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Abstract

In recent years, the study of artificial intelligence (AI) has undergone a paradigm
shift. This has been propelled by the groundbreaking capabilities of generative
models both in supervised and unsupervised learning scenarios. Generative AI
has shown state-of-the-art performance in solving perplexing real-world conun-
drums in fields such as image translation, medical diagnostics, textual imagery
fusion, natural language processing, and beyond. This paper documents the sys-
tematic review and analysis of recent advancements and techniques in Generative
AI with a detailed discussion of their applications including application-specific
models. Indeed, the major impact that generative AI has made to date, has been
in language generation with the development of large language models, in the field
of image translation and several other interdisciplinary applications of generative
AI. Moreover, the primary contribution of this paper lies in its coherent synthesis
of the latest advancements in these areas, seamlessly weaving together contem-
porary breakthroughs in the field. Particularly, how it shares an exploration of
the future trajectory for generative AI. In conclusion, the paper ends with a dis-
cussion of Responsible AI principles, and the necessary ethical considerations for
the sustainability and growth of these generative models.

Keywords: Generative Artificial Intelligence, Generative Adversarial Networks,
Diffusion, Segmentation, Variational Autoencoder, Transformers.
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1 Introduction

The recent advancement in Artificial Intelligence has been mainly the result of Gen-
erative Artificial Intelligence (often referred to as Generative AI or GenAI) being
introduced. Generative AI encompasses artificial intelligence systems with the ability
to create text, images, or various forms of media through the utilization of generative
models. These models acquire an understanding of the underlying patterns and struc-
tures within their training data, subsequently producing fresh data that share similar
traits and characteristics. The motivation of this systematic review is to gather, eval-
uate, and synthesize existing research on a GenAI. This paper presents a systematic
review that highlights key applications and variations of the architecture of Generative
Artificial Intelligence models and their performance. We conducted this review to (a)
understand the state-of-the-art generative AI techniques including summarizing key
methodologies, algorithms, and findings across a range of studies (b) systematically
review a large body of literature, which includes emerging trends, common challenges,
and recurring patterns in the development and application of generative AI techniques
(c) compare and contrast different generative AI approaches, such as Autoencoders,
Generative Adversarial Networks, Transformers, and Diffusion models (d) explore suc-
cessful applications of generative AI such as image translation, video synthesis and
generation, natural language processing, knowledge graph generation, etc. (e) identify
ethical challenges and propose solutions for responsible AI development.

In this research, we outline the most recent research and advancement in the field
of Generative Artificial Intelligence. It details the approach used to navigate and ana-
lyze cutting-edge developments, ensuring a comprehensive and insightful review of the
current landscape in Generative AI. The following criteria were applied for searching
the used research papers.
Time Period: This paper presents a comprehensive overview of the advancements
and applications of Generative AI, focusing on significant developments between 2018
and 2023. Additionally, it offers a concise historical perspective, tracing the evolution
of foundational models from 2012 to 2018, which laid the groundwork for the current
state of Generative AI techniques. This historical context enriches the understanding
of the field’s rapid progression and its burgeoning applications.
Keywords: This paper employs a targeted keyword search strategy, incorporating
specific terms such as ‘Generative Adversarial Networks’, ‘Transformers’, ‘Variational
Autoencoders’, and ‘Diffusion Models’. This approach also includes searching for
advancements in ‘image translation’, ‘video synthesis’, and various applications of Gen-
erative AI in ‘natural language processing’ and ‘knowledge graph generation’. This
methodology ensures a focused and comprehensive review of the latest developments
in the field of Generative AI.
Databases: The work primarily sources relevant literature from Google Scholar,
focusing on the specified timeframe. It selectively includes research that showcases
advancements in generative models. This criteria ensures the inclusion of studies where
developed models were rigorously tested on well-recognized datasets, and where results
are communicated effectively and clearly. This approach guarantees that the paper
presents a detailed and credible overview of significant developments in the field of
Generative AI.
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Inclusion Criteria: This work exclusively incorporates peer-reviewed papers, con-
ference, and journal papers that are written in English. It emphasizes studies that
highlight either significant advancements or innovative applications in the realm of
Generative AI, ensuring that the focus remains on cutting-edge and impactful devel-
opments within this field.
Exclusion Criteria: This paper meticulously filters its sources, excluding non-peer-
reviewed materials, papers not written in English, and studies that fall outside the
2012-2023 timeframe. Additionally, it deliberately omits any papers that do not
directly contribute to the advancement or understanding of Generative AI, ensuring
a focused and relevant academic discourse.
Evaluation Criteria: In each subsection evaluating the advancements in Generative
AI techniques, the paper compares the performance of various models using standard-
ized datasets commonly cited in the field. This comparison focuses on how different
state-of-the-art models perform on these datasets, providing a clear and consistent
basis for assessing the progress and effectiveness of these techniques in their respective
domains.

The following is the summary of the major contributions of our work-

• Paradigm Shift in Artificial Intelligence: The paper discusses the paradigm
shift in artificial intelligence and highlights the significant impact of generative
models in the field of machine learning.

• Historical Context: The paper includes a section that gives a straightforward
overview of how key AI models have developed from 2012 to 2018, helping to better
understand how the field has grown and changed over time.

• Real-World Uses of Generative AI: The paper describes how Generative AI
is used in different areas like image translation, diagnosing medical conditions,
combining text and images, processing natural language, etc.

• Systematic Review of Generative AI: The work provides a comprehensive
review and analysis of recent advancements in Generative AI, focusing on techniques
and applications, including application-specific models. We have also provided
information on relevant datasets for each used application.

• Impact on Language and Image Translation: The paper discusses the major
impact of generative AI in language generation with large language models and in
the field of image translation.

• Responsible AI Principles: The paper ends with a discussion on Responsible AI
principles and ethical considerations necessary for the sustainability and growth of
generative models.

After this introductory section, Sections 2 and 3 review the basic early architecture
of Generative adversarial Networks and their variants. Section 4 deeply explores the
recent applications and the advancements in Generative AI application-specific tech-
niques. Section 5 provides the Challenges and opportunities of Generative AI. Lastly,
Section 6 concludes the work and highlights the future directions of generative AI.
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2 What is Generative Artificial Intelligence?

As discussed Generative Artificial Intelligence refers to artificial intelligence systems
with the capability to create text, images, or other forms of media through the uti-
lization of generative models. These models acquire an understanding of patterns and
structures within their training data, subsequently generating novel data with akin
characteristics. Generative Artificial Intelligence encompasses various types, each tai-
lored for specific tasks or forms of media generation. The following are some of the more
well-known types: Generative Adversarial Networks (GANs) [71], Transformer-based
Models (TRMs) [133], Variational Autoencoders (VAEs) [62], and Diffusion models
(DMs) [68], to name a few. The following sections will discuss these in more detail.

2.1 Generative Adversarial Networks

A generative adversarial network (GAN) is a class of machine learning framework and
a prominent framework for approaching generative AI. The aspect that is novel in this
generative adversarial network set-up is that it does not depend upon heavily anno-
tated training data. Moreover, the architecture that it affords is quite unique from
the conventional Deep Neural Networks [27]. Indeed, it consists of two major compo-
nents named Generator and Discriminator. The main operation of the generator is to
keep on generating the fake data using the noise while the purpose of the discrimina-
tor is to distinguish whether the generated image is real or fake. The discriminator is
trained using the real images of the domain that the generator is trying to syntheti-
cally produce and the discriminator’s sole purpose is to identify whether the output
produced by the generator is fake or not. The overall system is based on the zero-sum
game dynamics, the winner will remain unchanged and the loser model each time has
to modify its parameters, it will keep on doing this until the discriminator is unable
to detect whether the generator output is fake or not [44]. The sole purpose of this is
to build a powerful generator model that generates synthetic data that looks real.

Fig. 1 demonstrates how the generator and discriminator work together. The gener-
ator aims to deceive the discriminator by providing the synthetically generated image
with the objective that it is proven real. The discriminator discerns between genuine
and counterfeit images and generates the output signal. This output signal then goes
to both the generator and discriminator, allowing the generator to produce better syn-
thetic output. And, in case the discriminator fails to prove the image is fake, it also
uses the signal to change its weights to give better predictions. In this entire architec-
ture, it is important to note that only the discriminator has access to the real image,
synthetic image, and its own signal output while the generator only learns from the
output signal of the discriminator [27].

