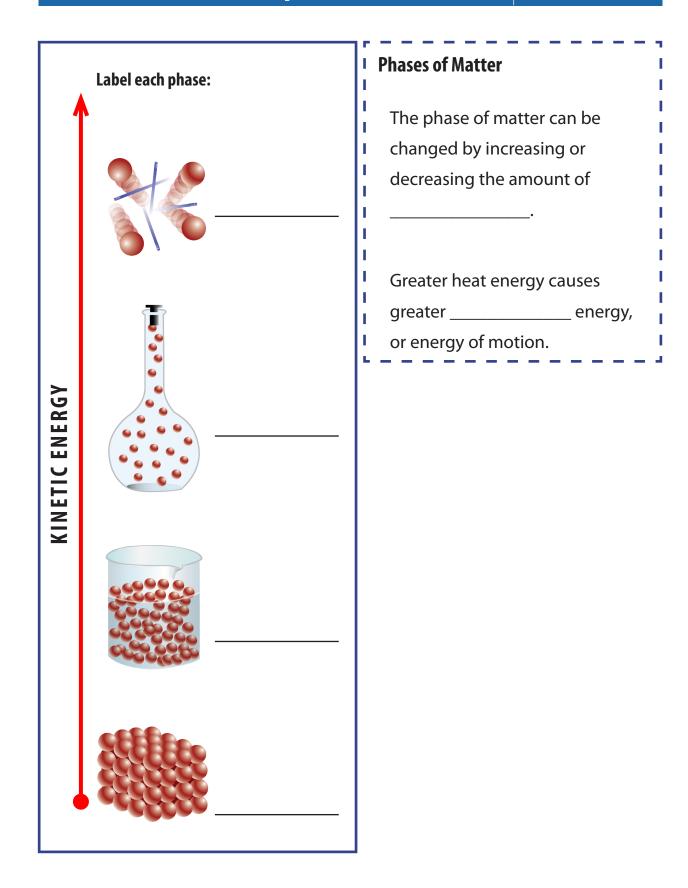
Fluid Characteristics

Predict: What will happen to the cubes if you pour the oil into the water? (Discuss with your team.)		
1. CAREFULLY pour the oil into the water.		
2. Add 1 drop of food coloring and stir, gently.	250 mL	
3. Record observations – Draw a picture of the location of the plastic cubes.	 200 mL	
Why are the cubes located where they are?	150 mL	
	100 mL	
	50 mL	

Station 2 - Viscosity


1. Dip a plastic spoon into the cup of corn syrup.		
2. Pull out the spoon and allow the corn syrup to drip back into the cup.		
3. Pour water into the empty cup.		A
4. Dip a different plastic spoon into the water.		
5. Pull out the spoon and allow the water to drip back into the cup.		
6. Repeat with both corn syrup and water and make observations to compare the drops.		
7. Draw a picture of your observations.		-
	Corn Syrup	Water
Corn syrup has high viscosity and water has low viscosity. Ba does viscosity mean? Viscosity means	sed on your obser	vations, what

Station 4 - Compressibility


- 1. Place the marshmallow inside the bell jar.
- 2. Insert the tube into the bell jar, and attach the syringe to the tube.
- 3. Pull back on the syringe to draw the air out of the jar.
- 4. Make observations about the marshmallow and bell jar.
- 5. Predict what will happen when you let the air to flow back in.
- 6. Twist the connector on the top to return the air into the bell jar.

When air is taken OUT of the jar, the marshmallow _____

States of Matter Experiments

Movement Mats

Kinetic Energy and States of Matter

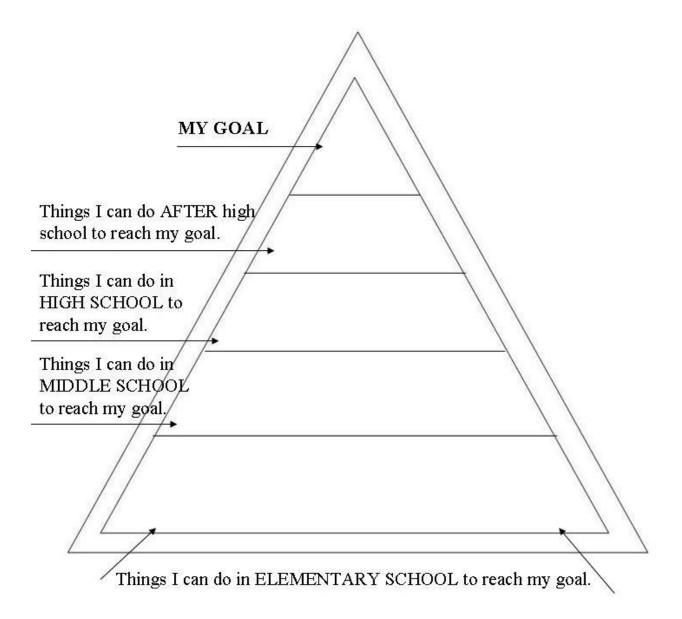
Record your observations as you move the jar of molecules in each box. How do the molecules in the jar change as the size of the movement box increases?

Circle 1	Circle 2	Circle 3
1 State of Matter	2 State of Matter	3 State of Matter

How can matter change from one state to another?

Which state of matter emits light? _____

Science, Technology, Engineering & Math (STEM) Careers


Circle the career ideas that bring a smile to your face.

Accountant Aerospace Engineer & Tech Agricultural - Engineer, Teacher, & Technician Armed Forces Service Member (Air Force, Army, Navy, Marines, Coast Guard) Architecture – Engineer, Architect, Drafter Astronaut Astronomer Atmospheric and Space -Scientist and Teacher Author Automotive – Engineer, Mechanic, Tech, & Teacher Biochemistry - Engineer, Chemist, Physicist & Teacher Biologists & Biology Teacher **Biomedical Engineer** Biostatistician Botanist Carpenter Chemist & Chemistry Teacher Chemical Engineer Clinical Psychologist Computers - Programmer, Technician, Engineer, Network Support & Security, Analyst **Construction Manager** Counseling Psychologists Designer Dietician & Nutritionist Diver Doctor Electrical Engineering -**Engineers & Technicians** Electro-mechanical Engineering Electronics Engineering -Engineers & Technicians **Engineering Teachers**

Environmental Engineers Environmental Restoration Planners **Environmental Science** Epidemiologist Farm and Ranch Manager Fire Prevention & Protection Fish & Game Wardens Fishers & Related Workers Flight Engineer Food Science Forest & Conservation Techs Foresters Geneticist Geologist **Graphic Designers** Human Factors Engineers & Ergonomist Industrial Engineers Information Security Analyst Inventor Manufacturing Engineer Marine Architect Marine Biologist Marine Engineer Materials -- Engineer & Scientist Mathematician Mechanical Engineer Medical Scientist Meteorologist Microbiologist Microsystems Engineer Mining & Geological Engineer Molecular and Cellular Biologist Nano-systems Engineer Neuropsychologist & Clinical Neuropsychologist Nuclear Engineer Nurse Nursery & Greenhouse Manager Nutritionist Optometrist Paleontologist Park Naturalist

Pediatrician Petroleum Specialist Pharmacist Photonics Engineer Pilot Product Safety Engineer Physicist Psychologist Radiologist Seismologist Scientist Software Developer Soil & Plant Scientist Soil & Water Conservationist Statistician Surgeon Teacher **Telecommunications Engineering** Transportation Engineers & Planners Video Game Designers Water/Wastewater Engineer Wind Turbine Service Tech X-ray Technician Zoologist & Wildlife Biologist

Setting Goals For Your STEM Career

