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Across the world, asset managers are being asked to navigate a far more turbulent landscape than
in previous decades. Geopolitical fragmentation, climate instability, accelerated technological disrup-
tion, and systemic fragility now define the backdrop of day-to-day decision-making. Taken together,
these interlocking disruptions are often referred to as the polycrisis: a condition marked not only by
simultaneous shocks, but by their entanglement and mutual amplification.1

At its root, the polycrisis reflects a deeper intellectual and institutional challenge. Since the industrial
and scientific revolutions, much of modern thought – including the foundations of economics and
finance – has embraced a mechanistic world-view2. This paradigm has driven extraordinary advances
in science and living standards. Yet the polycrisis exposes its limits: assumptions of linear causality,
equilibrium, and control are poorly suited to today’s interconnected, adaptive systems, leading to
damaging unintended consequences and, at worst, systemic collapse.

Asset management is no exception. It must navigate these disruptions while embodying many of
the same mechanistic habits that contribute to them. Dominant models prioritise optimisation over
resilience, prediction over adaptation, and tractability over systemic realism. As stewards of capital,
asset managers now face the challenge of operating in a world where these inherited assumptions are
increasingly unreliable.

This paper sets out the case for using complexity science as a framework to complement and, in
some areas, challenge established approaches in asset management. Rather than treating markets as
machines, complexity science views them as complex systems3, which draws attention to interaction,
adaptation, feedback, and emergence4.

The primary aim of this paper is to help asset managers improve valuation, strategy design, and risk
management in a turbulent, interconnected world. To that end, we introduce the idea of complex-
ity arbitrage: opportunities that arise because prevailing models misrepresent the true dynamics of
financial systems. By adopting complexity-informed thinking, practitioners can better identify mis-
pricings, design resilient strategies, and manage risks and uncertainties that conventional frameworks
systematically underestimate.

Few firms have yet adopted this perspective in a deliberate way. Notable exceptions include Baillie
Gifford and NZS Capital, which explicitly draw on complexity science in their investment philosophies.
Their approaches illustrate that practical applications are already emerging, even if detailed methods
remain confined to early adopters and specialist practitioners.

Practical guidance is included in this paper but it is treated lightly. Detailed applications are explored
in companion papers. The goal here is more to establish conceptual foundations, showing where
complexity-informed thinking opens opportunities for complexity arbitrage.

The following sections explore these ideas in depth: outlining the conceptual foundations of complexity
science, identifying where conventional models fall short, and sketching the implications for a more
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robust and adaptive investment practice. Each of the first seven sections summarises a supporting
paper, listed below.

• Section 1 The Case for Complexity in Asset Management introduces complexity sci-
ence. It contrasts this with the mechanistic mindset, highlighting concepts such as emergence,
feedback, and path dependence5. The section argues that complexity provides more realistic
foundations for asset management in a turbulent and uncertain world. The counterpart com-
panion paper is An Introduction to Complexity Science for Asset Managers.

• Section 2 What Markets Really Look Like argues that financial systems should be con-
sidered ‘complex’ given the defining features outlined earlier. It surveys empirical characteristics
of asset price behaviour — including fat tails, clustered volatility, and return autocorrelation —
that challenge classical assumptions. These stylised facts reveal markets to be adaptive, com-
plex systems, highlighting the value of complexity-informed methods. This section mainly draws
from the paper Empirical Characteristics of Asset Price Returns: Stylised Facts for Investors.

• Section 3 Patterns, Not Just Models encourages asset managers to focus on recognising
evolving patterns rather than relying exclusively on formal models. Complexity science supports
a more contextual, adaptive approach to modelling – one that embraces empirical realism,
historical contingency, and the limits of prediction in financial systems. These arguments build
on the analysis in Formal Models and Complexity in Asset Management.

• Section 4 Prices as Emergent Phenomena argues that prices are not static reflections
of intrinsic value but emergent outcomes shaped by feedback loops6, evolving narratives, and
interactions among diverse market participants. This re-framing challenges equilibrium-based
valuation and redirects attention to the generative processes behind market dynamics. The
discussion here is grounded in the paper Market Prices as Emergent Properties.

• Section 5 Narratives as Drivers of Market Dynamics explores how shared stories influence
market outcomes. Drawing on interdisciplinary research, it shows how narratives shape expect-
ations, implicitly coordinate investment behaviour, and drive feedback mechanisms within price
formation. This section synthesises material from the paper Narratives in Financial Markets.

• Section 6 Facing Uncertainty examines risk and uncertainty through the lens of complexity
science. It distinguishes probabilistic risk from deeper forms of ambiguity and unknowability,
critiques prediction-centric approaches, and advocates for humility and institutional resilience
as more robust responses to real-world uncertainty. These ideas are explored in more detail in
the supporting paper Uncertainty and Risk in Finance.

• Section 7 Facing Time: Non-Ergodicity in Investment explores how financial markets are
shaped by non-ergodic7 dynamics, where time-paths matter far more than is generally under-
stood. It shows how compounding, irreversibility, and volatility drag8 challenge conventional
models, and how time-aware frameworks can improve risk assessment and long-term portfolio
resilience. This discussion extends the arguments made in Non-Ergodicity in Asset Management.

• Section 8 Toward a New Practice concludes the paper by situating the discussion within
its broader historical and intellectual context. The section revisits the concept of complexity
arbitrage, outlines how complexity principles can reshape models, decision-making processes,
and organisational behaviour, and highlights the potential system-wide benefits if these ideas
were adopted at scale across the industry.
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1 The Case for Complexity in Asset Management

This section summarises the main arguments of the accompanying paper An Introduction to Com-
plexity Science for Asset Managers. It provides an overview of how complexity science can inform
investment thinking and practice, and why it offers a valuable complement to traditional models.
We first outline what is meant by a complex system and its defining characteristics, then place com-
plexity science in its broader historical context. Next, we introduce its distinctive way of seeing
the world through evolving patterns and describe a set of key concepts used to interpret complex
phenomena. Finally, we contrast these ideas with traditional financial thinking, highlighting where
mechanistic assumptions fall short and how complexity science can support better sense-making and
decision-making in financial markets.

Readers interested in an accessible, impressive, and recent discussion of complexity science and its
relevance for today’s world should read Jean Boulton’s book The Dao of Complexity (Boulton, 2024).

Defining Complex Systems

There is no single, universally accepted definition of a complex system, which reflects the field’s
development across multiple disciplines9. For instance, physicists may focus on statistical structure
and phase transitions whereas biologists often emphasise evolutionary processes and feedback between
organisms and their environments. Here, the framing is tailored to economics and finance, where the
focus is on decentralised decision-making, networks of professional relationships, and the emergent
nature of asset prices.

One helpful way to understand complex systems is that their collective behaviour cannot be under-
stood by analysing their parts in isolation. Outcomes are shaped by dynamic interactions, feedback
loops, and continuous adaptation among diverse, interdependent components. Such systems typically
lack central control, evolve over time, and defy analysis through traditional linear or equilibrium-based
models.

Four key features characterise complex systems:

• Heterogeneity: Actors typically differ in goals, preferences, information, and the cognitive
rules that influence their behaviour.

• Interdependence: Each actor’s behaviour affects others, sometimes in non-linear ways. Feed-
back loops – both reinforcing and balancing – influence the system’s overall evolution.

• Adaptation: Actors adjust their strategies in response to feedback and changing conditions.
These adaptations can reshape the system over time, leading to greater order or dis-order.

• Emergence: System-level patterns arise from local interactions among actors, without central
control.

For asset managers, understanding these features is essential: market behaviour is not simply the
aggregate of isolated decisions but the evolving product of interaction, feedback, and adaptation
among heterogeneous participants. Note that we discuss the relevance of these four above points for
financial markets in the next section.
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Recognising these defining features sets the stage for understanding where complexity science came
from and how its cross-disciplinary roots inform a richer, more realistic view of financial markets.

Complexity Science in its Historical Context

To understand how complexity science can inform asset management, it helps to see where the field
came from. Complexity science did not emerge as a single discipline with a unified theory. Instead,
it grew during the second half of the twentieth century from several interdisciplinary traditions,
each reacting to the limitations of mechanistic thinking – the dominant paradigm shaping science,
economics, and finance since the Enlightenment.

Figure 1 (the Map of the Complexity Sciences, 2021, by Castellani and Gerrits) visualises these origins
and highlights influential researchers within each tradition. It shows five main intellectual streams
that have converged to shape modern complexity science:

• Dynamical systems theory10,

• Systems theory11,

• Complex systems theory12,

• Cybernetics13,

• Artificial intelligence14.

Figure 1: The Map of the Complexity Sciences (2021), developed by Brian Castellani and Lasse Gerrits. Reproduced
under a Creative Commons Licence. The diagram organises the field into five major intellectual traditions: dynamical
systems theory (purple), systems theory (blue), complex systems theory (yellow), cybernetics (grey), and artificial
intelligence (orange). These schools represent the disciplinary origins of what has become a more integrated field of
complexity research.

Although each stream developed its own language and methods, they share a common aim, broadly
speaking: to understand how collective patterns of behaviour emerge from interacting parts, often
without central control. These intellectual roots underpin today’s complexity science – a field that
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spans natural and social systems alike, providing conceptual tools highly relevant for analysing fin-
ancial markets and the evolving behaviour of asset prices.

This intellectual heritage forms the foundation for applying complexity science to financial markets.
The next subsection builds on this, showing how complexity science interprets markets as evolving,
patterned systems – a perspective with direct relevance for asset managers.

How Complexity Science Sees the World

It is helpful to understand the kind of worlds that complexity science is reacting to and seeking
to describe, building on the four key features of complex systems outlined above. Conventional
economics and finance draw heavily on the world-view of classical physics, particularly Newtonian
mechanics and thermodynamics. This outlook treats the world as a machine governed by universal,
time-invariant laws, where systems are assumed to be predictable, linear, and controllable. Within
this “machine metaphor”, uncertainty is treated as a problem of incomplete information or knowledge
– something that can, in principle, be resolved through improved understanding.

