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Abstract
The goal of the growing discipline of neuro-symbolic artificial intelligence (AI) is to develop AI systems with more

human-like reasoning capabilities by combining symbolic reasoning with connectionist learning. We survey the literature

on neuro-symbolic AI during the last two decades, including books, monographs, review papers, contribution pieces,

opinion articles, foundational workshops/talks, and related PhD theses. Four main features of neuro-symbolic AI are

discussed, including representation, learning, reasoning, and decision-making. Finally, we discuss the many applications of

neuro-symbolic AI, including question answering, robotics, computer vision, healthcare, and more. Scalability, explain-

ability, and ethical considerations are also covered, as well as other difficulties and limits of neuro-symbolic AI. This study

summarizes the current state of the art in neuro-symbolic artificial intelligence.

Keywords Neuro-symbolic artificial intelligence � Machine learning � Knowledge representation and reasoning �
Spatial-temporal data � Neural networks � Artificial intelligence

1 Introduction

There have been several breakthroughs and innovations in

the areas of artificial intelligence (AI) and deep learning

(connectionist artificial intelligence) during the last decade

[1]. The widespread use of AI and deep learning as cutting-

edge technologies has been a significant recent develop-

ment. Several industries, including healthcare, banking,

transportation, agriculture, and arts, have profited from

recent artificial intelligence and deep learning develop-

ments [2–4].

New technologies have advanced deep learning models

in computer vision and natural language processing. Con-

volutional neural networks (CNNs) and transformers have

improved sectors like image recognition and language

translation [5]. Generative adversarial networks (GANs)

and variational autoencoders (VAEs) may produce new

data, images, and sounds [6]. Music production and design

might leverage these models. Edge computing, another

decade-old breakthrough, allows AI model installation on

low-resource devices. Thus, AI and deep learning models

may be applied on edge, closer to the data source, which is

beneficial in constructing Internet of Things (IoT) devices

[7].

Yet, connectionist AI is not without its caveats. One

drawback is that training models properly usually require a

lot of data (typically involving highly unstructured, per-

ceptual data). These AI models may also lack the trans-

parency and explainability of other forms of AI due to the

complexity involved in understanding how they arrive at

their predictions or choices [8].

Symbolic AI, commonly known as ‘‘good old-fashioned

AI’’, emerged as the foundation of AI research during the

mid-twentieth century with notable figures such as Allen

Newell and Herbert A. Simon [9–11]. Referred to as rule-

based or expert systems, they were designed and imple-

mented with a predefined set of explicit rules and logical

reasoning mechanisms to address and resolve various

problems. Ontologies were conceived as a means of rep-

resenting and sharing knowledge [12]. Although symbolic
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AI demonstrated proficiency in problem domains charac-

terized by explicit rules and clear boundaries, they

encountered difficulties when confronted with incomplete

information [13]. Thus, the efficiency of these systems is

hugely dependent on the completeness of the knowledge.

The drawbacks of both the fields individually in terms of

‘Explainability’, ‘Efficiency’, and ‘Generalization’ could

be seen through Fig. 1. The efficiency of connectionist AI

is typically considered high due to its ability to process vast

amounts of data and learn complex patterns through neural

networks. This efficiency stems from the processing

capabilities of neural networks, which can handle and learn

from high-dimensional data, making them particularly

adept at tasks like image and speech recognition, where

they can directly learn from raw inputs to outputs.

On the other hand, the efficiency of symbolic AI is often

viewed as lower, particularly in the context of processing

large datasets or handling perceptual tasks. Symbolic AI

operates on explicit rules and logic, which can be com-

putationally intensive and less flexible when dealing with

nuanced or ambiguous data that does not fit neatly into

predefined categories or rules. While symbolic AI excels in

tasks that require clear, logical reasoning and inter-

pretability, its rule-based nature can limit its efficiency in

scenarios where learning from data or scaling to large

problem spaces is essential.

However, it’s crucial to contextualize these efficiency

considerations within the specific domains and tasks to

which each AI approach is applied. While connectionist AI

may show higher efficiency in data-driven, pattern recog-

nition tasks, symbolic AI can be more efficient in domains

where clear reasoning, interpretability, and adherence to

explicit knowledge or rules are paramount. This distinction

underscores the complementary nature of these approaches,

highlighting the potential of neuro-symbolic AI to leverage

the strengths of both to achieve higher overall efficiency

across a broader range of tasks.

The roots of neuro-symbolic (NeSy) AI may be traced

all the way back to the 1950s and 1960s when the field of

AI was getting its start [14]. In the past, artificial intelli-

gence studies focused on creating rule- and symbol-based

problem-solving machines. In the 1980s, however,

Fig. 1 The drawbacks of both the fields individually in terms of ‘Explainability’, ‘Efficiency’, and ‘Generalization’, when the fields merge

together to form neuro-symbolic artificial intelligence, all three characteristics are high
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scientists started to see the method’s flaws. For example,

natural language processing and vision were shown to be

areas where symbolic AI systems faltered. Researchers

began implementing neuroscientific principles into AI

systems to address these shortcomings. In the early twenty-

first century, scientists started looking at ways to combine

the best features of the two methods. They came up with a

new branch of AI, neuro-symbolic AI, which combines

symbolic reasoning and representation with neural net-

works. It has been used in disparate fields such as health-

care, robotics, and natural language processing. One of the

most exciting directions in artificial intelligence research

today is neuro-symbolic AI, which aims to create intelli-

gent systems that can learn and reason like humans. The

growing interest in the field could be seen through the

amount of literature published, as shown in Fig. 2. The

literature contains books, monographs, thesis [15–23],

review papers [20, 24–33], contributory articles [34–95],

commentary articles [25, 39, 93, 96–143], and foundational

workshops/talks [144–167]. It’s worth noting that neuro-

synthetic AI is a hot topic in both academia and industry

because of its immense potential for artificial general

intelligence.