During the initial stages of development, Generative Adversarial Network (GAN)-
based models encountered significant challenges in their training process. These
difficulties primarily revolved around issues like training divergence and model collapse
[87]. Training divergence refers to situations where the GAN’s generator and discrim-
inator fail to achieve a stable equilibrium during training, leading to oscillations and
unreliable model outputs. This problem results in inconsistent and sub-optimal gener-
ation performance, hindering the GAN’s ability to produce high-quality samples. On
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Fig. 1 GAN- Generator and discriminator working

the other hand, model collapse occurs when the GAN’s generator produces limited
and repetitive outputs, ignoring a large portion of the data distribution. This phe-
nomenon causes the generator to focus on a small subset of data points, resulting in a
lack of diversity and novelty in the generated samples. Addressing these challenges has
been a main focus in the advancement of GAN-based models, with numerous research
efforts aimed at improving stability, convergence, and diversity during the training
process. As a result, substantial progress has been made, leading to the development
of more robust and effective GAN architectures, which have significantly enhanced the
performance and applicability of these generative models.

2.2 Transformers

Further Generative AI techniques called Transformers were introduced by Vaswani
et al. [134]. This breakthrough architecture laid the foundation for various tasks,
including machine translation and language generation, and it continues to influence
subsequent neural network designs. The paper’s emphasis on attention mechanisms
highlighted their pivotal role in sequence-to-sequence tasks, advancing the state of the
art. Transformers use both the self-attention and Multi-Head Attention mechanisms
to learn the dependencies between the objects regardless of the distance between
them and to learn the different relations and patterns between the input respectively.
Often in Natural Language Processing, these methods are combined with positional
encoding added to the input sequence to make the transformers keep track of the
position of a specific word in an input sequence. Transformers are commonly used
to build Generative AI Models such as Generative Pre-trained Transformers (GPT)
models which are capable of generating coherent and contextually relevant text [109].
Bidirectional Encoder Representations from Transformers (BERT) and Open AI GPT
are based on transformers.
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2.3 Variational Autoencoders

Another model in the field of generative AI is Variational Autoencoders (VAEs), intro-
duced by Kingma et al. [65]. As the name suggests the VAEs consist of an encoder and
a decoder. The purpose of an encoder is to encode the given input in a lower dimen-
sion called latent space and the decoder decodes that latent output of the encoder
into its original input shape. During this whole process, variation is introduced to the
latent space by using the standard Gaussian distribution. The main goal is to achieve
the output with a similar mean and variance as the given input after the introduction
of the variance. This provides a structured way to learn meaningful representations of
data and then generate new samples from that data distribution.

2.4 Diffusion Models

The Diffusion Models have been designed to improve the performance of the Simple
Generative Adversarial Network, the technique was introduced by Salimans et al [115].
At a later stage, Kingma et al [64] introduced a variant of the diffusion model called
Inverse Autoregressive Flow (IAF) as a building block for generative models. IAF is a
type of normalizing flow. This is a type of generative model that aims to learn complex
probability distributions by transforming a simple base distribution into the target
distribution through a series of invertible transformations.

3 Evolution of Generative AI Models: A Look at
Earlier Variants

3.1 Earlier GAN Variants

In the early stages of the introduction of Generative Artificial Intelligence models
the major issue that researchers were facing was the convergence problem of gener-
ative models [87]. To avoid this problem, different approaches were adopted by the
researchers to make the GAN more stable (e.g., by understanding the behavior of GAN
training). In detail, Mescheder et al. [88] explained the analysis of local convergence
and stability properties during the training of GAN. This involves an examination
of the eigenvalues of the Jacobian matrix associated with the gradient vector field.
Specifically, when the equilibrium point is characterized by solely negative real-part
eigenvalues in the Jacobian, GAN training demonstrates local convergence, specifically
when utilizing relatively small learning rates. However, the situation changes when
the eigenvalues of the Jacobian are situated on the imaginary axis. In such cases, the
local convergence of GAN training is generally compromised. Also, it is important to
note that if the eigenvalues are in proximity and not directly on the imaginary axis,
the training algorithm may necessitate exceedingly small learning rates to achieve
convergence [88].

The study by Mescheder et al. [88] identified instances of eigenvalues near the
imaginary axis in practical scenarios. This observation does not definitively address
whether such proximity to the imaginary axis is a prevalent phenomenon. Furthermore,
it does not conclusively establish whether these eigenvalues are the fundamental cause
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behind the training instabilities that practitioners commonly encounter in their GAN
training endeavors. Moreover, Nagarajan et al. [93] contributed a partial response to
this query. They demonstrated that in the context of absolutely continuous data and
generator distributions, these findings establish that GANs exhibit local convergence
for sufficiently small learning rates. However, to emphasize, this assertion relies on the
premise of absolute continuity.

Goodfellow et al. [44] presented the basic GAN architecture, other researchers
also advanced more variants with some architectural differences. However, due to the
potentially limiting overlap between real and generated data distributions, the Jensen-
Shannon divergence presented in the objective function can become a constant value.
It is this phenomenon that contributes to the challenge of the vanishing gradient,
hindering effective training of GANs when employing gradient descent methods. To
address the vanishing gradient problem, the Wasserstein GAN (W-GAN) was intro-
duced [6], using the EarthMover distance instead of the Jensen-Shannon divergence to
compare real and generated data distributions. W-GAN employs a critic function ’f’
with a Lipschitz constraint as its discriminator, significantly improving GAN training
stability. However, W-GAN may still face issues like suboptimal sample generation
and occasional convergence problems in specific cases. In order to restrict the discrimi-
native capacity of the discriminator, an alternative approach has also been introduced
by [105] in the form of Loss-Sensitive GAN (LS-GAN). Both W-GAN and LS-GAN
retain the fundamental GAN architecture.

7



Fig. 2 Basic GANS Variants

Moreover, Qi et al. [97] introduced the Semi-GAN model, which involves the incor-
poration of real data labels into the discriminator’s training process. Additionally,
semi-GAN is an approach involving the integration of auxiliary information ’y’ into
both the generator ’G,’ the discriminator ’D,’ and the real data ’x’ for the discrimina-
tor [91]. This auxiliary information can encompass labels or other supplementary data.
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In the context of conventional GANs, the primary objective revolves around acquiring
a generative model capable of mapping latent variable distributions to intricate real
data distributions. Expanding upon this concept, Donahue et al. [33] propose Bidirec-
tional GANs (BiGANs) to facilitate the mapping of real data to the latent variable
space, thereby enabling feature learning. BiGANs extend the fundamental GAN struc-
ture by incorporating an additional decoder ’Q,’ which facilitates the transformation
of real data ’x’ into the latent space. Consequently, this modification transforms the
optimization problem into the form minG,Q maxD f(D,Q,G).

Chen et al. [21] introduce InfoGAN to capture mutual information between a subset
of latent variables and observed data.

In InfoGAN, the correlation is quantified using I(c;G(z, c)), where c is a latent
code and G(z, c) is the generated output. The objective function is:

min
G

max
D

{f(D,G)− λI(c;G(z, c))}

Here, f(D,G) includes the adversarial term and penalty term λI(c;G(z, c)). The goal
is to minimize the generator’s loss while maximizing the discriminator’s loss with
respect to mutual information.

Due to the challenge of computing p(c|x), a lower bound estimation is used through
variational information maximization.

Odena et al. [98] introduce the auxiliary classifier GAN (AC-GAN) approach tai-
lored for semi-supervised synthesis. Their formulated objective function comprises two
integral components: the logarithmic likelihood related to the accurate data source
and the corresponding accurate class. The essence of AC-GAN lies in its capacity to
seamlessly integrate label information into the generator and to adapt the discrimina-
tor’s objective function accordingly. This integration yields noticeable enhancements
in the generative and discriminative capabilities of the GAN framework.

In another context, Yu et al. [150] introduced SeqGAN, a pioneering framework
for sequence generation using GANs. It extends GANs to handle discrete token
sequences, treating the generator as a stochastic policy in reinforcement learning. Seq-
GAN employs policy gradient-based mechanisms to enhance sequence generation by
effectively propagating errors from the discriminator. These advancements build upon
the foundational work of GANs [44].