Complexity science challenges this framing. It rejects the notion that economic and social systems
operate according to fixed, universal laws but, at the same time, does not see them as chaotic or
entirely random. Instead, it proposes a middle ground: a world understood through patterns –
dynamic, evolving regularities that emerge through interaction, feedback, and adaptation. These
patterns are historically contingent, context-dependent, and subject to change.

In economics and finance, such patterns take the form of (for example) dominant technologies, business
practices, institutional norms, regulatory frameworks, and legal structures. These typically stabilise
for a time before evolving, dissolving, or being replaced. They help shape expectations, behaviours,
and outcomes, but they are products of history and social processes rather than fixed laws of nature.

Consider, for example:

• the widespread adoption of the microprocessor, which enabled the internet as well as new forms
of trading infrastructure, algorithmic execution, and digital market platforms, fundamentally
reshaping how financial markets operate;

• management practices such as just-in-time logistics, which transformed supply chain dynamics
and corporate risk exposures, with implications for investment analysis and asset pricing;

• regulatory frameworks and monetary policy regimes – such as inflation targeting or post-crisis
macroprudential rules – that (in principle at least) function as stabilising patterns until shifting
political, economic, or social conditions prompt their reconfiguration;

• valuation norms, such as discounted cash flow models or risk premia conventions, which emerge
from shared professional beliefs rather than immutable laws.

Crucially, these patterns do not arise through central design (except in the case of regulations and
legislation) but through decentralised interaction, learning, and feedback. Complexity science high-
lights this evolutionary nature of economic and financial systems and encourages practitioners to
focus on recognising and interpreting these shifting structures, rather than seeking fixed, universal
laws of market behaviour.
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Some Key Concepts

Having outlined the type of world that complexity science seeks to describe – one marked by openness,
interaction, and evolution – we now turn to some of its core concepts. These do not form a single,
unified theory but offer a flexible, interdisciplinary toolkit for recognising structure and regularity
across complex systems. Many of these ideas have deep intellectual roots, predating complexity
science itself. The field provides a coherent framework that connects them and makes them practically
useful for interpreting phenomena in domains as diverse as ecosystems, cities, and financial markets.

These concepts can be understood as patterns in their own right – abstract regularities that recur in
many settings. For asset managers and economists, they provide alternative lenses for interpreting
market behaviour that traditional, linear or equilibrium-based models often struggle to capture.

• Emergence: System-level patterns, including behaviours, that arise from interactions among
components or actors and cannot be understood by studying these parts in isolation.

• Feedback: Interactions that produce reinforcing or balancing loops, shaping system dynamics
over time.

• Adaptation: Actors adjust strategies in response to experience, feedback, and environmental
change.

• Co-adaptation: Multiple actors adapt to one another, creating iterative interdependencies.

• Co-evolution: Similar to co-adaptation, but occurring at the level of populations that evolve
together over time (e.g., predators and prey).

• Self-organisation: Order arising spontaneously from local interactions without central con-
trol. While often associated with beneficial patterns, harmful or maladaptive patterns can also
emerge, e.g., detrimental social norms.

• Interdependence: Actors within the system influence and are influenced by each other.

• Non-linearity: Small changes can lead to disproportionate and/or unexpected effects; out-
comes are not necessarily additive.

• Path dependence: When a phenomenon evolves in a manner shaped by its own history.

• Phase transitions: Systems can shift rapidly from one regime to another, often unpredictably.

• Robustness and fragility: Systems may resist some shocks but remain vulnerable to others
due to structural features.

• Ergodicity: A system is said to be ergodic if, over time, it visits all the possible states – or
configurations – available to it in its state space. This implies that the time average of an
observable property for a single trajectory converges to the ensemble average.

• Mental models: Internal cognitive representations that actors use to interpret the world and
guide decisions.

• Reflexivity: Actors’ beliefs and models influence the system they are trying to predict or
control. Their collective behaviour can lead to a re-patterning of the system and subsequent
adjustments in mental models, ad infinitum.

• Uncertainty: Some aspects of complex systems are fundamentally unknowable.
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Why Traditional Thinking Falls Short

Traditional financial thinking has long been shaped by elegant but overly simplified mathematical
models rooted in a Newtonian world-view and thermodynamic analogies. These include Modern
Portfolio Theory (MPT)15, the Capital Asset Pricing Model (CAPM)16, the Efficient Markets Hy-
pothesis (EMH)17, and option pricing frameworks such as the Black–Scholes model18. While these
frameworks have provided structure and tractability, they rest on strong assumptions: fully rational
investors, normally distributed returns, ergodic dynamics, stable equilibria, and linear risk–return
relationships. These assumptions downplay the complexity, interdependence, and unpredictability of
real-world markets.

They also treat uncertainty as stemming solely from incomplete information, implying that once
enough is known, asset managers can control for precise outcomes. Financial markets, however, are
not closed mechanical systems: they are open, adaptive, and historically contingent. As a result,
traditional approaches struggle to explain phenomena such as bubbles, contagion, regime shifts, and
feedback loops. They are particularly weak in environments of deep uncertainty, where probabilities
are unknown and participant behaviour reshapes the system itself.

The limitations of traditional approaches highlight the need for alternative ways of interpreting and
navigating financial markets. Rather than proposing a single predictive framework to supplant tra-
ditional models, complexity science offers a set of tools and perspectives for making sense of evolving
market dynamics. This shift from seeking precise control to developing adaptive judgement underpins
the discussion that follows on decision making in complex contexts.

Sense-Making and Decision Making in Complex Contexts

Building on this shift from control to adaptive judgement, complexity science provides a cognitive
toolkit for navigating uncertain and dynamic environments. It offers concepts, heuristics, and frame-
works that help practitioners interpret unfolding situations and refine their understanding of market
dynamics. The emphasis is not on deterministic solutions, but on inquiry and adaptation – asking
questions such as: What patterns are emerging? How confident are we in our interpretation? What
actions might clarify the system’s structure?

For asset managers, this means moving beyond reliance on static models or predefined playbooks.
Decision-making under complexity requires continuously updating mental models, testing investment
theses against incoming information, and staying alert to shifts in market regimes driven by feed-
back loops and evolving narratives. Complexity thinking supports a more iterative and exploratory
investment process, where strategies are adjusted as understanding deepens.

A related and essential capability is pattern recognition, which draws on tacit and learnt knowledge,
as well as lived experience. In markets characterised by non-linearity and reflexivity, the ability to
detect subtle contextual changes early – before they are visible in traditional metrics – can provide
a significant edge. This agility helps avoid oversimplified or delayed reactions and supports more
resilient portfolio positioning in a world where certainty is rarely attainable.
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2 What Markets Really Look Like

Should financial markets be viewed as complex systems? This is a foundational question for any
attempt to apply complexity science in asset management. One way to approach it is to ask whether
markets exhibit the four defining characteristics of complex systems introduced in the previous section.
We consider these immediately below. A complementary way is to examine whether the empirical
properties of asset price returns align with the behaviours typically associated with complex systems.
This is the focus of the second part of this section.

• Heterogeneity: Financial markets bring together a wide variety of actors – institutional in-
vestors, retail traders, central banks, algorithmic funds, market makers, and others – each
operating with distinct mandates, information sets, and behavioural rules.

• Interdependence: Global finance forms a highly interconnected network, where shocks in
one node – such as liquidity withdrawals or policy announcements – propagate rapidly through
others. The 2008 financial crisis is a clear illustration of systemic effects driven by these inter-
dependencies.

• Adaptation: Market participants adjust their strategies continually in response to new inform-
ation, changing conditions, and the actions of others, sometimes reshaping market dynamics in
the process.

• Emergent patterns: As explored further in the supporting paper Market Prices as Emergent
Properties, market-level phenomena such as volatility regimes, bubbles, and crashes arise from
decentralised interaction among participants and cannot be attributed to any single actor or
directive.

Taken together, these features suggest that financial markets are better understood as evolving sys-
tems shaped by interaction, feedback, and historical contingency, rather than as equilibrium mech-
anisms processing exogenous information in a linear fashion. In this light, complexity science offers
not only a theoretical lens but also a practical and empirically grounded framework for interpret-
ing market behaviour – a perspective that opens up opportunities for what we earlier referred to as
complexity arbitrage.

Having established that financial markets exhibit the core features of complex systems, we now turn
to the empirical question: do patterns in asset price behaviour reinforce this view? The following
sub-section reviews recurring statistical regularities – the so-called “stylised facts” – observed across
asset classes, time horizons, and geographies. These facts are significant for asset managers in their
own right, but they also strengthen the case for viewing markets through the lens of complexity.

Empirical Characteristics of Asset Price Returns

As mentioned in the previous section, traditional frameworks in finance – including MPT, the CAPM,
the EMH, and Black–Scholes option pricing – assume that asset returns are normally distributed,
serially uncorrelated, and driven solely by exogenous news. Risk is modelled as variance; actors are
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treated as representative and rational; and markets are expected to move smoothly toward equilib-
rium. These assumptions provide mathematical tractability and elegant solutions – but they are not
supported by empirical evidence.

Decades of research paint a different picture. Across equities, bonds, commodities, currencies, and
derivatives – and over horizons ranging from intraday to multi-decade – a consistent set of statistical
features appears:

1. Fat tails: The distribution of returns is non-normal, exhibiting heavy tails and excess
kurtosis19. Extreme price moves occur far more frequently than Gaussian models predict,
leading to systematic underestimation of tail risk.

2. Absence of simple return autocorrelations20: Raw returns are typically uncorrelated
at short lags in liquid markets, likely reflecting adaptive strategies that eliminate short-term
predictability. This pattern is sometimes cited as evidence of market efficiency.

3. Volatility clustering and long memory: Large price moves are often followed by fur-
ther large moves (regardless of direction), while calm periods also cluster together. Volatility
is strongly autocorrelated and displays long-range dependence – a sign of feedback, regime-
switching, and memory in the system.

4. Power laws and scale invariance: The distribution of returns, drawdowns, and other mar-
ket quantities frequently follow power law21 relationships, suggesting that market patterns are
self-similar across scales22 – behaviour typical of systems far from (or without any meaningful)
equilibrium.

5. Asymmetries in behaviour: Market reactions to positive and negative news differ. Volatility
tends to rise faster in downturns than it falls in rallies (the “leverage effect”), and correlations
often increase during stress periods, highlighting non-linear dependencies and amplification
effects.