Neuro-symbolic AI is a kind of AI that takes cues from

the way the human brain processes information while also

relying on symbolic logic to solve issues. The study of the

brain and its functions serves as inspiration for the ‘‘neuro’’

component of neuro-symbolic AI [33]. The ‘‘neuro’’

component of this AI makes use of neural networks to learn

from data and enhance its grasp of the environment, much

like the way human brains process information and learn

from experience. The ‘‘symbolic’’ component of neuro-

symbolic AI uses symbolic representations and logical

reasoning to accomplish its goals. This suggests that the AI

can think logically and grasp notions like ‘‘if-then’’

statements. Knowledge may also be represented in a

human-understandable form, for as via the use of words

and symbols to stand in for real-world entities and abstract

concepts.

Recent research on neural-symbolic integration, which

seeks to combine the capabilities of symbolic AI with

neural networks to produce more powerful and adapt-

able intelligent systems, is surveyed in the articles as

shown in Table 1, and we base our classification method

based on this with the objective of harnessing the com-

plementing capabilities of the two paradigms [168]. The

criteria for classification are taken from the Kautz’s talk

[169], which is even regarded as the turning point of the

field [33].

All of the major developments over the last two decades

are summarized in this survey article. It delves into the

numerous aspects that have led to the hybridization of

connectionist AI and symbolic AI. Its applications in many

fields are also examined. The challenges are also being

considered. Figure 3 depicts a conceptual map of the arti-

cle. The organization of the survey is shown in Fig. 4.

2 Background and related work

2.1 Neuro-symbolic properties

We delve into the core components that define neuro-

symbolic AI, encompassing representation, learning, rea-

soning, decision-making, knowledge, and logic. This

exploration provides insight into how neuro-symbolic AI

seeks to amalgamate the strengths of symbolic and neural

approaches to overcome their limitations.

Fig. 2 Peer reviewed papers in

the field of neuro-symbolic AI

with keywords, ‘neuro-

symbolic’, ‘neural-symbolic’,

‘neuro symbolic’, ‘neural

symbolic’ and ‘neurosymbolic’
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2.1.1 Representations

When discussing symbolic AI, ‘‘localist representations’’

refer to using isolated symbols to stand in for abstract ideas

or concrete objects [170]. Expert systems and rule-based

systems are two examples of symbolic AI that extensively

use localist representations [171]. As each sign represents a

distinct idea that humans can readily grasp, they benefit

from being interpretable and transparent.

In contrast to localist representations, distributed repre-

sentations [170] have gained traction in recent years, par-

ticularly in the context of deep learning. Distinct

dimensions of a vector of real-valued integers in distributed

representations represent different features or aspects of a

topic. This paves the way for more versatile and potent

representations that encapsulate subtle but significant data

linkages and patterns. The difference can be seen in Fig. 5.

Localist and distributed representation has their own

benefits and drawbacks, as shown in Table 2.

Attention systems, graph neural networks, differentiable

programming, variable grounding, symbol manipulation,

and foundation model representation techniques make

neuro-symbolic AI integration unique in the field.

Attention mechanisms in neuro-symbolic AI improve

the model’s focus on relevant parts of the input data or

internal representations. This is particularly used in tasks

requiring sequential data processing, like natural language

understanding by [91, 172], where the model needs to

focus on relevant parts of the input sequence to make

decisions or predictions.

Graph neural networks (GNNs) are pivotal in repre-

senting and processing data in graph form, which is

inherently symbolic. GNNs can capture the complex

relationships and structures within data, making them ideal

for tasks that involve relational reasoning, knowledge

graphs, and structured prediction. [173] surveys around this

integration for encoding both entity attributes and the

relationships between entities in a way that is amenable to

neural network processing.

Differentiable programming extends the capabilities of

neural networks by making them more flexible and capable

of incorporating symbolic computation within the learning

process. [174, 175] uses this approach to enable the inte-

gration of symbolic reasoning directly into the neural net-

work’s architecture, allowing for the optimization of

symbolic operations alongside standard neural network

parameters, facilitating a tighter integration of symbolic

and sub-symbolic AI components.

Variable grounding refers to the process of linking

abstract symbols or concepts to concrete instances in data.

In the context of neuro-symbolic AI, [176, 177] involves

the identification and association of symbolic variables

with relevant features or patterns learned by the neural

network, enabling the system to reason about abstract

concepts in a grounded, data-driven context.

Symbol manipulation in neuro-symbolic systems

involves the use of operations on symbols that represent

abstract concepts, akin to traditional symbolic AI.

[178, 179] integrated these operations within a neural

framework. Neuro-symbolic AI systems can perform

symbolic reasoning, such as logical deduction and infer-

ence, while also benefiting from the adaptive learning

capabilities of neural networks.

Finally, leveraging foundation models for representation

can enhance performance in neuro-symbolic tasks, reduce

data labeling, and minimize manual engineering, as

Table 1 Review papers with the discussion upon the domain, properties, type of neural architecture and neuro-symbolic types represented by NS

Properties

Paper Year Domain Representation Learning Reasoning Decision making Logic Neural type NS

Corchado et al. [24] 2002 Oceanography – – – – – U –

Hatzilygeroudis et al. [25] 2004 Expert Systems – – – – – – –

Öztürk et al. [26] 2014 CBR – – – – – – –

Besold et al. [27] 2017 General – – – – U U –

Garnelo et al. [28] 2019 General U – – – – – –

Garcez et al. [29] 2019 General – U U – U – –

De et al. [30] 2020 General – – – – U U –

Sarker et al. [31] 2021 General – U U - U – U

Hitzler et al. [20] 2022 General – – – – – – –

Wang et al. [32] 2022 General – U U U U – –

Garcez et al. [33] 2023 General U – U – - – U

Our survey 2024 General U U U U U U U
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demonstrated by the introduction of architectures like

NeSyGPT [180].