3.2 Earlier Transformer Variants

The concept of Transformers was introduced by Vaswani et al. [134]. It was a revolu-
tionary step in the field of generative AI specifically in natural language processing and
generating synthetic content. The basic concept of the Transformers was introduced
in [125] by Sutskever et al as a sequence modelling technique. The basic technique
of pretraining transformers was introduced and used as a state-of-the-art technique
by [106]. This was used in answering different queries and also used as a chatbot
to give results that are competitive and accurate. Indeed, these early Transformer
Developments paved the way for State-of-the-Art NLP Chatbots.
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3.3 Earlier Variational Autoencoder Variants

Variational Autoencoders [72] is one of the oldest techniques of unsupervised learning
and generative modeling. The foundational work of Variational Autoencoders was
done by Kingma at el in [66]. The Variational Autoencoders model combines the
probabilistic modeling with the basics of Autoencoders. This concept not only learns
the properties of the latent space but they also learn the probabilistic distribution of
it, which gives them the ability to generate new synthetic data samples. Early variants
of autoencoders also include denoising autoencoders which use denoising techniques
whilst trained locally to get rid of corrupted versions of their inputs [135]. Moreover,
[84] used the auto-encoders coupled with the convolutional network to solve the image
recognitional problems. Without a doubt, the pioneering work of [66] has paved the
way for numerous subsequent developments and applications of VAEs in a wide range
of domains, including image generation, natural language processing, and more.

3.4 Earlier Diffusion Model Variants

Diffusion-based models employ a sequential diffusion process to iteratively trans-
form simple data distributions into complex, high-dimensional ones. The Non-Linear
independent component estimation (NICE) introduced the concept of invertible trans-
formations as a foundation for generative artificial intelligence [31]. This was followed
by Real NVP (Real Non-Volume Preserving), which expanded the capabilities by
incorporating neural networks into the transformation process [32]. Additionally, Glow
(Generative Latent Optimization) extended these ideas to high-resolution image gen-
eration, highlighting the potential of diffusion-based models in computer vision [63].
Furthermore, Diffusion Probabilistic Models (DPMs) leveraged the diffusion process
to model the likelihood of data samples, making it an essential contribution to the
development of diffusion-based generative models. Continuous-time flows (CTFs) dif-
fusion models ventured into continuous-time modelling using stochastic differential
equations [45]. These earlier works have laid the foundation for an exciting and rapidly
evolving field of generative modelling using diffusion-based techniques.

4 Advancements in Generative AI and Their
Diverse Applications

4.1 Generative AI for Image Translation

Image translation [44] is becoming a rapidly growing technology, particularly within
the realm of medical applications. This innovation holds remarkable potential, not
only in terms of cost-saving implications related to equipment usage but also in the
facilitation of informed medical decisions.

The performance of generative AI models, particularly in the subfield of image
translation, is typically assessed using specialized datasets. Among these, two notable
datasets stand out: ImageNet [147], ClebA [82], and in the field of medical science:
MIMIC [54], BRATS [86], FastMRI [129] and ChestX-ray [139] Each of these datasets
is uniquely designed to challenge and evaluate the models’ abilities to accurately and
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effectively translate images, providing a comprehensive benchmark for their perfor-
mance capabilities. These datasets are freely accessible to researchers for testing their
models, under certain conditions. Users must properly cite the source of the dataset
in their work. For datasets containing medical data, researchers are required to sign a
Data Use Agreement. This agreement sets forth guidelines on the appropriate usage
and security of the data and strictly prohibits any attempts to identify individual
patients. This ensures that while fostering innovation and research, the datasets are
used ethically and responsibly.

The utilization of AI-driven image translation yields images that are not only more
polished and precise but also empower medical professionals with a heightened abil-
ity to discern critical information [146]. Yan et al. proposed a GANs-based model
that uses the Swin Transformers in the Generator. The Swin Transformer repre-
sents a notable stride forward in the evolution of architecture. Its most remarkable
enhancement entails the replacement of the conventional multiple self-attention (MSA)
modules with an innovative shift window-based module while keeping the remaining
layers largely unchanged. This transformer-based generator allows for the production
of the output content which is the same as source images and the same information
required by the target image. They tested the model using the BraTs2018 [86] and
FastMRI [118] datasets. The Swin-based Transformers method attains its highest level
of performance in the specific task of converting T1 mode to T2 mode images using the
clinical brain MRI dataset. Moreover, they conducted evaluations using the unpaired
BraTs2018 dataset (see the results depicted in the Figure 3). These highlight that
the innovative MMTrans approach stands out as the leader in terms of translation
performance.

Fig. 3 qualitative outcomes obtained from various translation techniques employed to generate T2
images from T1 images within the unpaired BraTs2018 dataset, Source: [146]

Indeed, Figure 3 shows that the introduced MMTrans method performs better in
translating the image when compared to other methods such as Pix2Pix [52], Cycle-
GAN [159] and RegGAN [114]. The Image of MMTrans is closest to the Ground Truth
(GT).
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Furthermore, Dar et al. [28] used Conditional GANs to solve the problem of Image
translation in MRI. This variant of GANs was introduced for image-image translation
with the conditional label given to both generator and discriminator to instruct about
what they have to forge and to predict real or fake respectively [52]. In fact, there are
two types of GAN variants present for the purpose of image translation, Pix2Pix GAN
is a conditional GAN [52], where the generator takes both an input image and a target
condition as input and then generates an output image that adheres to the specified
condition. However, for these types of GANs pixel-aligned images are required which is
quite difficult to acquire [146]. Moreover, unpaired GANs do not require corresponding
pairs of images for training. Instead, they focus on learning the mapping between two
domains by using cycle consistency as a constraint [131].

Indeed, unpaired image translation presents a significant challenge. The objective
is to ensure that translating an image from one domain to another should not com-
promise its fundamental characteristics (e.g., allowing for a seamless reversion back
to its initial state)[159]. To address this issue, the Cyclic Generative Adversarial Net-
work (Cyclic GAN) was developed [159]. Torbunov et al. [131] developed a Vision
Transformer based GAN (UVCGAN). This works on the principle of cyclic GANs and
without sacrificing the image regeneration capabilities gives better results than previ-
ous simple cyclic models. The evaluation of image-to-image translation performance
commonly employs two widely accepted metrics, namely Frechet Inception Distance
(FID) [46] and Kernel Inception Distance (KID) [13]. These metrics quantify the simi-
larity between the translated images and those within the target domain, with a lower
score indicative of higher similarity. UVCGAN model’s superior performance is evi-
dent across most image-to-image translation tasks, as illustrated in Table 1. Operating
similarly to a CycleGAN-like model, their approach consistently produces translated
images that exhibit strong correlations with the input images, capturing essential
aspects like hair color and facial orientations (as exemplified in Figure 4).

The high-quality result produced by UVCGAN in Figure 4 is paramount for
enhancing scientific simulations. It can be observed that translations generated by
ACL-GAN and Council-GAN tend to overly emphasize features that aren’t piv-
otal for achieving the intended translation, such as non-essential attributes like hair
color, background color, and length. Even in some cases, Council-GAN changed the
background.
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Table 1 FID and KID scores of UVCGAN and other models.
Lower is better, Source:[131]

Model
Selfie to Anime Anime to Selfie

FID KID (×100) FID KID (×100)
ACL-GAN 99.3 3.22 ± 0.26 128.6 3.49 ± 0.33
Council-GAN 91.9 2.74 ± 0.26 126.0 2.57 ± 0.32
CycleGAN 92.1 2.72 ± 0.29 127.5 2.52 ± 0.34
U-GAT-IT 95.8 2.74 ± 0.31 108.8 1.48 ± 0.34
UVCGAN 79.0 1.35 ± 0.20 122.8 2.33 ± 0.38

Model
Male to Female Female to Male

FID KID (×100) FID KID (×100)
ACL-GAN 9.4 0.58 ± 0.06 19.1 1.38 ± 0.09
Council-GAN 10.4 0.74 ± 0.08 24.1 1.79 ± 0.10
CycleGAN 15.2 1.29 ± 0.11 22.2 1.74 ± 0.11
U-GAT-IT 24.1 2.20 ± 0.12 15.5 0.94 ± 0.07
UVCGAN 9.6 0.68 ± 0.07 13.9 0.91 ± 0.08