These empirical features are persistent and widespread, not anomalies or artefacts of specific instru-
ments or time periods. They point to a system marked by heterogeneity, interaction, and adaptation.

Viewed through a complexity lens, each stylised fact reflects system-level outcomes of decentralised
interaction. Fat tails emerge from amplification mechanisms, where local shocks propagate through
networks of actors. Volatility clustering results from herding, learning, and institutional routines that
adapt slowly over time. Power law scaling signals self-organised23 dynamics without a characteristic
scale. Asymmetries arise from reflexive expectations, leverage constraints, and non-linear decision
rules under uncertainty.

For asset managers, these realities matter directly. Models built on Gaussian assumptions under-
price risk, underestimate the frequency of large losses, and ignore non-linear exposures. Frameworks
that neglect memory and adaptation miss regime shifts, volatility states, and correlated position-
ing. Complexity-aware approaches, by contrast, anchor analysis in the actual properties of markets
rather than equilibrium and optimisation. This perspective reframes market patterns not as noise but
as signals of structure, history, and interdependence, which helps sharpen conventional investment
analysis.
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3 Patterns, Not Just Models

Formal models underpin many activities in asset management. They guide asset pricing, portfolio
construction, risk management, and strategic allocation. Over recent decades, models based on
MPT, equilibrium pricing frameworks, and stochastic calculus have become deeply embedded in both
practice and regulation. They offer an impression of precision and predictive control but many of
these models rest on assumptions that misalign with the empirical and ontological realities of financial
markets.

As discussed earlier, most conventional models are grounded in a mechanistic ontology, whereas mar-
kets are better understood as complex systems. This mismatch creates two risks for asset managers.
First, strategies built on overly simplified models can falter in environments marked by non-linearity,
regime shifts, and feedback amplification. Second, the apparent rigour of these models – reinforced
by their mathematical sophistication and academic pedigree – can instil overconfidence, discouraging
critical reflection on assumptions or alternative perspectives. As a result, poor modelling is not merely
a technical flaw; it is a strategic vulnerability.

These issues are not hypothetical. Decades of market experience reveal recurring limitations in
conventional approaches – the following list contains a number of overlapping points:

• Instrumentalism (Black-box Modelling): Some models are designed to generate plaus-
ible predictions while ignoring whether their internal structure reflects real-world processes.
Following Milton Friedman’s (flawed) interpretation of instrumentalism, such models aim for
prediction over explanation. They often fail in out-of-sample contexts, particularly in reflexive
markets where modelling itself alters behaviour.

• Over-reliance on fit: Statistical fit to historical data can produce models that perform well
in-sample yet fail when regimes shift. Over-fitted models capture noise rather than structure,
producing fragile forecasts and false confidence – failures repeatedly exposed during market
crises.

• Missing important structure (reduction): Simplifying assumptions may omit critical in-
teractions, feedbacks, or institutional constraints. Models that reduce complexity instead of
abstracting from it24 risk missing the drivers of system behaviour, particularly under stress.

• Mis-specified assumptions (wrong ontology): Models based on rational agents, equilib-
rium convergence, or independent shocks may be mathematically serviceable but conceptually
flawed if they misrepresent how markets actually operate.

• Ignoring tail risk and instability: Gaussian assumptions and constant-volatility frameworks
tend to understate the frequency and impact of extreme events. Before and during the global
financial crisis, misplaced faith in such formulaic approaches amplified systemic fragility.

• Goodhart’s law and reflexivity: Widely used models can change the system they attempt
to describe, undermining their own predictive power. As market participants act on model
outputs, feedback loops reshape dynamics, requiring constant adaptation.

• Excess confidence and misuse (model risk): Beyond conceptual flaws, practical errors in
coding or calibration, combined with poor model governance, can lead to significant financial
losses. Even robust models can harm when applied without humility or oversight.
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A complexity-informed approach points to a different orientation. Rather than searching for optimal
solutions under strong assumptions, it emphasises the search for robust patterns: regularities that
persist across time, context, and evolving structures. Models become tools to support judgement,
learning, and collective decision-making, not engines of precise prediction.

This shift reshapes modelling practices:

• Start from realism: Build models that reflect heterogeneity, networked interactions, and
adaptive behaviour. For example, distinguish between investor types, learning rules, institu-
tional constraints, or liquidity effects rather than assuming representative agents with limited
interaction.

• Aim for patterns, not just fit: Capture underlying structure and dynamic tendencies – such
as momentum, crowding, or volatility clustering – rather than optimising statistical fit to past
data.

• Use models as aids, not answers: In complex systems, even well-calibrated models cannot
provide definitive forecasts. They can, however, highlight plausible future paths, stress-test
scenarios, and point to where the system is fragile or adaptive.

• Experiment and diversify: Employ multiple approaches – agent-based simulations, regime-
switching models, heuristic stress tests, and narrative mapping – to avoid model monocultures
and reduce fragility.

• Hold models lightly: Apply models with humility, recognising their limits and provisional
nature in uncertain, reflexive environments.

This is not an argument to discard formal models, but to use them more wisely. In complex markets,
the most valuable models are not those that promise certainty, but those that enhance understanding,
sharpen judgement, and guide adaptive decision-making under uncertainty.

11



4 Prices as Emergent Phenomena

Traditional asset pricing theory typically assumes that market prices reflect an equilibrium – a state
in which they efficiently incorporate all available information. Whether framed in terms of marginal
utility (as in classical economics), arbitrage-free pricing (as in modern finance), or simple supply and
demand dynamics, prices are usually seen as the outcome of optimisation within a stable, well-defined
model. This perspective implies that the “correct” price exists independently of the market process,
discoverable and deterministic, even if it fluctuates in response to new information.

In practice, prices behave differently, especially in financial markets. As noted in previous sections,
financial systems exhibit the hallmarks of complex systems: heterogeneity, interdependence, adapt-
ation, and emergence. From this perspective, prices arise from decentralised interactions among
market participants with differing beliefs, information, and constraints. These interactions gener-
ate evolving patterns of trading and valuation. In short, market prices are better understood as
emergent properties25 of a complex system.

This section draws on the supporting paper Market Prices as Emergent Properties, which reviews
relevant literature and develops a more realistic conceptual framing of price formation. Here, we focus
on what it means to treat prices as emergent and the implications of this view for asset management.

Why does this matter? A core task for asset managers is to assess the reasonable value of assets
and compare these estimates with prevailing market prices; discrepancies between the two drive buy
and sell decisions. Complexity science informs both valuation and price interpretation. This section
focuses on the latter – clarifying what market prices truly represent when understood as outcomes of
decentralised, interactive processes.

A Shift in Ontology: From Discovery to Construction

To understand the difference between conventional and complexity-informed views of price, it is
helpful to contrast their ontologies – their assumptions about what prices are.

In conventional asset pricing theory, the market’s role is to discover the correct price, assumed to
be unique, stable, and firmly anchored in fundamentals. Participants are generally modelled as
homogeneous, rational actors solving well-defined optimisation problems. Even in more sophisticated
approaches, such as rational expectations equilibrium or no-arbitrage pricing, the assumption remains
that market participants eventually converge on the “true” valuation, with deviations being temporary.

The complexity perspective challenges this view. It suggests that prices are constructed through
the ongoing interaction of heterogeneous, adaptive participants. There is no single correct price ex
ante; rather, prices emerge as evolving settlements shaped by narratives, learning, imitation, liquidity
constraints, and institutional structures. Price formation, in this view, is not a solution to a fixed
optimisation problem but the by-product of a dynamic, collective process.

Emergence and Emergent Properties

To further unpack this ontological shift, it is useful to clarify what is meant by ‘emergent properties’.
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Markets often display patterns and regularities that are not deliberately designed or centrally imposed
but instead arise organically from the interactions of many participants. This phenomenon, known
as emergence, is described by the Santa Fe Institute as the “process by which a system of interacting
subunits acquires qualitatively new properties that cannot be understood as the simple addition of
their individual contributions” (The Santa Fe Institute, 2023). In other words, the system as a whole
exhibits behaviours and patterns that differ from, and cannot be reduced to, the properties of its
individual components.

This view challenges what Ullmann-Margalit (1978) terms the artificer bias – the belief that social
outcomes must stem from deliberate planning or top-down design. Instead, markets frequently exhibit
spontaneous order, a concept explored by Enlightenment thinkers and – more recently – Friedrich
Hayek, where structures and coordination emerge without central control.26

Two processes are especially relevant for understanding emergence:

• Upward effects: Micro-level actions – such as trading decisions, beliefs, and strategies –
collectively generate macro-level patterns like price movements, volatility clustering, and insti-
tutional norms. Historically labelled ‘upward causation’, this terminology can be misleading,
as emergent properties are not ‘caused’ in the deterministic sense.27

• Downward effects: Once macro-level patterns are established, they feed back to influence
individual behaviours – for example, prevailing prices, conventions, or norms shaping future
trading activity. Traditionally referred to as ‘downward causation’, but again, this should not
be understood as mechanical causality.

Recognising emergence shifts our understanding of market dynamics. Rather than treating prices
as intrinsic reflections of fundamental value within a mechanical equilibrium, complexity science
invites us to explore how collective behaviours, feedback loops, and adaptive interactions continually
construct market prices.

Agent-Based Models of Financial Markets

This subsection offers a concise overview of the literature relevant to the idea of prices as emergent
properties that is based on Agent-Based Models (ABMs). For a more detailed treatment of this
research landscape, readers are referred to Axtell and Farmer (2025).

ABMs provide a bottom-up framework for studying how financial markets evolve as complex, emer-
gent systems. Unlike traditional equilibrium-based models, ABMs simulate markets as interactions
among heterogeneous, adaptive actors, each following behavioural rules or strategies. Prices arise
endogenously from these interactions rather than from an imposed equilibrium condition, allowing
researchers to investigate how real-world market patterns develop over time.

Early research included the Santa Fe Artificial Stock Market (SFI-ASM) developed in the 1990s (see
Palmer et al., 1994; and Arthur et al., 1996). This pioneering model showed that diverse traders, using
evolving strategies based on past performance, could generate equilibrium-like states, bubbles, crashes,
and volatility clustering without requiring perfect rationality or external shocks. It demonstrated that
complex market phenomena can emerge purely from decentralised decision-making.