2.1.2 Learning

Neuro-symbolic AI introduces a paradigm shift in how

machines learn, blending the deductive, rule-based learning

of symbolic AI with the inductive, pattern-recognizing

capabilities of neural networks. This hybrid approach

leverages the strengths of both domains to facilitate a more

comprehensive learning methodology.

Traditional symbolic AI learns through logical deduc-

tion, inducing general rules from specific instances. Tech-

niques like decision tree induction [181] and explanation-

based learning [182] exemplify this, where new knowledge

is systematically derived from existing rules and examples.

However, this method’s reliance on extensive manual

curation of knowledge bases and datasets is a notable lim-

itation [183].

In contrast, connectionist AI, particularly through deep

learning, excels at learning representations from raw,

unstructured data [184]. It employs various techniques

(e.g., supervised, unsupervised, and reinforcement learning

[185]) to adjust neural connections, enabling pattern

recognition and decision-making. While powerful, this

approach often lacks transparency and interoperability.

Neuro-symbolic AI (NeSy) aims to transcend these

limitations by integrating the structured knowledge repre-

sentation of symbolic AI with the adaptive learning

mechanisms of neural networks. This integration enables

Neuro-Symbolic AI

Domain

Robotics
[8–13]

Question
Answering
[14–21]

Medical
applications

[22–29]

Computer
Vision
[30–43]

Programming
and Opti-
mization

[21, 44–53]

Other
Sciences
[54–80]

Properties

Representation

Learning

Reasoning

Decision
Making

Logic

Contribution
Type

Books/
Mono-
graphs
/ Thesis

[46, 81–88]

Review
Papers

[85, 89–98]

Contributory
Articles [21,
21, 45, 65,
76, 99–156]

Commentary
Articles [90,
104, 154,
157–204]

Foundational
Workshops

/ talks
[205–228]

Type

Type 1 [8,
9, 14, 15,
30, 54, 55,
229, 230]

Type 2 [22,
31, 56–69]

Type 3
[10–13,

32–36, 70]

Type 4
[23–28,

44, 71–76]

Type 5 [16–
18, 29, 37–
43, 77, 78,
231–233]

Type 6
[19, 79, 80,
234–236]

Fig. 3 A conceptual map of the survey, depicting the wide range of neuro-symbolic AI implementations, their respective type of integration,

contribution kinds, and properties
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NeSy systems to: (a) learn from fewer examples by

leveraging pre-existing symbolic knowledge, thus

addressing the data-hungry nature of pure neural approa-

ches; (b) enhance interpretability by grounding neural

network outputs in symbolic representations, making the

learning process and outcomes more understandable;

(c) facilitate adaptable reasoning that combines the

robustness of neural pattern recognition with the precision

of symbolic logic; and (d) incorporate feedback loops

where symbolic reasoning can guide neural learning and

vice versa, enabling dynamic adaptation to new informa-

tion or tasks. The comparison is shown in Table 3.

2.1.3 Reasoning

Reasoning, a fundamental aspect of intelligence, has been

approached differently across the AI spectrum. The trade-

off between learning and reasoning in symbolic AI and

connectionist AI can be shown in Table 4. Symbolic AI,

with its roots in formal logic and knowledge representation,

traditionally employs deductive, inductive, and abductive

reasoning [186]. These methods allow for deriving con-

clusions from known premises, generalizations from

specific instances, and formulating plausible explanations

from observations [186, 187]. While powerful in structured

environments, symbolic reasoning struggles with ambigu-

ity and the inherent uncertainty of real-world data.

In contrast, connectionist models, particularly neural

networks, excel in pattern recognition and inference from

vast datasets but cannot traditionally perform explicit, rule-

based reasoning. However, there has been some recent

work on developing reasoning tasks based on neural net-

works. For example, some researchers have explored using

neural networks to understand natural language and answer

questions [188]. Other researchers have looked into neural-

symbolic integration, in which neural networks are used to

learn representations of complex data, which are fed into

symbolic reasoning systems to make logical inferences

[189]. Even with all these efforts, making neural network-

based approaches to reasoning tasks work well is still

tough, especially when explicit rules or logic are needed.

These challenges include how hard it is to encode symbolic

information in a distributed representation, how fragile

neural networks are when dealing with new inputs, and

how little they can do abstract reasoning or figure out what

information is missing.

Another important discussion is on combinatorial and

common-sense reasoning [33]. Common-sense reasoning is

a type of approximate reasoning that involves making

assumptions or inferences based on general knowledge and

experience rather than on explicit rules or algorithms.

Problems in mathematics, computer science, and engi-

neering are typically solved with the use of combinatorial

reasoning methods, including counting principles, permu-

tations, and combinations. The emergence of neuro-sym-

bolic AI represents a paradigm shift, aiming to meld the

structured reasoning capabilities of symbolic AI with the

adaptive learning process of neural networks [136]. The

various types of reasoning used are shown in Fig. 6.

Fig. 4 Organization of the article as a flowchart
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Under NeSy, CTLK (Temporal-Epistemic Reasoning)

[39, 40] exemplifies the application of deductive reasoning

in neuro-symbolic systems, showcasing how neural

networks can be employed to interpret and defend trans-

lations of non-classical logics, including temporal logic.