Model
Remove Glasses Add Glasses

FID KID (×100) FID KID (×100)
ACL-GAN 16.7 0.70 ± 0.06 20.1 1.35 ± 0.14
Council-GAN 37.2 3.67 ± 0.22 19.5 1.33 ± 0.13
CycleGAN 24.2 1.87 ± 0.17 19.8 1.36 ± 0.12
U-GAT-IT 23.3 1.69 ± 0.14 19.0 1.08 ± 0.10
UVCGAN 14.4 0.68 ± 0.10 13.6 0.60 ± 0.08

Fig. 4 unpaired UVCGAN vs Others image-to-image translation, Source: [131]

Another application under the umbrella of image translation is the Synthetic
Aperture Radar (SAR) image translation [155]. Both the techniques of paired and
unpaired GANs are used for this application. Indeed, the SAR-generated images are
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not that visually clear but they can be captured at any time so it’s a better tech-
nique when compared to optical imaging. Particularly, if it is combined with the GANs
image translation methods to convert the SAR-generated image into an optical high-
resolution clear image [155]. Different GANs methods of unpaired image translation
such as CycleGAN [159], NICE GANs [50], Attn-CycleGAN [79] and paired GANs
such as Pix2Pix [52], and Bicycle GANs [160] are used for Satellite image translation.
In Wei et al. [141] the researchers presented a new technique using the generative
AI that is specifically designed for the translation of unpaired SAR images to opti-
cal images. In detail, they introduced an approach known as Cross-Fusion Reasoning
and Wavelet Decomposition GAN (CFRWD-GAN) [141]. The primary objective of
CFRWD-GAN is twofold: to effectively retain structural intricacies and elevate the
quality of high-frequency band details. This is achieved through a unique frame-
work that integrates cross-fusion reasoning (CFR) structure, adept at preserving both
high-resolution, fine-grained features and low-resolution semantic attributes through-
out the entire process of feature reasoning. Additionally, to address speckle noise
inherent in SAR images, the method employs discrete wavelet decomposition (WD),
enabling the translation of high-frequency components. Through the convergence of
these techniques, CFRWD-GAN demonstrates its capability to significantly enhance
the translation process for unpaired image-to-image scenarios. The model was eval-
uated using Root Mean Squared Error (RMSE) [53, 117], structural similarity index
(SSIM) [73, 140], peak signal-to-noise ratio (PSNR) [120, 128], learned perceptual
image patch similarity (LPIPS) [119, 152] and produced a better result than the other
state of art models.
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Fig. 5 Highlighted with red boxes and magnified for emphasis, the images are presented in the
following order: (a) SAR images, (b) Pix2Pix, (c) CycleGAN, (d) S-cycle-GAN, (e) NICE-GAN, (f)
GANILLA, (g) CFRWD-GAN, and (h) ground truth optical images., Source: [141]

The other technique for image generation and translation is Variational Autoen-
coders developed by Kingma et al. [66]. Furthermore, Zhu et al. [161] compared the
generative capabilities of Conditional Variation Autoencoders and also compared it
with the other generative techniques for image generation and translation. The main
idea of this work was to find the algorithm that performs the best in balancing the
diversity and realism in the generated data. The best-performing model in their work
was the Bicycle GANs.

Table 2 Generative AI and Its Applications in Image Translation

Domain Methods References

Medical-MRI MM-Transformers, Cyclic-
GAN, Pix2Pix GAN, VAE

[1, 5, 17, 28, 30, 144, 146]

Satellite Image Translation Cyclic-GAN, Pix2Pix
GAN, NICE-GAN, Attn-
CycleGAN, PSGAN

[80, 101, 155]

Facial Expression Editing VAE, UPGPT [22, 39, 149]
Style Transfer VAE, GANs, DD-GAN [9, 126, 162]
Text-to-Image Translation TextControlGAN [70]
Image Upscaling GIGA-GAN [58]
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VAE was also used for the molecule generations, generating the 3-Dimensional
synthetic molecule structure [151]. Jumper et al. [56] developed an architecture of a
generative algorithm specifically for predicting the structure of molecules and proteins.
This is the best approach till now in generative AI techniques for generating and
predicting molecular architectures.

4.2 Generative AI for Video Synthesis and Generation

Generative AI has transformative applications in the field of video and animation,
enabling the creation of visually stunning and dynamic content. The evaluation of
video generative models often involves a set of widely recognized datasets: Voxcleb
[94], HDTF [154], ClebV [142], Kinetics [59], UCF101 [123], and for specifically audio
performance testing VCTK Corpus[132] and LibriSpeech [100]. These datasets are
publicly available to researchers, with the stipulation that any use of these resources
must include proper citation of the source.

In Hong et al. [49] the researchers introduced a GANs variant called depth-aware
GAN. This model provided strong competition to the state of art models and the
problem of replacing the face in a video. In detail the dataset on which they tested the
built model and compared the results was called Voxcleb [94] and ClebV [142]. The
model produced better results than the present state-of-the-art models for achieving
talking head video face generation.

Indeed, the replacement of a face in a talking head video is the most predominant
application in the video generation problem. Many advancements have been made in
generative Artificial intelligence to master this application. Hong et al. [48] state that
all this model needs is a target video and a 2-D picture with good pixels and facial
features and it will translate the video expression features into the static picture sup-
plied. The DaGAN++ framework proposed by [48] comprises three key components:
(a) an uncertainty-aware face depth learning network that reconstructs detailed 3D
facial geometry from self-supervised face videos, without requiring camera parame-
ters or explicit 3D annotations (b) geometry-guided facial keypoint detection, which
employs the facial depth network to estimate depth maps, is used alongside RGB
images for accurate facial keypoint estimation (c) a geometry-enhanced multi-layer
generation process that incorporates learned motion fields, occlusion maps, and facial
geometry into each layer of image generation through cross-modal geometry-guided
attention. This comprehensive approach enables the synthesis of images enriched with
geometry-related attributes derived from facial videos.

It is evident from Figure 6 that DaGAN++ exhibits superior capabilities. Notably,
DaGAN++ excels in capturing expression-related facial movements within the driving
frame, with heightened accuracy observed in regions such as the eyes and mouth. This
performance enhancement can be attributed to the precise facial geometry estima-
tion, which greatly contributes to the refinement of expression-related facial motions.
Furthermore, Min et al. [90] introduce StyleTalker, an innovative audio-driven talking
head generative model designed to synthesize a talking person’s video using a single ref-
erence image. It features highly accurate lip synchronization, realistic head poses, and
natural eye blinks synchronized to the provided audio. To achieve this, they leverage
a pre-trained image generator and an image encoder to estimate latent codes for the
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Fig. 6 DaGAN++ vs other state of art model on HDTF dataset [154], Source: [48]

talking head video that align faithfully with the given audio input. This achievement
stems from the integration of novel components which includes a contrastive lip-sync
discriminator. This ensures precise lip synchronization, a conditional sequential varia-
tional autoencoder that captures a motion space disentangled from lip movements. In
more detail, it enables independent manipulation of motions and lip movements while
preserving identity. In addition, it affords an auto-regressive prior enhanced with nor-
malizing flow, facilitating the acquisition of a complex audio-to-motion multi-modal
latent space. With these components in place, StyleTalker has the capacity to pro-
duce talking head videos, both in a motion-controllable manner when another motion
source video is available. Also, entirely driven by audio inputs, wherein it infers real
motions from the provided audio.

Fig. 7 StyleTalker vs Other models, Source: [90]

The qualitative evaluation of audio-driven talking head generation performance on
VoxCeleb2 dataset in Figure 7 reveals distinct differences. In the first row (marked by
a yellow box), frames corresponding to the provided audio are displayed. Conversely,
the single image input (highlighted in a red box) represents a reference image of
the desired target identity. When observing the generated video frames produced by
the StyleTalker in comparison to those generated by other audio-driven generation
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models [103, 138, 157], a notable distinction becomes evident. StyleTalker consistently
produces talking head videos of exceptional quality, skillfully preserving the distinctive
identity of the intended.