13



Subsequent ‘second-generation’ ABMs focused on reproducing the stylised facts summarised in Sec-
tion 2, such as heavy-tailed return distributions, volatility clustering, and the absence of autocorrel-
ation in returns. Models developed by Thomas Lux and colleagues, for example, showed that simple
architectures with fundamentalist and chartist agents, switching probabilistically between strategies,
could mimic real market statistics and fractal-like price patterns. A third generation introduced more
realistic order-book dynamics, capturing effects such as boom–bust cycles and persistent oscillations
in price formation.

Typical of ABMs is heterogeneity and adaptation: agents differ in beliefs, information, and risk
preferences, and update their strategies through learning. These interactions create self-reinforcing
feedback loops, regime shifts, and an ever-changing ‘ecology of strategies’ where no single approach
dominates indefinitely. Simplified models, such as minority games, further demonstrated that complex
price fluctuations can arise from minimal behavioural rules.

By the 2000s, ABMs had become an established methodology in economics and finance, with applic-
ations extending to market microstructure, derivatives, and cryptocurrencies. They offer a powerful
lens to examine how local interactions generate global price dynamics, challenging equilibrium-based
theories and providing tools to explore how policy, market design, or trading behaviour can drive
systemic phenomena.

Information and Decentralized Price Discovery

Here we briefly explore the literature related to how prices in financial markets emerge as
mechanisms for aggregating dispersed information held by individual participants. Rooted in
Hayek’s hypothesis28, it describes prices as real-time statistics that synthesize private beliefs and
signals into a collective valuation.

It is important to note, however, that asset markets differ fundamentally from goods and services
markets due to their forward-looking nature, reliance on expectations, and susceptibility to shifting
narratives and reflexivity. This temporal and interpretative dimension makes asset prices highly
path-dependent and subject to uncertainty beyond calculable risk.

Empirical support for decentralized price discovery comes from laboratory experiments. Smith (1962)
showed that competitive prices emerge rapidly even when traders know only their own supply or
demand conditions. Plott and Sunder (1988) extended this to asset markets, demonstrating that dis-
persed signals, when aggregated through trading, allow prices to converge toward the true underlying
value. These findings underpin modern prediction markets, where prices serve as collective forecasts.

Gode and Sunder (1993) provided further evidence with their “zero-intelligence trader” experiments,
showing that market efficiency can emerge even when participants act randomly under budget con-
straints. The structure of continuous double auctions itself drives convergence toward efficient alloc-
ations, indicating that sophisticated cognition is not strictly necessary for price discovery.

Theoretically, this aligns with the EMH, which views prices as information-reflective. Yet the Gross-
man and Stiglitz (1980) paradox highlights that perfect efficiency is unattainable: if information were
fully embedded in prices, no one would invest in discovering it. Instead, prices reflect the outcome of
costly, decentralized efforts to gather and act on information.
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Overall, the above literature points to price discovery that is best understood as an emergent, col-
lective computation shaped by interaction, competition, and institutional mechanisms rather than
by a central planner or perfectly rational actors. Prices dynamically evolve to encode dispersed in-
formation, but their accuracy and stability depend on the diversity, independence, and incentives of
market participants.

Implications for Asset Management

Viewing market prices as emergent properties reshapes several aspects of asset management practice.
This shift in perspective influences how firms think about investment strategy, risk management,
organisational design, and incentives, as outlined below:

• Interpreting prices as processes, not fixed points: Prices represent evolving settlements
shaped by interaction and adaptation, not unique or deterministic fair values. Portfolio decisions
should therefore be framed as contingent on – or with an expectation of – shifting market
dynamics.

• Attention to narratives and implicit coordination: Price formation is strongly influenced
by shared stories, expectations, and conventions that can change abruptly. Monitoring narrative
shifts complements traditional analysis of fundamentals (discussed further in the next section).

• Role of feedback loops: Trading activity and positioning feed back into price dynamics,
sometimes amplifying volatility or creating instability. Understanding these loops is essential
for anticipating crowding risks or reflexive sell-offs.

• Limits of equilibrium valuation: Valuation models assuming a single discoverable price can
mislead. Scenario-based approaches and adaptive valuation frameworks, leading to multiple
price points, offer more resilience to changing market conditions.

• Microstructure awareness: Prices evolve within specific institutional settings, shaped by
order-book dynamics, liquidity constraints, and execution flows. These factors can significantly
influence realised prices.

• Diversity and resilience: Markets dominated by similar strategies or beliefs become fra-
gile. Encouraging diversity of perspectives within teams and portfolios can help avoid systemic
vulnerabilities and improve long-term decision quality. This idea is linked to the concept of
requisite variety in complexity science.
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5 Narratives as Drivers of Market Dynamics

If prices emerge from interaction and feedback, then the ideas, stories, and framing devices used by
market participants become central to collective market behaviour. Among these, narratives play
a particularly important role: they shape how actors interpret information, form expectations, and
make decisions. Unlike other cognitive patterns such as metaphors or analogies, narratives have a
temporal structure that links past events to present signals and future possibilities. They influence
not only what market participants believe, but also what they notice, how they react, and how their
individual decisions combine into system-wide outcomes. In this sense, narratives function both as
cognitive instruments and as powerful forces shaping financial systems.

This section draws on the supporting paper Narratives in Financial Markets, which reviews the
growing body of research on this topic. It highlights key mechanisms through which narratives
influence market behaviour, surveys empirical findings, and sets out why narrative dynamics matter
for asset managers. The discussion proceeds in four parts: how narratives help market participants
make sense of uncertainty, the main mechanisms through which they act, evidence from empirical
studies, and practical implications for investment practice.

Narrative as Sense-Making in Uncertain Systems

Financial markets are inherently uncertain environments. Actors must make decisions without com-
plete information, stable causal relationships, or well-defined probability distributions. Under such
conditions, narratives become essential sense-making devices: they offer explanations, provide emo-
tional and cognitive anchoring, and enable more informed decision making.

This contrasts with standard models of decision-making under risk, where preferences are fixed,
beliefs are probabilistic, and the environment is fully specified. In a complexity framing, uncertainty
is ontological as well as epistemic: actors cannot know all possible future states or assign meaningful
probabilities to many outcomes. Narratives, in this context, are how people navigate indeterminacy
– simplifying, interpreting, and projecting events to enable action despite pervasive uncertainty.

Key Mechanisms

Researchers have identified several ways in which narratives influence investor behaviour and shape
price dynamics. These mechanisms often operate simultaneously, reinforcing one another and con-
tributing to emergent market outcomes:

• Framing effects: Narratives guide how investors interpret incoming information. A well-
crafted story can draw attention to particular aspects of news while downplaying others, leading
the same data to be perceived in bullish or bearish terms. Experimental studies29 show that
investors often give greater weight to narratively framed information than to abstract or purely
statistical data.

• Emotional engagement: Narratives frequently resonate on an emotional level, triggering re-
sponses such as fear or exuberance more strongly than numerical facts alone. As David Tuckett
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argues, narratives provide the emotional scaffolding needed to justify action in ambiguous envir-
onments (Tuckett, 2017). Strong emotional content can override risk aversion, fuelling episodes
of optimism, overconfidence, or panic selling.

• Contagious spread: Narratives are socially contagious. Like memes, compelling stories diffuse
rapidly through media, social networks, and professional communities. Shiller (2019) documents
historical episodes – from tulip mania to Bitcoin – where narrative contagion played a key role
in driving market dynamics. Social media has accelerated this process, enabling near-instant
transmission of narratives (as seen during the GameStop episode). Importantly, even those who
do not believe a narrative may act as if it matters, knowing that others will be influenced by it.

• Social validation and feedback: In uncertain environments, investors often look to others for
cues. When a narrative becomes widely accepted, it gains authority – not necessarily because
it is true, but because many believe it. This herding behaviour can be rational: collective belief
can shape market outcomes. For example, widespread confidence in stable credit markets prior
to the 2008 crisis reduced perceived risk, fuelling lending and asset inflation. As narratives gain
traction, they form shared mental models that guide expectations. Confirmation bias can then
entrench the dominant story, filtering out contradictory evidence. In extreme cases, narratives
become self-fulfilling – belief drives behaviour that reinforces the narrative, until a competing
narrative overturns it.

Taken together, these mechanisms show that narratives are far from “noise” in financial markets. They
are powerful forces shaping interpretation, emotion, social coordination, and feedback – all central to
how prices form and evolve in complex systems.

Empirical Observations

A growing body of empirical research supports the idea that narratives play a significant role in
shaping market behaviour. The supporting paper reviews various methods used to track and analyse
narrative dynamics, including natural language processing, media analysis, surveys, interviews, and
ethnographic studies.

Key findings from this literature include:

• The rise and fall of dominant macroeconomic narratives (e.g., “secular stagnation,” “reflation,”
“soft landing”) often coincide with notable shifts in asset prices, volatility, and capital flows.

• Sudden narrative regime changes – such as the transition from “low inflation forever” to “mon-
etary tightening is necessary” – can trigger sharp repricing across multiple asset classes.

• Narrative alignment across media channels, policymakers, and investors tends to amplify market
moves, increasing the risk of herding, overshoot, and abrupt reversals.

These patterns cannot be fully explained by fundamentals or news flows alone. As discussed in the
next subsection, narratives arise from within financial markets themselves, emerging from interactions
among participants and evolving dynamically over time.
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A Complexity Perspective

From a complexity science viewpoint, narratives can be understood as distributed cognitive patterns
that both shape and are shaped by market dynamics. They are not exogenous inputs or top-down
directives but arise endogenously from decentralised communication among heterogeneous actors –
investors, analysts, journalists, policymakers, and others. Narratives spread, evolve, and gain traction
through these interactions, influencing how market participants collectively process information and
form expectations.

This positions narratives as another form of emergence in financial systems. Like volatility clustering
or market bubbles, narratives originate at the micro level – in the interpretations, forecasts, and
framings of individual actors – and coalesce into macro-level patterns that exert systemic influence.30

Once established within a financial environment, narratives feed back into participants’ behaviour.
Narrative dynamics are therefore recursive: they emerge from interaction and in turn reshape the
structure of that interaction. This echoes the upward and downward effects of emergent properties
discussed earlier.