CIL2P [36, 37] (Connectionist Inductive Learning and

Fig. 5 Difference between localist and distributed representations

Table 2 Comparison of localist and distributed representations and integration in neuro-symbolic AI

Aspect Localist representation Distributed representation

Definition Represents concepts with dedicated units or nodes in the

network, where each unit represents a single concept or

category

Represents concepts across many units, with each unit

participating in the representation of multiple concepts,

allowing for more nuanced representations

Benefits High interpretability and transparency

Easier manipulation of individual concepts

Simplifies mapping of symbolic knowledge

Greater capacity for generalization

Efficient use of network capacity

Facilitates learning of complex patterns

Drawbacks Limited scalability with the number of concepts

Less efficient in capturing complex patterns

Reduced interpretability of individual units

Integration of explicit symbolic knowledge can be challenging

Neuro-

symbolic AI

integration

Neuro-symbolic AI leverages both approaches, utilizing localist representations for symbolic components and distributed

methods for neural processing, enabling efficient integration of symbolic reasoning with neural learning

Neural Computing and Applications
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Logic Programming) serves as a prime example of induc-

tive reasoning in neuro-symbolic AI, where a neural net-

work is trained using propositional logic and then used to

derive logical programs from the learned representations.

MicroPsi [58, 59], CORGI (COmmonsense Reasoning by

Instruction) and COMET (COMmonsense Transformers)

[81, 82] stand out as a significant contribution toward

modeling common-sense reasoning within a neuro-sym-

bolic framework, focusing on cognitive architecture and

autonomous motivation, which are essential for common-

sense understanding and decision-making. DeepProbLog

[75–77] integrates probabilistic logic programming with

neural networks, offering a powerful approach to combi-

natorial reasoning where the system can reason over

complex, structured data and learn from uncertain infor-

mation, making it relevant for tasks that require combina-

torial reasoning capabilities.

2.1.4 Decisions

Neuro-symbolic AI advances decision-making by inte-

grating the rapid, intuitive processing akin to Kahneman’s

System 1 with the deliberate, logical reasoning of System 2

[190]. Table 5 summarizes the two types of decision-

making in ‘‘Thinking, Fast and Slow’’ and their relation-

ship to neuro-symbolic AI.

Neuro-symbolic models incorporate neural network

components that mimic System 1 thinking by processing

sensory data rapidly to produce intuitive responses. These

components are adept at recognizing patterns and making

quick predictions, similar to the fast and subconscious

decision-making observed in humans. For instance, neural

learning within NeSy can be trained on large datasets to

swiftly identify patterns, akin to how humans rely on

heuristics and past experiences for immediate decision-

making.

Symbolic components within NeSy frameworks reflect

System 2 thinking, employing logical rules and knowledge

representation for reasoned analysis and decision-making.

This aspect allows NeSy systems to handle complex,

structured problems that require careful deliberation and

logic. Techniques such as rule-based inference and sym-

bolic manipulation enable NeSy models to perform tasks

that necessitate a deep understanding of relationships and

concepts, mirroring humans’ slow, conscious decision-

making process.

The logical neural networks (LNNs) developed by IBM

Research [86] embody aspects of System 2 thinking by

Table 3 Comparison of learning paradigms in neuro-symbolic AI

Learning

paradigm

Characteristics Neuro-symbolic integration

Symbolic

learning

Involves logical deduction and induction to generate rules

from data. Highly interpretable but requires extensive

knowledge engineering

NeSy integrates symbolic rules with neural learning, allowing

for the derivation of symbolic knowledge from neural

representations, enhancing interpretability and leveraging

pre-existing knowledge

Connectionist

learning

Utilizes neural networks to learn patterns from large

datasets. Excels in generalization but lacks transparency

NeSy harnesses neural networks for pattern recognition and

generalization, while grounding the learned patterns in

symbolic representations for improved transparency and

reasoning

Hybrid

learning

Aims to combine the strengths of symbolic and connectionist

approaches, often using separate components for each

NeSy embodies true hybrid learning by deeply integrating

symbolic and neural processes within a unified framework,

enabling dynamic, bidirectional interaction between

symbolic reasoning and neural learning

Reinforcement

learning

Involves learning through interaction with an environment

and receiving feedback in the form of rewards

NeSy applies reinforcement learning principles to both

symbolic and neural components, enabling the system to

refine its strategies and knowledge through experience

Unsupervised

learning

Focuses on discovering hidden patterns or structures in

unlabeled data

In NeSy, unsupervised learning techniques can be used to

uncover latent symbolic structures within data, which can

then be explicitly represented and manipulated

Table 4 Trade-off between learning and reasoning in symbolic AI

and neural networks

Quantification Symbolic AI Neural network

Reasoning Learning Reasoning Learning

Universal (8) Easy Hard

Existential (9) Hard Easy
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supporting first-order logic, allowing for the representation

of more complex kinds of knowledge in a way that’s

understandable and can represent uncertainty. LNNs

improve predictive accuracy by representing the strengths

of relationships between logical clauses via neural weights.

They are tolerant of incomplete knowledge, unlike many

AI approaches that make closed-world assumptions. This

feature enables LNNs to operate under more realistic,

open-world assumptions, accommodating incomplete

knowledge robustly.

The Neuro-Symbolic Question Answering (NSQA)

system [191] is another example where IBM Research has

applied NeSy for knowledge-based question answering,

requiring advanced reasoning such as multi-hop, quantita-

tive, geographic, and temporal reasoning. The NSQA

approach translates natural language questions into an

abstract form that captures the conceptual meaning,

allowing reasoning over existing knowledge to answer

complex questions. This method provides interpretability,

Fig. 6 Different types of reasoning which are not mutually exclusive and can often be used in combination with one another

Table 5 A table summarizing the two types of decision-making in ‘‘Thinking, Fast and Slow’’ and their relationship to neuro-symbolic AI

Type of

decision-

making

Description Relationship to neuro-symbolic AI

System 1 Fast, automatic, subconscious decision-

making based on heuristics and intuition

Similar to neural learning, where the system is trained on large amounts of data

to quickly recognize patterns and make predictions.