Advancing further, Li et al. [76] introduced Multiscale Vision Transformers
(MViTv2) as a comprehensive architectural framework suitable for tasks encompass-
ing image and video classification, along with object detection. Within this study, the
researchers introduce an enhanced version of MViT, featuring decomposed relative
positional embeddings and residual pooling connections. By deploying this upgraded
architecture across five different scales, we meticulously assess its performance in sce-
narios such as ImageNet classification, COCO object detection, and Kinetics video
recognition. Remarkably, MViTv2 surpasses previous benchmarks in terms of effective-
ness and provided video classification accuracy of 86.1% on the Kinetics-400 dataset
as shown in Table 3.

Table 3 Comparative analysis with other Models on the Kinetics-400 [59] dataset,
Source: [76]

Model Top-1 Top-5 FLOPs×views Param

SlowFast 16×8 +NL [37] 79.8 93.9 234×3×10 59.9
X3D-XL [36] 79.1 93.9 48.4×3×10 11.0
MoViNet-A6 [69] 81.5 95.3 386×1×1 31.4
MViTv1, 16×4 [35] 78.4 93.5 70.3×1×5 36.6
MViTv1, 32×3 [35] 80.2 94.4 170×1×5 36.6
MViTv2-S, 16×4 [76] 81.0 94.6 64×1×5 34.5
MViTv2-B, 32×3 [76] 82.9 95.7 225×1×5 51.2
ViT-B-VTN in 21k [96] 78.6 93.7 4218×1×1 114.0
ViT-B-TimeSformer [12] in 21k 80.7 94.7 2380×3×1 121.4
ViT-L-ViViT [7] in 21k 81.3 94.7 3992×3×4 310.8
Swin-L+ in 21k [83] 84.9 96.7 2107×5×10 200.0
MViTv2-L+, 40×3, in 21k [76] 86.1 97.0 2828×3×5 217.6

In the context of the Kinetics-400 dataset [59], Table 3 presents a comparison
between MViTv2 and previous methodologies, encompassing both state-of-the-art
Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs). Upon train-
ing from the ground up, MViTv2-S and MViTv2-B models exhibit top-1 accuracy of
81.0% and 82.9% respectively, surpassing their MViTv1 [35] counterparts by +2.6%
and +2.7%. Notably, earlier ViT-based models necessitate substantial pre-training on
the IN-21K dataset to achieve peak accuracy on Kinetics-400 as shown in Table 3 (see
last 5 rows). In contrast, MViTv2 achieves an exceptional top-1 accuracy of 86.1%
when fine-tuning, the MViTv2-L model with a large spatio-temporal input size of
40× 3 (time × space2).

The rest of the reviewed applications of Generative Artificial Intelligence in the
field of Video Generation are given in Table 4

18



Table 4 Generative AI and Its Applications in Video Generation

Domain Methods References

Face swapping videos Depth Awareness GANs,
DaGAN++

[48, 49]

Video/Image Classification MViTv2 [76]
Audio-Based Facial Expression
video Translation

Styletalker Sequential VAE [90]

Simulation in Metaverses Multi-task DT offloading
model

[144]

ECG Synthesis to Improve
Deep ECG Classification

SimGAN [43]

3D human motion prediction HP-GAN [11]

4.3 Generative AI for Natural Language Processing

Generative AI models have demonstrated remarkable achievements across a spectrum
of Natural Language Processing tasks. These encompass language comprehension,
logical reasoning, and text generation.

In the domain of natural language processing, specific datasets have become stan-
dard benchmarks for evaluating state-of-the-art models in various tasks. For Named
Entity Recognition, the CoNLL-2003 dataset [116] is frequently utilized. In the area
of text summarization, two prominent datasets are DUC 2002 [85] and QMSUM [156].
Additionally, for Natural Language Inference (NLI) tasks across multiple languages,
the XNLI dataset [24] serves as a crucial resource. All of these datasets are pub-
licly available, providing researchers with essential tools to advance and assess the
capabilities of their models in these specific NLP tasks.

Presently, a significant query the AI community poses revolves around the extent
and confines of these model’s capabilities [2]. Ahuja et al. [2] raise the question
that most of the large language models are made and tested on only the English
language. Therefore these researchers took the state-of-the-art models and trained
them on other languages on certain available datasets and compared their question-
answering and classificational accuracies [2]. Generative AI even has found its way
into education[19, 34]. In the midst of this dynamic backdrop that challenges conven-
tional modes of thinking, recent research endeavors investigating the implications of
generative AI within the educational landscape yield valuable insights. Notably, these
studies shed light on the opportunities and obstacles arising from the integration of
generative AI. For instance, in a recent article [130] highlights the need for a new and
creative way of teaching that effectively incorporates the progress brought by AI. They
mentioned the significance of cultivating an ethical and personalized chatbot solution
while augmenting digital proficiency to fully harness the manifold benefits of AI. Fur-
thermore, the researchers advocate for the incorporation of AI literacy as an essential
technological skill for navigating the complexities of the 21st century.

In the current landscape, Bozkurt [14] advocates for a significant reevaluation of
the roles played by human educators and AI within the educational realm. They assert
that the emergence of AI offers a unique juncture to redefine these roles. Especially, as
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AI possesses the capacity to assume an increasing array of educational tasks that were
traditionally the exclusive domain of human educators. This perspective underscores
the importance of adopting a forward-thinking outlook that reconsiders the contribu-
tions of both technology and human educators to the educational process. Bozkurt
[14] also emphasizes that generative AI’s arrival presents a propitious opportunity to
redefine these roles further.

The researchers further delve into the opportunities and challenges ushered in by
the advent of generative AI. Generative AI, they elaborate, provides a diverse range
of opportunities. These encompass personalized learning, fostering inclusive curricu-
lum provision, and enhancing collaboration and cooperation throughout educational
processes. Also, they can cater to automated assessment benefits, ensuring improved
accessibility, optimizing efficiency in terms of time and effort, cultivating language
skills, and enabling the round-the-clock availability of these technologies.

Generative AI can also enhance synthetic data generation, with the use of Trans-
formers and GANs. It is clear that the understanding of data is better and now the
AI is able to generate synthetic data even in the health field. For example, Frid-Adar
et al. [40] used GANs to generate synthetic data for the liver lesion classification
problem. The variant they used was called DCGAN. In another problem, Wang et
al. [137] used the SSIM embedded-cycle GAN to count the number of people in the
crowd. The dataset that they used for this problem was fully synthetically generated.
It had all the weather conditions covered which made the model perform the best
compared to the state-of-the-art models. Another technique of generative AI that is
among the state-of-the-art techniques is BERT (Bidirectional Encoder representations
from Transformers) which was introduced by the Google AI team [29]. It represents a
significant advancement in pre-training techniques for NLP tasks. BERT is based on
the transformer architecture and is designed to capture contextual information from
both the left and right sides of a word in a sentence, hence the term ‘bidirectional’.
In Bert’s pre-training, the model learns to predict missing words in a sentence by
training on a large corpus of text. This helps BERT develop a deep understanding of
syntax, semantics, and context. After pre-training, the model is fine-tuned on specific
downstream tasks, such as sentiment analysis, question answering, and named entity
recognition, using task-specific labelled data.

Table 5 shows the BERT model tested with the CoNLL-2003 [116] dataset for
the task focusing on named entity recognition. BERTLarge demonstrates strong com-
petitiveness with state-of-the-art techniques. The most successful approach involves
concatenating token representations from the uppermost four hidden layers of the
pre-trained Transformer. Remarkably, this approach lags by only 0.3 F1 behind the
performance achieved by fine-tuning the complete model. This finding underscores the
effectiveness of BERT for both fine-tuning and feature-based methodologies.

Another model related to Generative Natural language processing is ELMo [55].
This stands for ‘Embeddings from Language Models’. ELMo utilizes a bidirectional
LSTM (Long Short-Term Memory) network [47] for contextual word embeddings. In
fact, ELMo embeddings have been shown to be effective in improving the performance
of various NLP tasks, including sentiment analysis, question answering, and named
entity recognition. The ability to capture context-specific information makes ELMo
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Table 5 BERT vs others for Named Entity Recognition
task on the CoNLL-2003 [116] dataset (comparison in
terms of F1 Score on Validation DataSet (Dev) and
Testing Dataset (Test), Source:[29]

System Dev F1 Test F1

ELMo [55] 95.7 92.2
CVT [23] - 92.6
CSE [3] - 93.1

Fine-tuning approach
BERTLARGE 96.6 92.8
BERTBASE 96.4 92.4

Feature-based approach
(BERTBASE)
Embeddings 91.0 -
Second-to-Last Hidden 95.6 -
Last Hidden 94.9 -
Weighted Sum Last Four Hid-
den

95.9 -

Concat Last Four Hidden 96.1 -
Weighted Sum All 12 Layers 95.5 -

embeddings particularly useful for tasks where word meanings can vary based on the
surrounding context.