Narratives also offer a bridge between qualitative and quantitative approaches. They provide inter-
pretive depth – helping to explain how actors make sense of uncertainty, coordinate action (inten-
tionally or otherwise), and respond to emotionally charged developments – while increasingly being
amenable to empirical study. Advances in natural language processing (NLP) and data science now
allow narrative dynamics to be examined at scale. Techniques such as topic modelling, sentiment
analysis, and semantic clustering can identify dominant storylines, track their evolution, and relate
them to market outcomes. As noted in the supporting paper, this opens the door to new forms of
pattern recognition: mapping “narrative landscapes” and detecting “narrative regimes” that co-evolve
with volatility regimes, liquidity conditions, and investor positioning.

Seen through this lens, narratives are not secondary phenomena in markets. They are core compon-
ents of the adaptive landscape in which financial actors operate – shaping expectations, influencing
positioning, and contributing directly to the feedback structures that drive market outcomes.

Implications for Asset Managers

Narrative dynamics have direct and significant implications for asset management practice. Key
considerations include:

• Narrative understanding as a complementary lens: Narratives influence sentiment,
regime dynamics31, and price formation. Incorporating narrative analysis adds an interpret-
ive layer that strengthens traditional fundamental, technical, and quantitative approaches.

• Identification of narrative regimes: Detecting whether markets are dominated by coherent
or fragmented narratives helps explain volatility, directional biases, and pricing signals.

• Monitoring narrative evolution: Tracking changes in narrative content, sentiment, and
prominence over time can provide early indicators of potential price movements or regime trans-
itions.
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• Cross-market narrative diffusion: Narratives often spread across asset classes and geograph-
ies, generating correlations and co-movements that may not appear in standard risk models.
These dynamics can operate at the micro level (e.g., single securities), meso level (e.g., sectors),
or macro level (e.g., global themes).

• Narrative risk: Abrupt shifts in dominant narratives can trigger sudden repricing, herding
behaviour, or liquidity crises, creating material risks for portfolios and counterparties.

• Hidden concentration risks: Portfolios that appear diversified may in fact be exposed to a
single underlying narrative driver, leading to correlated losses under stress.

• Reputational and regulatory exposure: Narratives around themes such as ESG or geo-
politics can influence investor sentiment, trigger regulatory scrutiny, or redirect capital flows
independently of fundamentals. Asset managers can benefit from anticipating these dynamics
before they materially affect portfolios or firm operations.

• Timing asymmetry: Narratives may lead or lag market prices, creating complex dynamics
between perception, expectation, and realised outcomes.

• Organisational intelligence: Narrative analysis fosters cross-team understanding, reduces
cognitive silos, and enables more coherent decision-making under uncertainty.

• Dedicated analytical capabilities: Depending on resources available, firms may benefit
from establishing narrative analytics teams, developing bespoke dashboards, and drawing on
interdisciplinary expertise (e.g., psychology, linguistics, data science) to track and interpret
narrative landscapes effectively.

Seen this way, narrative competence is an increasingly valuable capability for asset managers operating
in complex market environments – yet it remains underdeveloped across much of the industry.
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6 Facing Uncertainty

Asset managers operate in a world of uncertainty – but not all uncertainty is alike. A core contribution
of complexity science is to clarify the nature of uncertainty and how it differs from calculable risk. This
distinction, which has deep roots in economic thought, is not just academic: it has direct implications
for modelling, strategy, and judgement in investment practice.

Risk, Uncertainty, and Ambiguity

A longstanding distinction in decision theory – and one highly relevant to asset management – is
that between risk and uncertainty. Frank Knight (1921) and John Maynard Keynes (1937) both
argued that not all unknowns can be treated alike. Risk refers to situations where outcomes and their
associated probabilities are known. By contrast, Knightian uncertainty describes situations where
neither outcomes nor their probabilities can be meaningfully specified – they are not merely hard to
estimate, but fundamentally indeterminate. Keynes similarly observed that many economic decisions
are made under conditions where “we simply do not know” the relevant probabilities (Keynes, 1937,
p. 214).

A third category, ambiguity, is also worth highlighting. It refers to situations where the possible
outcomes are known, but the probabilities attached to them are unclear or contested. This is common
in finance, where one might know an asset’s potential price range – even if it stretches from –100%
to +∞ – yet have no reliable basis for assigning probabilities to those outcomes.

These distinctions matter because many conventional financial models treat all unknowns as meas-
urable risks, assuming that probabilities can always be specified. A complexity-informed approach
recognises that asset managers frequently operate under ambiguity or genuine uncertainty, where
probabilistic reasoning breaks down and alternative approaches are required. Table 1 summarises the
differences between risk, ambiguity, and uncertainty.

Outcomes Probabilities

Risk Known Known
Ambiguity Known Unknown
Uncertainty Unknown Unknown

Table 1: Comparison of Risk, Ambiguity, and Uncertainty

Sources of Uncertainty

Understanding uncertainty involves more than analysing outcomes and probabilities; it also requires
attention to its underlying sources. Drawing on literature from institutional theory and complexity
science, five distinct sources can be identified. These are not exhaustive, and several may be present
in a single context.

Limited information reflects the reality that economic actors rarely have access to all the data
needed for decision-making. Gaps relating to counterparties, product quality, or enforcement mech-
anisms create the need to gather, interpret, and verify information – often at a cost.
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Limited knowledge refers to incomplete understanding of the patterns that link phenomena. While
data points describe what has happened, knowledge concerns why events occur. All actors rely on
mental models to interpret the world, but these are inevitably imperfect. Complexity science can
help refine such models, while recognising that complete accuracy is rarely achievable.

Limited human cognition builds on the notion of bounded rationality: our ability to store and
process information is finite. Actors cannot optimise across all possible strategies and instead depend
on cognitive patterns, including narratives (as discussed earlier), to navigate decision-making.

Beyond these three ‘classical’ constraints, complexity science highlights two deeper sources of uncer-
tainty:

Mutual contingency arises when an actor’s decisions depend on its expectations about others,
and vice versa. This interdependence creates an infinite regress problem: even with full informa-
tion and computational power, strategic uncertainty remains unless stabilised or resolved by norms,
conventions, or laws.

Future novelty refers to the emergence of genuinely new phenomena – properties, behaviours, or
events that were not foreseeable in advance. This reflects not only epistemic limits (what we do not
yet know) but also ontological emergence (what cannot be known even in principle). Such novelty
places hard limits on prediction and underscores the need for adaptive rather than purely probabilistic
strategies.

Taken together, these five sources illustrate why uncertainty is not merely a matter of missing data.
It is a fundamental condition of decision-making in complex systems, arising from the limits of
knowledge, cognition, interdependence, and the evolving nature of the world itself.

Behavioural Perspectives and Ambiguity Aversion

Behavioural research shows that investors do not respond to risk, uncertainty, and ambiguity in
the same way. A foundational insight comes from the Ellsberg Paradox (Ellsberg, 1961), which
demonstrated that people systematically prefer known risks over ambiguous ones – a phenomenon
referred to as ambiguity aversion. This behaviour is distinct from risk aversion: it reflects discomfort
not with volatility itself, but with the lack of reliable information about underlying probabilities.

Building on this insight, economists have developed models to formalise decision-making under am-
biguity. One influential framework is the multiple-priors model by Gilboa and Schmeidler (1989),
which assumes that investors consider a set of possible probability distributions rather than relying
on a single known one.

Empirical evidence further suggests that ambiguity is priced into financial markets. Investors demand
an ambiguity premium – a higher expected return for bearing ambiguous rather than well-defined risks.
Studies such as Bossaerts et al. (2010) and Brenner and Izhakian (2018) confirm that assets exposed
to greater ambiguity trade at wider discounts relative to their expected payoffs.

Taken together, these findings reinforce the view that ambiguity and uncertainty are not simply more
complicated versions of risk. They are qualitatively different conditions that meaningfully shapes
investor behaviour and asset pricing in ways that standard risk-based models fail to capture.
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Impact on Asset Pricing and Portfolio Management

Ambiguity and Knightian uncertainty carry significant implications for how assets are priced and
portfolios are constructed. Standard asset pricing models assume that investors can assign reliable
probabilities to future outcomes but when ambiguity or deep uncertainty is present, these assump-
tions break down. Theoretical work such as Epstein and Wang (1994) shows that under Knightian
uncertainty, asset prices are no longer anchored to unique values but instead fall within a ‘plausible
range’.

Consistent with this, Haldane (2009) notes that when investors lack a shared probability model,
valuations become more conservative and less precise. This often results in systematically lower
prices for a given set of expected cash flows – effectively, higher risk premia. The discounting reflects
not volatility itself, but a deeper aversion to the unknown. This dynamic was evident during the 2008
financial crisis, when asset managers struggled to assign values to complex securities in the absence
of trustworthy models, leading to market freezes and distressed selling.

Portfolio decision-making is also reshaped by under ambiguity / uncertainty. Traditional approaches
such as mean-variance optimisation32 rely on the assumption that future return distributions are
known and can be reliably estimated. When this assumption does not hold, ambiguity-averse investors
shift their focus toward robustness rather than optimisation. They often accept lower expected returns
in exchange for portfolios that are less vulnerable to errors in model assumptions or data inputs. In
practice, this can mean favouring familiar or well-understood assets (a form of home bias), applying
wider margins of safety to valuations, or avoiding investments where the underlying probabilities are
unclear altogether.

These behavioural patterns are difficult to explain using risk-only models. They become intelligible
once ambiguity and uncertainty are recognised as first-order concerns. In this way, accounting for
uncertainty not only improves descriptive realism but also helps rationalise observed deviations from
classical portfolio theory.

Challenges for Risk Management and Decision-Making

Deep uncertainty and ambiguity pose fundamental challenges for conventional risk management prac-
tices. Standard tools – such as value-at-risk (VaR)33, volatility forecasts, and credit models – typically
assume that historical data can be used to infer future probabilities. When uncertainty is Knightian
in nature, or when ambiguity dominates, this assumption is invalidated. In such cases, probabilistic
models may provide a false sense of precision, masking the reality that key risks are unmeasurable or
structurally unknowable. This can be dangerous and, in extreme cases, catastrophic for portfolios.