System 2 Slow, deliberate, conscious decision-making

based on reasoning, analysis, and logic

Similar to symbolic learning, where the system is provided with explicit logical

rules and knowledge representation to reason about concepts and

relationships.

Neural Computing and Applications
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generalizability, and robustness, which are critical in

enterprise natural language processing settings.

Implementations like Scallop [192], which supports

differentiable logical and relational reasoning, and Deep-

ProbLog [75–77], which combines neural networks with

probabilistic reasoning, further illustrate the versatility and

depth of NeSy approaches in bridging the gap between

neural and symbolic architectures. These implementations

showcase how NeSy can leverage large-scale learning and

symbol manipulation for robust intelligence.

2.1.5 Knowledge and logic

Neuro-symbolic AI synergizes the structured expressive-

ness of logic with the adaptive learning capabilities of

neural networks, fostering systems that excel in reasoning

and knowledge representation. Figure 7 gives a pictorial

view of such a framework’s various kinds of logic.

NeSy architectures frequently employ propositional

logic for its simplicity in representing binary relationships

and decision processes. First-order logic (FOL), with its

ability to quantify individuals, extends this capacity,

allowing for more intricate representations of real-world

scenarios. Integrating FOL in NeSy facilitates reasoning

about entities and their relations, enhancing the system’s

ability to generalize from specific instances to broader

concepts [20, 193].

Higher-order logic (HOL) further expands the expres-

sive power of NeSy systems by enabling quantification

over predicates and functions. This allows for the modeling

of complex abstractions and relationships, which is pivotal

for tasks requiring deep semantic understanding. However,

the increased expressiveness of HOL comes with chal-

lenges in decidability and computational efficiency,

necessitating innovative solutions within NeSy frameworks

to harness its potential effectively [29, 194].

Logic is a foundational pillar for knowledge represen-

tation in NeSy, providing a formal structure for encoding

domain-specific rules and relationships. By mapping logi-

cal constructs to neural representations, NeSy systems can

leverage the robustness of neural learning while adhering

to the precision of logical reasoning. This dual approach

not only enhances the system’s interpretability but also its

adaptability to complex reasoning tasks [31, 195].

Knowledge graphs represent a pivotal component of

NeSy, offering a structured and interconnected framework

for representing complex knowledge bases. By encapsu-

lating entities, concepts, and their relationships in a graph

structure, knowledge graphs enable NeSy systems to per-

form sophisticated reasoning and inference, drawing on the

rich semantic connections encoded within the graph

[196, 197].

2.2 Neuro-symbolic: best of both worlds

Neuro-symbolic AI can build more powerful reasoning and

learning systems by combining the strengths of deep

learning-based methods and symbolic reasoning tech-

niques. However, the key research questions (included in

Wikipedia) asked [198] were:

A. What is the best way to integrate neural and symbolic

architectures?

B. How should symbolic structures be represented within

neural networks and extracted from them?

C. How should common-sense knowledge be learned and

reasoned about?

D. How can abstract knowledge that is hard to encode

logically be handled?

We now try to find the solutions to these questions in the

major algorithms/paradigms/language/frameworks devel-

oped for neuro-symbolic artificial intelligence integration

Fig. 7 Various disciplines of logic: a. Symbolic expressions—delving

into the language of mathematics and logic, symbolic expressions use

variables and operations to represent complex ideas succinctly. For

example, ‘a?b?2cosA’ and ‘1?5/(6*10)?15’ demonstrate how

mathematical symbols and functions can encapsulate calculations or

relationships. b. Propositional logic—this discipline focuses on

forming and analyzing statements that can be either true or false. c.

First-order logic—extends propositional logic by incorporating

quantifiers and variables that can represent objects in a domain. d.

Higher-order logic—builds on first-order logic by allowing functions

and predicates to be inputs to other functions and predicates,

facilitating more complex expressions of ideas. e. Knowledge

graphs—representing complex networks of real-world information,

knowledge graphs connect entities (such as individuals, places, and

objects) through edges that represent their interrelations

Neural Computing and Applications

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



during the last two decades. The summary of these

frameworks is in Table 6. From Table 6, we can now cover

some discussions based on the four questions posed.

The integration of neural and symbolic architectures has

been approached in various innovative ways. Early meth-

ods like KBANN [34] and Penalty Logic [35] laid the

groundwork by mapping propositional logic and penalty

systems onto neural networks, respectively. As the field

evolved, more sophisticated frameworks like LTN

[62, 66–68] and Tensor Networks [62] emerged, offering

richer representations and interactions within neural net-

works through tensors and differentiable logical languages.

More recent advancements like DeepLogic [92] and HRI

[93] have focused on simultaneous learning of perception

and reasoning, and hierarchical rule induction, showcasing

the continuous evolution toward more seamless and effi-

cient integration methods.

The representation and extraction of symbolic structures

within neural networks have seen significant advance-

ments. Early models like NSL [38] and CTLK [39, 40]

introduced context-free languages and the capability to

interpret non-classical logics, respectively. Over time,

models like NTP [65] and DeepProbLog [75–77] have

enhanced the representation of complex logical structures

and probabilistic logic programming within neural net-

works. These developments highlight a trend toward more

expressive and interpretable neuro-symbolic systems cap-

able of embedding and reasoning with intricate symbolic

information.