Another application of generative AI models used in natural language processing is
malware classification. In particular, machine language malware classification is a big
concern that can be solved by using generative AI. For example, Kale et al. [57] used
the Bert and ELMo to train the embeddings of the models to classify the malware
and the results provided remarkable improvements.

Fig. 8 HMM2Vec, Word2Vec, BERT, and ELMo based classification techniques, Source: [57]

Additionally, Figure 8 provides a summarized depiction of the optimal accuracies
achieved by the classification methodologies based on HMM2Vec[20], Word2Vec[89],
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BERT[29], and ELMo[102]. The graph illustrates that BERT-SVM and BERT-kNN
secured the highest performance with a notable accuracy of 96%. In close pursuit
HMM2Vec-kNN, HMM2Vec-RF, BERT-RF, and ELMo-CNN, achieved an accuracy
of 95%. Slightly trailing behind, HMM2Vec-CNN, as well as all ELMo-based tech-
niques, demonstrated an accuracy of 94%. Interestingly, the Word2Vec embeddings
consistently yielded accuracies below 90% across all four classifiers.

A further application of Generative artificial intelligence is the text-summarization.
Joshi et al. [112] introduced Ranksum which is an innovative technique designed for
extractive text summarization of individual documents. This method hinges on the
fusion of four distinct multi-dimensional sentence features, namely topic informa-
tion, semantic content, significant keywords, and position. By independently acquiring
sentence saliency rankings for each feature in an unsupervised manner, Ranksum sub-
sequently amalgamates these scores through weighted fusion, yielding a comprehensive
ranking of sentence significance. It is important to note that these scores are generated
in a completely unsupervised manner.

Topic ranking is established through the application of probabilistic topic models,
while semantic content is captured using sentence embeddings. Sentence embeddings
are generated using Siamese networks to craft abstractive sentence representations,
followed by a novel strategy to organize them based on their relative importance.
To identify significant keywords and their associated sentence rankings within the
document, a graph-based approach is employed. Additionally, a mechanism to gauge
sentence novelty is formulated, relying on bigrams, trigrams, and sentence embeddings.
This eliminates redundant sentences from the summary.

Table 6 Comparative analysis of RankSum with state-of-the-art
algorithms conducted on the DUC 2002 [85] and QMSUM [156] dataset,
Source: [112, 148]

Method ROUGE-1 ROUGE-2 ROUGE-L

LEAD 43.6 21.0 40.2
ILP 45.4 21.3 42.8
NN-SE 47.4 23.0 –
SummaRuNNer 47.4 24.0 14.7
Egraph+coh 47.9 23.8 –
Tgraph+coh 48.1 24.3 –
URANK 48.5 21.5 –
SummCoder 51.7 27.5 44.6
HSSAS 52.1 24.5 48.8
CoRank 52.6 25.8 –
Rank-emb 49.9 24.8 45.6
Rank-topic 51.4 25.9 47.2
Rank-keyword 52.0 26.3 48.6
RankSum 53.2 27.9 49.3
PGNet on QMSUM 31.52 8.69 27.63
BART on QMSUM 32.18 8.48 28.56
HMNet on QMSUM 36.06 11.36 31.27
ChatGPT on QMSUM 36.83 12.78 24.23
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Table 6 showcases the performance outcomes of the novel RankSum framework
in comparison to other state-of-the-art algorithms on the DUC 2002 dataset, eval-
uated through ROUGE metrics. ROUGE metrics are typically used in the field of
machine translation, text summarization, and other tasks where the quality of gener-
ated text needs to be evaluated automatically. The metrics involve comparing n-grams
(sequences of n words) between the generated and reference texts. Common versions of
ROUGE metrics include ROUGE-N (which considers overlapping n-grams), ROUGE-
L (which focuses on the longest common subsequence) [78]. Ranksum achieves notable
ROUGE-1, ROUGE-2, and ROUGE-L scores of 53.2, 27.9, and 49.3, respectively.
Impressively, it outperforms all recent methods examined for this extractive text
summarization dataset. Notably, this approach surpasses the highly accurate summa-
rization systems, HSSAS [4] and Co-Rank, with a substantial margin of 0.6, 0.8, and
0.5 for ROUGE-1, ROUGE-2, and ROUGE-L scores respectively [112]. Additionally,
the outcomes of PGnet [136], BART[75], HMNet[143], and ChatGPT[15] were assessed
using the QMSUM dataset[156]. It is important to note that the current pinnacle of
meeting summarization models, HMNet, achieves the most impressive performance
in terms of ROUGE-L. This might be attributed to its cross-domain pretraining
approach, which imparts HMNet with a heightened familiarity with the style of meet-
ing transcripts [158]. However, it’s worth highlighting that in the case of ROUGE-1 and
ROUGE-2 metrics, ChatGPT emerges as the leader. ChatGPT excels due to exten-
sive training on diverse data, enabling superior relationship comprehension in one to
two grams, and boosting metric performance.

Model en ar bg de el es fr hi ru sw th tr ur vi zh avg

Fine-tuned Baselines 80.8 64.3 68.0 70.0 65.3 73.5 73.4 58.9 67.8 49.7 54.1 60.9 57.2 69.3 67.8 65.4
Prompt-Based Baselines 67.5 60.7 46.5 54.0 47.4 61.2 61.4 56.8 53.3 50.4 43.8 42.7 50.0 61.0 56.7 54.2
Open AI Models 76.2 59.0 63.5 67.3 65.1 70.3 67.7 55.5 62.5 56.3 54.0 62.6 49.1 60.9 62.1 62.1
mBERT 80.8 64.3 68.0 70.0 65.3 73.5 73.4 58.9 67.8 49.7 54.1 60.9 57.2 69.3 67.8 65.4
mT5-Base 84.7 73.3 78.6 77.4 77.1 80.3 79.1 70.8 77.1 69.4 73.2 72.8 68.3 74.2 74.1 75.4
XLM-R Large 88.7 77.2 83.0 82.5 80.8 83.7 82.2 75.6 79.1 71.2 77.4 78.0 71.7 79.3 78.2 79.2
TuLRv6 - XXL 93.3 89.0 90.6 90.0 90.2 91.1 90.7 86.2 89.2 85.5 87.5 88.4 82.7 89.0 88.4 88.8
gpt-3.5-turbo 76.2 59.0 63.5 67.3 65.1 70.3 67.7 55.5 62.5 56.3 54.0 62.6 49.1 60.9 62.1 62.1
gpt-3.5-turbo (TT) 76.2 62.7 67.3 69.4 67.2 69.6 69.0 59.9 63.7 55.8 59.6 63.8 54.0 63.9 62.6 64.3
text-davinci-003 79.5 52.2 61.8 65.8 59.7 71.0 65.7 47.6 62.2 50.2 51.1 57.9 50.0 56.4 58.0 59.3
text-davinci-003 (TT) 79.5 65.1 70.8 71.7 69.3 72.2 71.8 63.3 67.3 57.3 62.0 67.6 55.1 66.9 65.8 67.1
gpt-4-32k 84.9 73.1 77.3 78.8 79.0 78.8 79.5 72.0 74.3 70.9 68.8 76.3 68.1 74.3 74.6 75.4

Table 7 Performance comparison among different models on all languages within the XNLI
dataset, Source:[2].