We can distinguish between problems at different conceptual levels. First, there is model risk: the
possibility that the chosen risk model is misspecified or rests on flawed assumptions. Second, even
with a well-specified model, the relevant probability distribution(s) may be unknown or unknowable.
Third – and most radically – there may be no stable distribution at all. This is particularly likely in
complex, open systems characterised by novelty, reflexivity, and mutual contingency.

Behavioural research shows that in contexts of deep uncertainty, investors often fall back on heuristics
or narratives, as discussed in the previous section. In financial markets, this can manifest as herding
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(copying others when individual models lack credibility), a preference for liquidity (to preserve flex-
ibility), or a bias toward actions that maintain optionality. While these behaviours often make sense
under uncertainty, they diverge from the predictions of classical finance theory – underscoring the
need for an approach that acknowledges the reality of unknown unknowns.

Frameworks for Managing Uncertainty in Practice

Faced with such deep uncertainty and ambiguity, some asset managers and researchers have developed
practical frameworks that go beyond conventional risk models. These approaches aim to embed
robustness into decision-making and portfolio design, recognising that uncertainty cannot always be
reduced to measurable probabilities. Four broad strategies stand out:

• Robust optimisation and min-max strategies avoid reliance on a single probability dis-
tribution. Instead, they assess performance across a range of plausible models, often targeting
worst-case outcomes. The objective is to minimise maximum regret or loss, thereby protecting
against severe model error. While potentially less efficient under a ‘correct’ model – assuming
one exists – these approaches provide resilience under ambiguity and can help guard portfolios
against adverse tail risks.

• Info-gap decision theory offers a non-probabilistic framework for severe uncertainty. Rather
than asking what is most likely, it asks how far reality can deviate from expectations before a
strategy fails. This generates a robustness profile for each decision. For example, a bank might
use info-gap analysis to determine which loan portfolio remains solvent across the widest range
of adverse conditions. Unlike worst-case strategies, info-gap approaches seek robustness across
a broad middle ground of unknowns.

• Scenario planning and stress testing are long-standing tools for preparing for diverse future
states. Instead of relying on a central forecast, decision-makers examine optimistic, pessimistic,
and extreme scenarios – such as recessions, market crashes, or pandemics – and assess portfolio
performance under each. These methods encourage thinking beyond statistical baselines and
help uncover structural vulnerabilities. Regulatory stress tests and proprietary tools, such as
those used by BlackRock, operationalise this approach at scale.

• Model risk management and adaptive strategies emphasise recognising model limitations.
Some financial institutions maintain model inventories, conduct regular validation exercises, and
allocate buffers for model risk. Adaptive techniques, including Bayesian updating and model
averaging, reduce reliance on any single model. Even simple heuristics – such as equal-weighting
across assets – have been shown to perform well under uncertainty, particularly when estimation
error is high and confidence in model forecasts is low.

All four frameworks share a common goal: to construct decisions and portfolios that remain viable
across many possible futures, not just the one perceived to be most probable. This often means
sacrificing some expected (arithmetic mean) return in exchange for reduced exposure to unknown
risks. In both academic and industry contexts, there is evidence of a shift from optimisation towards
robustness. As Debelle (2010) observed, designing financial systems with lower leverage and greater
capital buffers is one straightforward way to enhance resilience. More broadly, the complexity-aware
investor seeks not to eliminate uncertainty, but to respect it – by designing systems capable of
withstanding surprise.
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7 Facing Time: Non-Ergodicity in Investment

A central but often implicit assumption in many standard financial frameworks is that markets
are ergodic. This assumption, touched on earlier and defined more precisely in the next subsection,
suggests that long-term outcomes for a single investor mirror the mean outcomes observed across many
investors at a point in time. In practice, financial markets rarely behave this way. Treating them
as ergodic can lead to flawed risk assessments, misaligned strategies, and poor long-term portfolio
outcomes. The accompanying paper Non-Ergodicity in Asset Management develops this argument
in detail, showing how recognising the non-ergodic nature of markets reshapes our understanding of
risk, return, and investment strategy over time.

Ergodic and Non-Ergodic Systems

In an ergodic system, the long-run performance of a single investment path is assumed to match
the average result observed across many possible paths at a given moment. In other words, the
time average of one trajectory approximates the ‘ensemble average’34 of all possible states. This
simplifying assumption underpins much of orthodox financial theory: expected utility maximisation,
mean–variance optimisation, and standard asset pricing models all rely on ensemble averages as a
guide for decision-making.

Financial markets, however, do not conform to this structure. Investment returns evolve along a
single, path-dependent trajectory where shocks, sequencing effects, and compounding dynamics create
outcomes that cannot be replicated or averaged away. Most investment processes are multiplicative:
gains build on past gains, and losses erode the base from which future returns compound. For example,
a gain of +50% followed by a loss of −50% (or vice versa) results in a net wealth decline of −25%, not
zero. In such non-ergodic settings, long-term investor outcomes often diverge sharply from ensemble
averages, meaning strategies based on ergodic assumptions can systematically underestimate the risks
to capital over time.

Kauffman’s Evolutionary Framing

Stuart Kauffman offers a philosophically grounded view of non-ergodicity with implications that
extend from biology to economics. Central to his account is the idea of path dependence: a system’s
past decisions, actions, and external shocks shape its present state and constrain its future trajectory.
These paths cannot be rewound or re-run under different conditions. Financial markets share this
property, as past events, market structures, and compounding effects continually influence what
outcomes are now possible.

Kauffman introduces the concept of the adjacent possible – the set of potential future states reachable
from a system’s current configuration. Change is incremental and historically contingent: not every
future is accessible, and new possibilities emerge as systems evolve. This framing aligns with the
notion of open-ended evolution, where economies explore an expanding, indeterminate landscape of
opportunities shaped by innovation, adaptation, and interaction.

His work also highlights ‘ontological emergence’, where new properties or behaviours arise from in-
teraction that cannot be reduced to component parts. For example, the ‘wetness’ of water is not
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inherent in any individual H2O molecule but emerges among a group of molecules, i.e., at a higher
level of organisation. This notion extends to social systems, where new emergent properties like social
norms are observed over time.

Finally, Kauffman emphasises self-organisation and group selection. Cooperative structures – whether
in biology, sports teams, or firms – can outperform individuals operating in isolation, suggesting
that evolutionary processes favour coordination as well as competition. These ideas challenge the
reductionist assumptions embedded in mainstream economics and support a complexity-aware, non-
ergodic perspective on financial markets.

Theoretical Foundations

The concept of ergodicity originates in late 19th- and early 20th-century statistical physics, where
it was developed to explain how physical systems evolve over time. Ludwig Boltzmann introduced
the idea in the 1870s, and George Birkhoff later formalised it in the 1930s. The ergodic hypothesis
proposed that, under certain conditions, time averages for the properties of a single system would equal
ensemble averages across all accessible microstates. This assumption enabled powerful simplifications
in thermodynamics and statistical mechanics. By the mid-20th century, however, researchers studying
biological and complex systems increasingly recognised that many natural phenomena are non-ergodic
– shaped by history, exhibiting irreversibility, and generating novel structures. These insights paved
the way for later applications in economics and finance.

Post-Keynesian economists, such as Paul Davidson and Sheila Dow35, argued in the 1990s that
economies are fundamentally non-ergodic: they evolve from an irrevocable past toward an uncertain
future, and historical data cannot reliably forecast what comes next. Economic processes are path-
dependent and do not converge to stable, long-run equilibria. This challenges the ergodic assumptions
embedded in much of mainstream theory.

Building on this perspective, Ole Peters and collaborators launched a research programme called Er-
godicity Economics around 2011. They showed that many puzzles in economics stem from conflating
ensemble averages with time averages. Expected utility36 theory often assumes ergodicity incor-
rectly. Replacing ensemble expectations with time-based growth measures resolves long-standing
paradoxes such as the St. Petersburg paradox37 and leads to different conclusions about optimal
decision-making. A time-average approach, often linked to logarithmic utility, better reflects the
compounding and path-dependent nature of wealth accumulation.

In multiplicative systems – including financial markets – arithmetic mean returns (ensemble average)
and geometric mean38 returns (expected time average) diverge when volatility is present. The geo-
metric mean is lower and more relevant to long-term investors. Peters’ work on leverage demonstrates
that strategies optimised for ensemble averages, such as those implying infinite leverage, can be ruin-
ous over time. Widely used metrics like the Sharpe ratio overlook this effect and may give misleading
signals. Time-based optimisation methods, such as the Kelly criterion39 (discussed below), identify
leverage levels that maximise long-run growth.

Finally, empirical evidence reinforces the non-ergodic nature of real-world finance. Wealth distribu-
tions in the U.S. are strongly shaped by initial conditions and multiplicative effects, while experiments
show that even trained decision-makers often fail to navigate non-ergodic environments effectively.
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These findings underline the importance of putting time and sequencing at the centre of investment
thinking, including portfolio design.

Ergodic Assumptions in Traditional Asset Management Models

Many foundational models in asset management rest on the implicit assumption of ergodicity. While
this simplifies analysis, it misrepresents the dynamics of wealth accumulation in real-world, non-
ergodic markets.

MPT40, for example, optimises a portfolio’s expected return over a single period, abstracting away
from how wealth compounds over time. As a result, it overlooks key non-ergodic effects such as
volatility drag, sequencing risk, and the impact of irreversible losses. Although Markowitz (1952)
allows for subjective return expectations, the common practice of extrapolating historical returns to
estimate future performance reinforces an ergodic view.

The CAPM41 extends MPT’s single-period logic to asset pricing. It assumes that returns are inde-
pendent and identically distributed (i.i.d.) and that beta42 fully captures risk. From a non-ergodic
perspective, this is misleading: assets with identical expected returns but different volatilities produce
very different long-term outcomes once compounding is considered.

Expected Utility Theory, widely used to model decision-making under risk, similarly assumes ergodi-
city. It presumes that the expected utility of a one-period gamble can guide behaviour over repeated
plays. In non-ergodic settings, however, sequential outcomes often diverge dramatically from ensemble
expectations.