Learning and reasoning about common-sense knowl-

edge have been central to neuro-symbolic AI’s evolution.

Initial approaches like CIL2P [36] and SATyrus [41]

focused on inductive learning and constraint processing.

Later, models like NLM [78] and NSPS [62] demonstrated

scalable learning from small to larger tasks and program

synthesis, respectively, indicating a growing capability in

common-sense reasoning. The introduction of models like

CORGI [89] and NSFR [90], which engage in conversa-

tional reasoning and forward-chaining reasoning, respec-

tively, showcases the field’s progression toward more

dynamic and interactive common-sense reasoning systems.

The handling of abstract knowledge has evolved from

simpler logic mapping and penalty systems in models like

KBANN [34] and Penalty Logic [35] to more complex

hierarchical and adaptive systems seen in HRI [93] and

DeepLogic [92]. These recent developments demonstrate a

significant advancement in neuro-symbolic AI’s ability to

process, reason, and learn from abstract concepts, moving

closer to human-like reasoning capabilities.

2.3 Neuro-symbolic types

2.3.1 Type 1: symbolic neuro-symbolic

In the domain of type 1 neuro-symbolic AI, the interplay

between neural networks and symbolic reasoning forms the

cornerstone of representation, inference, and learning pro-

cesses. Here, neural networks are harnessed for their

powerful representational learning capabilities, enabling

the extraction of nuanced patterns and features from

complex data. This is particularly evident in natural lan-

guage processing, where neural network-based vector

embeddings, such as those developed by [199, 200],

transform input symbols into rich, continuous vector

spaces. These embeddings capture semantic and syntactic

relationships inherent in the data, facilitating a broad

spectrum of neural network-driven tasks like classification,

prediction, and sequence generation.

Conversely, symbolic reasoning within type 1 systems is

deployed to imbue these neural representations with

structured, logical frameworks. This symbolic layer is

pivotal for encoding knowledge, performing deductive

reasoning, and ensuring the interpretability of the AI sys-

tem’s operations. It leverages symbols and formal logic to

articulate rules and constraints, thereby guiding the deci-

sion-making processes in a transparent and explainable

manner.

The fusion of neural networks and symbolic reasoning

in type 1 neuro-symbolic AI endeavors to marry the

adaptive, data-driven insights of neural networks with the

clarity and rigor of symbolic logic. This hybrid approach

not only enhances the system’s ability to process and

interpret complex, real-world data but also ensures that its

operations remain grounded in logical principles that are

comprehensible to human operators.

Figure 8 illustrates this synergistic relationship between

neural representation and symbolic logic, highlighting how

each contributes to the system’s overall functionality.

Sequential methodologies within this category, such as

language translation or graph categorization, exemplify the

application of neural networks for symbolic processing.

However, as outlined in Table 7, despite their advance-

ments, these integrations highlight the ongoing challenges

in achieving the full potential of neuro-symbolic

integration.

2.3.2 Type 2: symbolic [neuro]

Systems of type 2 neuro-symbolic AI employ neural net-

works as subroutines inside a broader symbolic problem

solver; these systems are hybrid but are predominantly

symbolic. Loose coupling between the symbolic and neural
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Table 6 Major algorithms/paradigms/language/frameworks developed for neuro-symbolic artificial intelligence integration during the last two

decades

Authors/Work

(Ref)

Year Question A: Best way to

integrate

Question B:

Representation and

extraction of symbolic

structures

Question C: Learning and

reasoning about common-

sense knowledge

Question D: Handling

abstract knowledge

KBANN [34] 1994 Hybrid learning system

mapping domain theories

onto neural networks

Propositional logic

encoded within neural

architectures

Utilizes past knowledge

for generalization, aiding

common-sense reasoning

Demonstrates superior

generalization in

molecular biology,

indicating effective

handling of abstract

concepts

Penalty Logic

[35]

1995 Penalty Logic as an

alternative connectionist

paradigm for integration

Embeds symbolic

structures as penalties

within neural networks

Addresses nonmonotonic

reasoning and

inconsistent beliefs,

relevant to common-

sense knowledge

Penalty system allows for

approximation and

reasoning about abstract

knowledge

CIL2P [36] 1999 CIL2P model based on

feed-forward ANN and

logic programming

Utilizes a translational

technique for embedding

propositional logic

Inductive learning from

examples and past

knowledge supports

common-sense reasoning

Logic programming aspect

aids in handling abstract

knowledge that is

logically hard to encode

NSL [38] 2002 Integrates neural and

symbolic systems via a

context-free language

embedded in neural

networks

Employs weighted-sum

nonlinear thresholded

elements for symbolic

representation

Facilitates common-sense

reasoning through

inductive learning and

formal language

structure

Addresses abstract

knowledge using BNF

formalism within a

neural framework

CTLK [39, 40] 2003 Demonstrates artificial

neural networks’

capability to interpret

and apply non-classical

logics, including

propositional temporal

logic, showcasing an

advanced integration

method

Neural networks are

employed to solve

problems like the

muddy-children puzzle,

indicating a method for

embedding and

extracting complex

logical structures

The ability to reason about

new information suggests

a pathway for learning

and applying common-

sense knowledge within

neural frameworks

Addresses the challenge of

encoding and processing

abstract knowledge

through the application

of temporal-epistemic

reasoning within neural

networks

SATyrus [41] 2005 SATyrus showcases a

neuro-symbolic approach

for constraint processing

by translating problems

into energy functions,

indicating a novel

integration method

The architecture employs

energy functions to

represent symbolic

constraints within neural

networks, facilitating

their extraction through

global minima solutions

The model’s ability to

solve complex problems

like the traveling

salesman problem hints

at its capacity for

common-sense reasoning

and problem-solving

Its approach to expressing

problems as energy

functions offers a unique

way to handle abstract

knowledge that is

typically challenging to

encode logically

NSBL [42] 2005 Neuro-symbolic language

for robotics behavior

modeling

Action-selection and

inference mechanisms

for symbolic

representation

Adaptive behavior for

common-sense reasoning

in robotics

Modeling complex

behaviors and navigation

in robotics

Sathasivam et al.