Ahuja et al. [2] tested the performance of the state-of-the-art models on multilin-
gual XNLI dataset [24] data. The results are given in Table 7, TuLRv6 - XXL achieves
the highest average accuracy across all languages (88.8%). It performs exceptionally
well in most languages, with accuracy scores consistently above 85%, XLM-R Large is
the model that comes in second place with an average accuracy of 79.2%. While not
quite as high as TuLRv6, it still maintains a strong performance across all languages
and demonstrates its multilingual capabilities. With an average accuracy of 75.4%,
mT5-Base takes the third spot. GPT-4-32k achieves an average accuracy of 75.4%.
It exhibits consistent performance across languages, demonstrating its effectiveness in
handling multilingual tasks.
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Table 8: Generative AI Applications in Natural Language Pro-
cessing: Major Papers and Descriptions

Paper Field Description Citation
“Attention Is All You
Need”

NLP / Machine
Translation

Introduces the Transformer
model using self-attention
mechanisms for various
NLP tasks, revolutionizing
sequence-to-sequence models

[134]

“BART: Denoising
Sequence-to-Sequence
Pre-training for
Natural Lan-
guage Generation,
Translation, and
Comprehension”

NLP / Text Gener-
ation

Introduces BART, a sequence-
to-sequence model pre-trained
using denoising autoencoders,
capable of various NLP tasks

[75]

“CTRL: A Conditional
Transformer Language
Model”

Language Genera-
tion

Proposes a generative model
(CTRL) that can condition its
output on specific attributes,
enabling fine-grained control
over text generation

[61]

“T5: Exploring the
Limits of Transfer
Learning with a Uni-
fied Text-to-Text
Transformer”

NLP / Transfer
Learning

Presents T5, a model that casts
all NLP tasks as a text-to-text
problem, achieving state-of-the-
art results across diverse tasks

[111]

“GPT-2: Language
Models are Unsu-
pervised Multitask
Learners”

Language Genera-
tion

Describes the GPT-2 model, a
large-scale generative model that
demonstrates impressive text
generation capabilities across a
range of tasks

[110]

“LayoutLM: Pre-
training of Text and
Layout for Document
Image Understanding”

Document Analysis Presents LayoutLM, a model
that pre-trains on docu-
ment images with associated
text, improving document
understanding tasks

[145]

“ERNIE: Enhanced
Language Representa-
tion with Informative
Entities”

NLP / Knowledge
Enhancement

Introduces ERNIE, a model that
enhances language representa-
tions by incorporating knowledge
from knowledge bases

[153]

“DALL·E: Creating
Images from Text”

NLP / Image Gen-
eration

Introduces DALL·E, a genera-
tive model capable of generating
images from textual descriptions

[113]

Continued on next page
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Table 8 – continued from previous page
Paper Field Description Citation
“CLIP: Connecting
Text and Images for
Supervised Learning”

NLP / Vision Proposes CLIP, a model that
learns to understand images and
text jointly, achieving impressive
results in cross-modal tasks

[108]

“WebGPT:
Browser-assisted
question-answering
with human feedback”

NLP, Human feed-
back

Introduces an approach that
leverages a text-based web-
browsing environment, enabling
the model to access and navigate
online resources. The method-
ology is structured in a manner
that aligns with human capa-
bilities, thus facilitating model
training through imitation
learning.

[95]

“GPT-4 Technical
Report”

NLP/ Text Genera-
tion

GPT-4, a groundbreaking
advancement, is introduced as
a multimodal model with the
ability to process both image
and text inputs while generating
text-based outputs. GPT-4’s
accomplishments encompass
passing a simulated bar exam
with a score that ranks within
the top 10% of test takers.

[99]

“Let’s Verify Step by
Step”

Mathematical Rea-
soning

The introduced approach,
centered around a process-
supervised model, achieves a
commendable success rate of
78% when addressing problems
sourced from a representative
subset of the MATH test set.

[77]

The landscape of Natural Language Processing (NLP) has witnessed remarkable
advancements in recent years, driven primarily by the innovative applications of gen-
erative AI. The Table 8 highlights a selection of influential papers that showcase the
evolution and impact of generative AI techniques within the NLP domain. These
advancements have led to groundbreaking developments in various subfields of NLP,
transforming the way we process and understand human language.

As evidenced by the papers presented, recent years have seen generative AI tech-
niques reshape NLP in profound ways. These advancements not only enhance the
quality and diversity of text generation but also enable more sophisticated con-
trol, cross-modal understanding, and knowledge integration. As the field continues to
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evolve, it is likely that further innovations in generative AI will continue to drive NLP’s
progress, unlocking new frontiers of language understanding and generation across a
wide array of applications.

4.4 Generative AI for Knowledge Graph Generation

Researchers and practitioners have leveraged the power of generative AI to enhance the
creation and refinement of knowledge graphs—a structured representation of relation-
ships between entities. This section explores the burgeoning landscape of generative
AI applications within knowledge graph generation, highlighting pioneering research
papers and their contributions to this evolving field. For evaluating models in the
field of knowledge graph generation, a variety of datasets are employed, with Dbpe-
dia [74], Cora Dataset [16] and Googles Knowledge graph [122] being among the most
commonly used. However, the scope of available datasets extends beyond just these.
These datasets are freely accessible, offering researchers and developers an invaluable
resource to test and refine the capabilities of their knowledge graph generation mod-
els. A knowledge graph is a structured representation of information that captures
relationships between entities and concepts. It goes beyond traditional databases by
not only storing data but also organizing it in a way that highlights connections and
context. Knowledge graphs, first introduced by Google in 2012 [124], are designed
to model real-world relationships, making them a powerful tool for representing and
querying complex information. Cai and Wang [18] introduced KBGAN, an innova-
tive adversarial learning framework designed to enhance the performance of various
existing knowledge graph embedding models. This approach is not dependent on the
specific structures of the generator and discriminator, allowing for the incorporation of
a wide range of knowledge graph embedding models as fundamental components. This
enables KBGAN to significantly enhance the training dynamics and performance of
existing knowledge graph embedding models. Liu et al. [81] introduce K-BERT, a novel
approach that empowers language representation with knowledge graphs, enabling the
incorporation of commonsense and domain-specific knowledge. The K-BERT method-
ology comprises two fundamental steps. Initially, knowledge from a knowledge graph
(KG) is seamlessly integrated into a sentence, rendering it a knowledge-rich sentence
tree. Subsequently, the utilization of soft-position and visible matrix techniques serves
to regulate the extent of knowledge integration, thereby preventing any deviation from
the original sentence meaning.

Despite the challenges presented by handling heterogeneous entity spans (HES)
and keyphrases not seen in training (KN), the investigation yields promising out-
comes across a spectrum of twelve open-domain and specific-domain natural language
processing (NLP) tasks. Empirical evidence underscores the considerable efficacy of
knowledge graphs, particularly in tasks that are driven by domain-specific knowl-
edge. Moreover, K-BERT’s compatibility with the model parameters of BERT offers a
seamless integration of knowledge enhancement within a well-established framework.

Link prediction is a fundamental task involving the prediction of missing facts
within a knowledge graph using available information. In this context, Balazevic et
al. [10] introduce TuckER, a linear model that employs Tucker decomposition of the
binary tensor representation of knowledge graph triples. Despite its straightforward
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nature, TuckER demonstrates remarkable efficacy. It surpasses previous state-of-the-
art models on widely recognized link prediction datasets, solidifying its position as
a potent baseline for more sophisticated models in this domain. Moreover, Zeb et
al. [121] have introduced ComplexGCN, an innovative graph convolutional network
that leverages standard graph convolutional architecture(GCN) [67] to learn complex
embeddings. Within the ComplexGCN framework, both node and relation features
are projected into complex space through the use of learnable weights associated with
neighboring nodes at each convolutional layer. To maintain the integrity of initial
embedding information in the final node embeddings, a residual connection between
the input and output of the convolutional stack is implemented. These researchers [121]

Fig. 9 GCN vs CGCN on node completion task- Cora Dataset, Source: [121]

conducted an evaluation of ComplexGCN’s performance on the node classification
task using the Cora dataset. This consisted of 2708 nodes categorized into 7 classes
and 5429 edges representing citation links between documents. Both the standard
GCN and ComplexGCN were trained on the Cora dataset for 200 epochs, with the
objective of minimizing the cross-entropy loss. The training process was repeated 5
times for each model, and the results were averaged and reported in Figure 9. In terms
of accuracy percentage, ComplexGCN exhibited improved performance compared to
the standard GCN, achieving a 1% increase in mean accuracy.

The presented selection of papers highlights the innovative strides researchers
have made in leveraging generative AI to enhance knowledge graph generation. From
employing adversarial learning for improved embeddings to bridging the gap between
unstructured text and structured knowledge, these papers showcase the multifaceted
nature of the advancements.