Finally, the notion of time diversification – the belief that risk diminishes with a longer holding
period – relies on ergodic reasoning. In reality, in volatile, multiplicative systems, the range of
potential wealth outcomes typically widens as time extends, increasing exposure to extreme paths
and potential ruin.

In sum, traditional models implicitly treat risk as something that averages out, whereas in practice
it compounds and accumulates along a single, irreversible path. This oversight can lead to flawed
investment strategies and poor long-term results.

Rethinking Risk, Return, and Long-Term Wealth in a Non-Ergodic World

The accompanying paper expands substantially on these topics, beginning with the observation that
financial returns are typically generated by multiplicative processes – a class of non-ergodic systems.
These systems have four defining features: path dependence, proportionality, quantifiability in mon-
etary terms, and market-based interchangeability.

Recall the simple thought experiment above, which is worth repeating, that illustrates the asymmetry
inherent in multiplicative dynamics. Suppose an asset gains +50% and subsequently loses −50% (or
vice versa). The gain multiplies wealth by 1.5, but the loss divides it by 2, producing a net result of
−25%. This tells us that losses (expressed as a percentage) have a disproportionately large impact
when returns compound over time. As a result, outcome distributions become skewed, often following
a log-normal shape where the median return is lower than the mean.
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Examples such as Peters’ coin-toss game and simulated investment returns demonstrate how volatility
drag – the wedge between arithmetic and geometric mean returns – erodes long-term wealth. If
volatility increases and the arithmetic mean return remains unchanged, the corresponding geometric
mean declines. A useful approximation captures this effect:

x̄g ≈ x̄a −
σ2

2
(1)

where x̄g is the geometric mean of variable x, x̄a is the arithmetic mean, and σ2 is the variance of
the underlying distribution from which returns are drawn. This rule-of-thumb arises from Geometric
Brownian Motion in continuous time and relies on simplifying assumptions so it should be applied
with caution; but, nonetheless, it remains a powerful heuristic to think about the drag imposed by
volatility.

Figure 2 illustrates this phenomenon. It plots the compounded returns of portfolios that all have an
arithmetic mean return of 8% but differ in standard deviation (0–50% in 10% increments). An initial
investment of €100 over 10 years shows a clear pattern: higher volatility systematically reduces the
geometric mean return.

Figure 2: Time series of geometric mean returns for a portfolio with an underlying distribution that has a mean of 8%
and varying standard deviations (0–50% in 10% steps). The graph highlights how greater volatility lowers long-term
compounded returns.

This insight reframes risk aversion. Investors must be compensated not only for the dispersion of
returns – assuming they are known – but also for the structural drag volatility imposes on long-term
wealth growth.

The accompanying paper then examines path dependence in portfolio management, particularly
sequence-of-returns risk. For investors making withdrawals (e.g., retirees) or managing active port-
folios, early losses can permanently impair future wealth, even if long-run average returns appear
attractive. This highlights a crucial principle: for long-term investing, survival – “staying in the
game” – should take precedence over maximising expected returns.

Finally, the Kelly criterion is introduced as one approach to optimising the fraction of wealth allocated
to risky assets in order to maximise long-term geometric mean growth:
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f∗ =
µ− rf
σ2

where f∗ is the Kelly fraction, µ is the expected return of the asset, rf is the risk-free rate (sometimes
omitted), and σ is the standard deviation of returns.

If f∗ < 1, only a fraction of wealth is allocated to risky assets, with the remainder held in cash.
If f∗ > 1, leverage would be required to reach the optimal exposure. Simulations show that this
allocation balances volatility drag against long-run growth potential. The conclusion is clear: in long-
term investing, conservative approaches (the tortoise) often outperform high-volatility, high-return
strategies (the hare).

Practical Implications for Asset Managers

Recognising non-ergodicity has far-reaching consequences for how portfolios are built, risks are as-
sessed, and success is measured. As noted above, traditional mean–variance optimisation, rooted in
ensemble averages, can be misleading because it ignores the time-path nature of real-world wealth
accumulation. A focus on maximising geometric mean returns – through log-utility or Kelly-based
approaches – better reflects the compounding dynamics of wealth. This often favours portfolios with
more stable returns, even if their arithmetic average is lower. Diversification takes on a renewed
purpose: not just to smooth volatility, but to reduce the risk of ruin by limiting exposure to adverse
return sequences. Systematic rebalancing can also turn volatility into a source of incremental growth,
an approach sometimes referred to as “volatility harvesting”.

Risk management, viewed through a non-ergodic lens, shifts emphasis from optimising expected risk-
adjusted returns to safeguarding the investor’s trajectory. Position sizing becomes more conservative,
while tail-risk hedges – such as protective options or allocations to safe-haven assets – are valued for
their ability to prevent catastrophic losses. Liquidity buffers gain additional importance, helping to
avoid forced asset sales during market stress. Tools like scenario analysis and stress testing, already
common in practice, gain a stronger rationale: they help evaluate vulnerability to adverse time-path
outcomes rather than just probabilistic risks.

For client communication, re-framing investment outcomes in time-average terms can help set more
realistic expectations. Explaining that arithmetic mean returns do not guarantee realised results –
particularly when sequencing risk is significant – supports more resilient decision-making. Highlight-
ing concepts such as geometric returns (CAGR) and the asymmetry of losses can reinforce the value
of steady, conservative strategies over aggressive, high-volatility approaches.

Manager incentives often remain aligned with short-term ensemble performance rather than long-
term wealth outcomes. Adjusting evaluation horizons, introducing clawbacks, and linking rewards to
drawdown-aware or log-wealth growth metrics could improve alignment with investor interests.

Finally, examples of firms already incorporating non-ergodic thinking into practice include Baillie
Gifford and NZS Capital, both of which apply long-term, complexity-informed approaches to portfolio
management. While such thinking remains far from mainstream, it demonstrates how embracing a
time-path perspective can reshape investment strategy and risk management. A deeper exploration
of these practices is provided in the companion paper Non-Ergodicity in Asset Management.
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8 Toward a New Practice

The preceding sections have explored how complexity science can reframe investment thinking and
practice. To close, it is useful to place this discussion in its wider historical and intellectual context,
highlighting why change in asset management is both necessary and possible.

The dominant mindset shaping modern finance has deep roots in European Enlightenment thought of
the 17th to 19th centuries. Earlier philosophical traditions, notably those of ancient Greece, laid im-
portant groundwork, but the Enlightenment marked a decisive turn toward rationalism, reductionism,
and mechanistic models of cause and effect. These ideas powered major scientific and technological
advances and continue to underpin much of economic theory and financial practice today.

Yet this paradigm – based on assumptions of individual optimisation and self-correcting systems –
has proved fragile when applied to modern, interconnected economies. Instead of delivering stable,
beneficial order, it has contributed to what is now termed the polycrisis, mentioned at the beginning
of this paper: a web of interlocking global challenges, many amplified by financial dynamics rather
than contained by them.

Asset management is deeply embedded in this history. The industry has played an important enabling
role in applying scientific advances and deploying new technologies since the Enlightenment. However,
alongside governments and other economic actors, it has reinforced this mechanistic orientation. Also,
its focus on short-term profit, reliance on ergodic assumptions (discussed in Section 7), and role in
generating endogenous volatility have contributed to cycles of market instability and repeated public
interventions. These interventions, in turn, constrain future state responses, compounding systemic
fragility.

It is important to clarify the relationship between financial crises and the individuals working within
asset management. Public discourse often frames systemic crises as the direct result of bad actors,
implying that financial turmoil is caused by unethical or reckless individuals. This is a mechanistic,
reductionist view – what I refer to as a ‘fractal explanation’ of systemic phenomena. In reality,
systemic crises can emerge even when intelligent, ethical professionals act responsibly within their
roles. As argued in Section 2, endogenous volatility often arises precisely from such micro-level
behaviour, amplified through feedback loops in market-based systems. In this sense, responsibility is
neither singular nor absent but distributed across the system as a whole.

Against this backdrop, complexity science offers more than an alternative intellectual framework. It
provides a practical orientation for reshaping asset management so that it contributes not only to
investment success, but also to the resilience of the wider financial and economic systems on which
it depends.

Two broad assertions follow from this paper. First, the concept of complexity arbitrage highlights
how applying complexity science can improve outcomes for asset managers. These improvements
extend beyond higher returns: they include more effective management of risk and uncertainty,
closer alignment between client needs and portfolio construction, and stronger stewardship within
investment firms themselves.

Second, adopting complexity principles more widely has the potential to lessen the industry’s con-
tribution to systemic fragility. If embraced at scale, such principles could help dampen endogenous
volatility, reduce dependence on mechanistic risk models that underestimate tail events, and encourage
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investment practices better aligned with long-term societal value creation. While asset management
alone cannot resolve the polycrisis, its influence over capital allocation gives it considerable leverage
in shaping broader economic and financial outcomes.

This second claim is necessarily cautious. Systemic change cannot be guaranteed by improvements
at the level of individual firms. Nonetheless, wider adoption of complexity-informed practices would
probably increase the likelihood that asset management supports more resilient market dynamics
over time. Financial crises and other forms of instability may still occur, but their frequency and
severity could be reduced. Broader resilience will probably require collective measures – new institu-
tions, stronger safeguards, and innovations in market design – yet complexity science offers valuable
orientation for moving in that direction.

From this analysis, several themes stand out where complexity science can reshape asset management
practice:

Re-framing Reality. Improving decision-making in asset management first requires clarity about
the nature of the reality we are trying to navigate. Much of modern finance – and everyday thinking
– implicitly assumes a mechanistic ontology, while complexity science challenges this view, offering
an alternative framing, as outlined in Section 1.

This shift matters because it changes what we notice, what we measure, and how we act. It underpins
key topics explored in this paper: the emergent nature of prices and narratives, the distinction between
measurable risk and deeper uncertainty, and the non-ergodic, path-dependent character of returns.

A Cohering Lens. Expertise in asset management is fragmented across disciplines, each with its
own language, assumptions, and methods. While diversity is valuable for resilience, it often leads to
siloed analysis and incoherent decision-making.

Complexity science provides a shared conceptual frame. Its core ideas – feedback loops, adaptation,
emergence, and path dependence – cut across specialisations, offering common ground for dialogue.
This does not (and should not) eliminate variety, but structures it, making it easier to integrate
diverse perspectives. Developing this shared language takes effort and openness, yet it can strengthen
collaboration, improve judgement, and support more robust investment strategies.

Understanding Financial Regimes. Markets do not behave as stable, single-state systems. They
tend instead to settle into temporary regimes – patterns of prices, volatility, and behaviour sustained
by shared beliefs and reinforcing feedback loops. Narratives help coordinate expectations, making
these regimes self-sustaining for a time.

Regimes are neither permanent nor predictable in their transitions. They may shift gradually as evid-
ence undermines prevailing views or collapse abruptly when confidence falters, sometimes triggering
crises. Recognising markets as regime-based, rather than perpetually in stable equilibrium, shifts the
focus from forecasting a single path to preparing for multiple, evolving patterns of market dynamics.

Rethinking Models. Traditional investment models offer a sense of precision and control, yet
they rest on assumptions that often fail in complex, adaptive markets. Their elegance can conceal
fragility: patterns shift, feedback loops amplify shocks, and outcomes depend heavily on history and
path dependence.

A complexity perspective reframes models as tools for exploration, not prediction. Models should
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capture empirical patterns, test hypotheses, and be used in plural rather than singular form, re-
cognising that no single model reflects the full dynamics of markets. Above all, models need to be
‘held lightly’ – continuously updated, challenged, and sometimes discarded – as part of an adaptive
approach to decision-making under uncertainty.

Bridging the Application Gap. Complexity science, particularly in its social science applications,
often struggles to translate theory into practice. Academic incentives reward conceptual advances,
while specialisation can distance research from the realities of decision-making. For asset managers,
what matters is whether these insights help navigate markets more effectively.

The orientation of this paper has therefore been pragmatic: to sketch how a complexity-informed
perspective can change what asset managers do, not only how they think. The practical ideas sum-
marised in this paper are starting points for experimentation, not fixed recipes. The real task is to
build organisations that learn continuously, adapting tools and practices as market patterns evolve.

Looking Forward

This paper is a first step toward embedding complexity science more fully into asset management
practice. As mentioned previously, some firms – notably Baillie Gifford and NZS Capital – are
already experimenting with complexity-informed approaches, showing that these ideas can be put
into practice in distinctive ways. Such initiatives are still rare, highlighting considerable untapped
potential for the broader industry.

Progress will require collaboration between theorists and practitioners to design new tools, test them
in live market settings, and integrate them into investment processes. Pilot projects, shared research
platforms, and experimental approaches within firms can help turn conceptual insights into practical
capabilities. Complexity science provides orientation rather than prescription; its value will only be
realised through collective experimentation and adaptation.

My contribution is to help bridge theory and practice, bringing together perspectives from both
worlds. Yet this challenge is larger than any single author or paper. If asset management is to evolve
toward approaches that better reflect complex, evolving markets – and that contribute to systemic
resilience rather than fragility – it will take shared effort, openness to change, and a willingness to
rethink long-standing assumptions.

The stakes reach beyond investment performance alone. Asset management directs vast amounts of
capital, shaping market outcomes and wider economic and social systems. A complexity-informed
approach can make this influence more adaptive, constructive, and resilient. Whether the industry
embraces this opportunity – experimenting, learning, and building new practices for a world that is
likely to grow more complex – remains an open question.
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Endnotes

1Recent manifestations of the polycrisis include: the war in Ukraine, which has disrupted energy and grain markets
while reshaping geopolitical alliances; escalating tensions between Israel and Iran, contributing to instability across
the Middle East and volatility in oil markets; climate-induced agricultural disruptions in the Horn of Africa and
the American Midwest, affecting food security and inflation; long-tail effects of the COVID-19 pandemic on supply
chains, labour markets, and public debt; regional banking failures and institutional fragility in the US and Europe
Arnold (2023), revealing vulnerabilities in financial architecture; and the rapid deployment of generative AI, altering
employment, competition, and governance dynamics across sectors.

2A way of thinking that models systems as predictable, linear, and decomposable into independent parts.

3Systems composed of many interacting elements, whose collective behaviour cannot be understood simply by
analysing the parts in isolation.

4The arising of macro-level patterns or outcomes from micro-level interactions, often in ways that are not obvious
or intended.

5The principle that current and future states of a system are shaped by its unique past trajectory and cannot simply
reset or repeat.

6Circular cause-and-effect processes where an outcome of a system influences future behaviour of that same system,
reinforcing or dampening changes.

7A system is said to be ergodic if, over time, it visits all the possible states – or configurations – available to it
in its state space. Non-ergodic systems do not. In ergodic systems, the time average of an observable property for a
single trajectory (e.g., one individual, one asset) converges to the ensemble average – that is, the average across many
parallel instances of the system at a single point in time. This is not true of non-ergodic systems.

8The reduction in long-term investment returns caused by the asymmetric effect of losses and gains when returns
compound.

9See Arthur (2013) for a discussion of how complexity science can be understood as a ‘movement’ across disciplines,
and for an excellent discussion of how complexity science can be deployed in economics.

10A mathematical approach to modelling how systems evolve over time, particularly those exhibiting sensitivity to
initial conditions, non-linearity, and chaotic behaviour.

11A framework developed in biology and engineering to study how systems maintain their integrity through interde-
pendence, regulation, and feedback among parts and wholes.

12An approach that focuses on the interaction and adaptation of many decentralised components, often leading to
emergent and non-linear outcomes.

13The study of communication, control, and feedback in both living and artificial systems, often emphasising self-
regulation.

14Originally the attempt to model human reasoning and learning through algorithms, now encompassing a broader
range of adaptive, decision-making systems

15An investment framework introduced by Markowitz (1952), which proposes that investors can construct an op-
timal portfolio by balancing expected return and variance (risk) of returns through diversification, assuming known
probabilities and normally distributed returns.

16A traditional financial model that estimates the expected return of an asset based on its risk relative to the market
as a whole.

17This hypothesis holds that asset prices fully incorporate available information, so persistent outperformance on a
risk-adjusted basis is unlikely. It is often presented in three forms: weak (prices reflect past price data), semi-strong
(prices reflect all public information), and strong (prices reflect all information, including private).
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18The Black–Scholes model, introduced by Fischer Black and Myron Scholes (Black and Scholes, 1973), provides
a closed-form solution for pricing European options. It assumes frictionless markets, constant volatility and risk-free
rates, and asset prices following a geometric Brownian motion. This model underpins much of modern derivatives
pricing but has well-known limitations in capturing real-world market dynamics.

19A statistical measure of the "tailedness" of a distribution, indicating how often extreme values occur relative to
the normal distribution.

20Statistical correlations between current values and past values of a time series, often used to detect patterns or
predictability.

21Mathematical relationships where the frequency of an event scales as a power of its size, often implying the absence
of a characteristic scale.

22A property where patterns look similar at different levels of magnification, indicating that no single time scale or
size dominates system behaviour.

23Arising without central control, through local interactions that generate global structure or pattern.

24Reduction is when significant explanatory patterns are missing from a model; abstraction is when a model includes
all such relevant patterns.

25System-level behaviours or patterns that arise from many individual interactions and cannot be explained by
analysing those parts alone.

26My PhD research overlapped significantly with this subject: socially constructive forms of order can emerge spon-
taneously in complex social systems but this is not inevitable. Conditions have to enable such emergence, and damaging
forms of order can also develop depending on the wider environment.

27This terminology follows Geoffrey Hodgson (2011).

28The idea, proposed by economist Friedrich Hayek (1945), that market prices act as a decentralized information-
processing mechanism, aggregating local and private knowledge held by individual actors into a collective signal that
guides economic decisions.

29See, for example, Tversky and Kahneman (1981), Kirchler et al. (2004), and Nair et al. (2022).

30Narratives can be understood as emergent in two distinct senses. First, at the micro level, the narratives embedded
in our mental models are often products of historical and cultural evolution. Over time, societies develop recurring
story patterns – for example, archetypal “hero and villain” narratives – that shape how individuals interpret events
and navigate uncertainty. Second, at the macro level, financial markets reflect a constantly shifting interplay of these
micro-level narratives. At any given time, some narratives gain prominence while others recede, influencing market
sentiment and price formation to varying degrees. We can think of narratives as carrying different “weights” in the
market, their influence waxing and waning as collective attention and conviction shift over time.

31Patterns of market behaviour, such as periods of high or low volatility, that persist for a time before shifting into
different patterns.

32A standard portfolio construction approach that aims to maximise expected return for a given level of risk, assuming
returns are normally distributed.

33A risk management metric estimating the maximum potential loss of a portfolio over a given period with a specified
confidence level.

34An average outcome calculated across many possible parallel versions of a system, assuming all outcomes occur
simultaneously.

35For example, Davidson (1991, 1994, 1995, 1996).

36A decision-making concept in economics that calculates the best choice by weighing all possible outcomes according
to their probabilities and associated ‘utility’ (value).
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37A classical problem in probability theory where a gamble with infinite expected value fails to correspond to how
individuals actually behave, highlighting the limitations of expected value as a decision criterion.

38The geometric mean is a way of finding an average that reflects compounding effects or proportional changes. It is
commonly used in finance to describe long-term investment growth because it accounts for the fact that gains and losses
build on one another. Unlike the arithmetic mean, it gives a more realistic picture of overall growth when outcomes
fluctuate. It can also summarise the central tendency of a distribution of positive values observed at a single point in
time.

39A mathematical formula used to determine the optimal fraction of wealth to invest in a risky asset to maximise
long-term growth.

40An investment framework introduced by Markowitz (1952), which proposes that investors can construct an op-
timal portfolio by balancing expected return and variance (risk) of returns through diversification, assuming known
probabilities and normally distributed returns.

41A traditional financial model that estimates the expected return of an asset based on its risk relative to the market
as a whole.

42β is a measure of an asset’s sensitivity to movements in the overall market. In CAPM, it represents the expected
change in the asset’s return for a one-unit change in the return of the market portfolio. A β of 1 implies the asset
moves with the market, β > 1 indicates higher volatility than the market, and β < 1 indicates lower volatility.
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