4.5 Interdisciplinary Applications of Generative AI

The groundbreaking capabilities of generating synthetic data and content generation
have given Generative AI the ability to be applicable in interdisciplinary fields. Fur-
ther recent applications are discussed in this section. The synthetic data generation
capability of generative AI is useful in mechanical fault detections. Gao et al. [42]
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highlight a fault detection method that combined Finite Element Method (FEM)[26]
simulations and Generative Adversarial Network (GAN) [44] to address two primary
challenges. Firstly, it aimed to fill the gaps in fault samples by leveraging FEM sim-
ulations. Secondly, it sought to enhance fault detection accuracy by utilizing GAN to
generate a substantial number of synthetic fault samples. Initially, FEM was employed
to generate simulation signals of specific lengths to complete missing fault samples.
Subsequently, GAN was utilized to create additional fault samples based on FEM sim-
ulations, resulting in a more comprehensive dataset. Finally, classifiers such as Support
Vector Machines (SVM)[25], Extreme Learning Machines (ELM)[51], Decision Trees
(DTree)[107], and others were employed to detect faults in cases where the faults were
previously unknown.

Table 9 Comparison of Classification accuracy with and without GANs
sampling, Source: [42]

Description FEM & AI FEM, GAN & AI
No of fault Samples 360 360
No of Synthetic Fault Samples – 3240
Accuracy SVM (%) 84.44 86.11
Accuracy ELM (%) 89.72 91.67
Accuracy Decision Tree (%) 91.11 97.5
Average Accuracy (%) 88.42 91.76

In Table 9 the result clearly identifies the use of Generative AI to generate the
synthetic samples which helps the machine learning models to achieve greater accuracy.
In Feng et al. [38] a traffic generation model is developed using the Generative AI,
named TrafficGen. The model outperforms the previous state-of-art techniques such as
SeneGen [127] in generating the synthetic traffic scenarios. The introduced models were
also able to generate the trajectory of the generated traffic and synthetic snapshots.
This enabled the creation of numerous fresh traffic scenarios and the enhancement of
the ones that already exist.

Music generation is also gaining popularity in the field of Generative AI, differ-
ent methods such as Variational Auto Encoders, Transformers and Recurrent Neural
Networks are being used in generating synthetic music, and different new approaches
of music generation [60]. Another application is the Handwriting generation [41].
This proposed HiGAN+ which presented the capability to generate a wide range of
authentic handwritten texts while being guided by arbitrary textual content and dis-
tinct calligraphic styles. These styles are separated from reference images or randomly
drawn from a prior normal distribution. Traditional style transfer methods, which rely
on pixel-level mappings, may not be suitable for HiGAN+, hence they introduce the
contextual loss to notably enhance the stylistic consistency of generated images. The
model performed very well in generating readable handwriting samples. In the field of
software engineering, generative AI is introduced to help write better code and solve
errors in the code, debugging and even writing the documentation of the work (e.g.,
Copilot) [92].
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Emerging technologies in the realm of generative AI aim to simplify human life,
yet they also underscore the imperative for responsible AI development. These inno-
vations should prioritize ethical considerations, ensuring that their generated content
aligns with societal values. The Contemporary efforts in the generative AI method
development are increasingly conscious of these ethical dimensions. In a recent review,
Pudari and Ernst [104] delved into Copilot and emphasized that generative AI, while
valuable, won’t supplant humans in the field of software engineering. This is because
it struggles to grasp intricate software design principles and identify coding issues,
known as ‘code smells’. Instead, its role primarily revolves around aiding developers in
crafting more efficient code. Researchers [8] highlight responsible AI as a comprehen-
sive concept, mandating systematic adoption of AI principles. Besides explainability,
it emphasizes fairness, accountability, and privacy in real-world AI model implementa-
tions, especially in scenarios involving sensitive information and regulatory demands
for data privacy.

Apart from these discussed papers, a multitude of groundbreaking advancements
are unfolding within the domain of generative AI. It is evident that in this rapidly
advancing research, the previously discussed papers represent just a prominent subset
of the recent developments in this field.

5 Challenges and opportunities of Generative AI

There are various domains for which we can discuss both the challenges and oppor-
tunities of Generative AI. Let’s start with challenges and their proposed solutions
followed by opportunities-

5.1 Challenges and their proposed solutions

Ethical Concerns:
Challenge: GenAI can be used for malicious purposes, such as the creation of deep-
fakes for identity theft or misinformation.
Solution: Establishing ethical governance structures, guidelines, and regulations to
guide the responsible development and deployment of GenAI.
Security Concerns:
Challenge: There might be vulnerabilities in generative models that could be exploited
for adversarial attacks.
Solution: The development of security measures to protect generative models from
manipulation and continuous research into adversarial robustness.
Bias and Fairness:
Challenge: Generative models may amplify and perpetuate biases in the training data,
leading to discriminatory and unfair outputs.
Solution: Extensive research and implementation of methods to detect and mitigate
bias in training data, as well as encouraging inclusivity and diversity in datasets.
Data Privacy:
Challenge: Generative models trained on large datasets may inadvertently remember
sensitive information, posing privacy risks.
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Solution: Adherence to data protection regulations and implementation of privacy-
preserving approaches to protect personal privacy.
Interpretability:
Challenge: Mostly, it is difficult to understand the decision-making process of genera-
tive algorithms due to their ‘black boxes’ nature.
Solution: Research and development of explainable AI approaches to improve inter-
pretability and transparency and, permitting users to understand algorithm outputs.

5.2 Opportunities

Human-AI Collaboration: Collaborative work between GenAI and humans can
lead to innovative solutions in design, problem-solving, and creativity.
Creative Expression: Generative AI facilitates innovative creative expressions, such
as music, generative art, and literature.
Content Generation: Applications in content creation, for example- image synthe-
sis, text generation, and video creation enhance productivity in numerous industries.
Education and Training: Generative models can be employed for simulating sce-
narios for training, creating interactive educational materials, and enhancing learning
experiences.
Personalization: Generative algorithms can be used for personalized recommenda-
tions in entertainment, e-commerce, and other user-oriented domains.
Innovative Design: GenAI can assist in creating optimized and innovative designs
in industries like architecture and product design.
Scientific Discovery: GenAI contributes to scientific investigation by simulating
complex systems, predicting outcomes, and generating hypotheses.
Healthcare Applications: GenAI advances personalized medicine, drug discovery,
medical imaging, and healthcare system.
Balancing the potential benefits of generative AI with the demand for responsible
development and deployment is essential. Ethical considerations, transparency, and
ongoing research will play major roles in maximizing the positive impact of generative
AI while minimizing risks.

6 Conclusion and Future Direction

This paper offers a comprehensive systematic literature review of recent advancements
in the field of generative AI. Specifically, it thoroughly explores key algorithms within
the realm of Generative AI, including Diffusion Models, Transformer-based models,
Generative Adversarial Networks, Variational Autoencoders, and their advancements
tailored to specific applications.

Within the paper, we discuss advanced methodologies developed by various
researchers, representing the current state-of-the-art achievements in the field of gen-
erative AI. A primary focus of generative AI’s impact is evident in the domains of
NLP and Video Translation, where advanced models have emerged with the capacity
to tackle a wide array of human-centric challenges. These include tasks like question
answering, code generation, language translation, image transformation, and more
interdisciplinary applications. The paper highlights the recent achievements made
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in these areas, shedding light on the cutting-edge advancements achieved through
generative AI techniques.

Moreover, it seems evident that the future direction of generative AI will be a
transformative journey. One critical avenue of exploration involves the continuous
evolution of AI architectures, aiming to create models that surpass current machine
and human capabilities. Additionally, the ethical dimension of AI is set to gain even
more prominence, with research and development focusing on ensuring responsible AI
generation, minimizing biases, and aligning with evolving ethical standards. Indeed,
interdisciplinary collaborations will flourish, as generative AI is applied to complex
challenges in fields like healthcare, climate science, and education, amplifying its real-
world impact.

No doubt, the synergy between humans and AI will deepen, emphasizing AI’s role
as a collaborative partner across various domains. Advancements in NLP will persist,
with an emphasis on question-answering, multilingual translation, and code genera-
tion. The domain of image, video, and multimedia processing will witness expansion,
with generative AI contributing to content creation, enhancement, and interpretation.
As we journey into this new and exciting future, it is also clear that we need to remain
committed to responsible AI development and ethical considerations in parallel to
developing these more advanced generative AI methods.
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