[44–46]

2010 Introduces the Pseudo

inverse learning rule for

enhancing Hopfield

neural network logic

programming

Demonstrates an effective

method for representing

logical functions within

neural networks

Enhances the network’s

capability for inductive

learning, relevant for

common-sense reasoning

Compares with Hebb Rule

and Direct learning rule,

showcasing efficiency in

handling complex logical

constructs

Velik et al. [47] 2010 Introduces a neuro-

symbolic network

bridging neurological

and symbolic levels,

offering a unified

approach to integration

Proposes neuro-symbolic

coding to represent and

process multimodal

sensory information,

facilitating the extraction

of symbolic structures

from neural data

Explores perceptual

learning processes,

suggesting a framework

for common-sense

knowledge acquisition

and reasoning based on

sensory inputs

Addresses the binding

problem in perception,

providing insights into

handling abstract

knowledge through

neuro-symbolic

interactions
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Table 6 (continued)

Authors/Work

(Ref)

Year Question A: Best way to

integrate

Question B:

Representation and

extraction of symbolic

structures

Question C: Learning and

reasoning about common-

sense knowledge

Question D: Handling

abstract knowledge

Komendantskaya

et al. [48]

2010 Introduced neural

networks capable of

performing induction,

presenting a novel

approach to neuro-

symbolic computation

Utilized symbol

recognizers and recurrent

connections for

embedding and

processing symbolic

structures

Explored recursive

computing for enhancing

common-sense reasoning

in neural networks

Demonstrated the neural

network’s ability to

handle complex

dependencies,

contributing to the

management of abstract

knowledge

Neurule [49] 2011 Employs neurules derived

from training examples

or symbolic rule bases,

showcasing a method for

dynamic integration

Neurules enable efficient

updates and interactive

inference, illustrating

advanced symbolic

structure handling within

neural frameworks

Enhances reasoning with

case-based integration,

indicating an approach

for incorporating

common-sense

knowledge

Facilitates adaptive

reasoning with diverse

knowledge sources,

addressing the challenge

of managing abstract

knowledge

SCTL [55] 2011 Utilizes sequences and

counter-examples to

integrate temporal logic

rules into neural

networks, offering a

novel approach to neuro-

symbolic integration

Employs a nonlinear

recurrent network model

to represent and extract

temporal logic structures,

enhancing symbolic

representation within

neural frameworks

The learning from

sequences and system

properties facilitates

reasoning about

common-sense

knowledge, particularly

in temporal domains

The adaptation of temporal

logic rules and model

checking into the neural

network aids in

managing abstract

knowledge related to

time and system

behaviors

NTN [56] 2013 Introduces a method for

entity vectors to interact

through tensors,

enhancing the integration

of knowledge bases with

neural networks

Employs tensors for rich

representation and

interaction of entity

vectors, enabling the

extraction of complex

relational information

Utilizes knowledge base

reasoning for predicting

new entity relationships,

indicating a capability

for common-sense

knowledge inference

Demonstrates high

accuracy in classifying

unseen relationships,

showcasing the model’s

ability to manage

abstract knowledge

Riveret et al. [57] 2015 Integrates probabilistic

abstract argumentation

with Boltzmann

machines, offering a

unique approach to

neuro-symbolic

reasoning

Enables alternative

labeling within neural

networks, facilitating the

representation and

extraction of

argumentative structures

The probabilistic setup

suggests a method for

common-sense reasoning

through argumentation

Demonstrates the handling

of complex argument

structures, contributing

to the abstraction of

knowledge within neural

networks

MicroPsi [58] 2015 Explores neuro-symbolic

cognitive architecture

with a focus on

autonomous motivation,

bridging cognitive

processes with symbolic

reasoning

Models complex human-

like behaviors and

emotions, providing a

framework for

representing and

extracting symbolic

structures related to

affective states

Utilizes polycyclic

motivation and social

demands to simulate

common-sense reasoning

and social interactions

Applies parameters and

modulators to capture

individual variance and

personality traits,

offering insights into

abstract knowledge

representation

Confidence Rules

[63]

2016 Introduces a novel method

for embedding

quantitative ideas in

neural networks using

confidence criteria

Enhances the

representation of deep

networks through

confidence-based

layerwise extraction

Demonstrates the

incorporation of

historical data into

training, suggesting a

potential for abstract

knowledge handling

Hu et al. [64] 2016 Provides a framework for

enhancing neural

networks with first-order

logic, offering a novel

integration approach

Utilizes iterative

distillation to embed

logic rules into network

weights, improving

symbolic structure

representation

The technique’s ability to

infuse structured logical

information into neural

networks suggests a

potential for handling

abstract knowledge
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Table 6 (continued)

Authors/Work

(Ref)

Year Question A: Best way to

integrate

Question B:

Representation and

extraction of symbolic

structures

Question C: Learning and

reasoning about common-

sense knowledge

Question D: Handling

abstract knowledge

NTP [65] 2016 Utilizes differentiable

backward chaining to

integrate logical

reasoning within neural

networks

Enables the representation

and learning of complex

logical structures through

replacement

representations

The application of domain

knowledge and canonical

rules suggests a method

for common-sense

reasoning

Facilitates the handling of

abstract knowledge by

learning logical linkages

from minimal data

LTN [66] 2016 Presents LTN as a

framework combining

neural networks with

first-order logic for

querying, learning, and

reasoning

Utilizes Real Logic, a

differentiable logical

language, for

representing and

processing data and

knowledge within neural

networks

The framework’s ability to

handle rich data and

abstract world

knowledge suggests

potential for common-

sense reasoning

applications

LTN’s integration of first-

order logic and neural

computation offers a

novel approach to

managing abstract

knowledge in AI tasks

Tensor networks

[62]

2016 Introduces a Neuro-

Symbolic Program

Synthesis method,

enabling autonomous

code generation for

replicating input–output

pairs

Features two novel neural

modules: a cross-

correlation I/O network

and R3NN for program

synthesis

Demonstrates program

synthesis capability,

potentially applicable in

learning common-sense

reasoning patterns

Leverages context-free

grammar rules for

constructing parse trees,

highlighting a novel

approach to abstract

knowledge

representation

Wang et al. [69] 2017 Introduces DGCC,

blending human

cognition methods with

machine learning for

cognitive computing

Employs a multi-

granularity approach to

represent and process

information, enhancing

symbolic representation

in neural networks

Proposes ‘‘hierarchical

structuralism’’ as a new

paradigm, potentially

advancing the handling

of abstract and complex

knowledge

Tran et al. [70] 2017 Proposes a method to

represent propositional

formulas in Restricted

Boltzmann Machines

(RBMs), simplifying

logical implications and

Horn clauses

representation

Enhances RBMs to handle

symbolic structures

through a new

representation approach

Offers a less complex

framework for

integrating symbolic

knowledge, suggesting

potential in handling

abstract knowledge

TPRN [72] 2018 Introduces TPRN for

interpretable question

answering using

grammatical concepts

without prior linguistic

knowledge

Embeds discrete symbol

structures within neural

networks to represent

and process linguistic

information

Demonstrates learning of

syntax/semantics through

task performance,

aligning with natural

language acquisition

theories

Enables deep learning

systems to create

representations encoding

abstract grammatical

concepts, bridging the

gap between continuous

numerical operations and

discrete conceptual

categories

dILP [73] 2018 Introduces dILP

framework for robust

logic programming

against noisy data,

extending beyond

traditional ILP

capabilities

Embeds logical structures

within neural networks to

enhance interpretability

and reasoning

capabilities

Facilitates learning from

ambiguous data,

suggesting an approach

for common-sense

knowledge acquisition

Supports data efficiency

and generalization,

addressing the challenge

of encoding abstract

knowledge that is hard to

encode logically

DeepProbLog

[75]

2018 Proposes DeepProbLog,

integrating neural

networks with

probabilistic logic

programming for

enhanced reasoning

Combines symbolic and

sub-symbolic

representations, enabling

complex logical

reasoning within neural

architectures

Aids in learning and

reasoning with

probabilistic models,

contributing to the

understanding of

common-sense

knowledge

Showcases the integration

of logical reasoning and

probabilistic modeling,

offering new

perspectives on handling

abstract knowledge
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Table 6 (continued)

Authors/Work

(Ref)

Year Question A: Best way to

integrate

Question B:

Representation and

extraction of symbolic

structures

Question C: Learning and

reasoning about common-

sense knowledge

Question D: Handling

abstract knowledge

NLM [78] 2019 Introduces NLM for

inductive reasoning and

learning, employing

logic programming

alongside neural

networks

Processes objects,

attributes, and relations

using logic programming

within neural

frameworks

Demonstrates scalability

from small-scale tasks to

larger applications,

indicating potential for

common-sense

knowledge learning

Illustrates how neural

networks can

approximate complex

functions, enhancing the

handling of abstract

knowledge

SGM [79] 2019 Combines deep generative

models with neuro-

symbolic programs,

introducing a

programmatic framework

for structure expression

Enhances generative

models by incorporating

global structural

expressions

Offers a new perspective

on integrating

programmatic

frameworks with neural

models, potentially

advancing abstract

knowledge

representation

KENN [80] 2019 Develops KENN, adding

logical constraints to

neural network

predictions through a

Knowledge Enhancer

layer

Integrates logical

restrictions within neural

networks to refine

predictions

Facilitates the

incorporation of

learnable logical

constraints, contributing

to the discussion on

abstract knowledge

encoding

COMET [81] 2019 Adapts language models to

generate new common-

sense knowledge,

validated against

ATOMIC and

ConceptNet databases

Enhances language models

with common-sense

reasoning capabilities

Demonstrates the

generation of accurate

common-sense

knowledge

Addresses the integration

of dynamic, contextually

relevant common-sense

knowledge into language

models

PLANS [83] 2020 Applies hybrid systems to

decode decision-making

logic from visual

narratives, introducing

adaptive filtering for

neurally inferred

specifications

Integrates neural and rule-

based reasoning for

decision-making logic

analysis

Reduces human oversight

in understanding

decision-making

processes in complex

scenarios

Innovates in combining

neural and symbolic

components efficiently

for decision-making

analysis

r-FOL [84] 2020 Evaluates VQA models’

reasoning using a

differentiable first-order

logic framework,

independent of

perception

Incorporates first-order

logic for interpretability

in reasoning processes

Facilitates the separation

of reasoning from

perception in VQA

models, enhancing

interpretability and

analytical capabilities

MWS [85] 2020 Explores neuro-symbolic

generative models using

neural networks for both

inference and symbolic

data generation,

capturing compositional

structures

Introduces the MWS

algorithm to enhance

program induction within

learning processes

Utilizes MWS to learn

models in complex

domains, suggesting an

approach for acquiring

common-sense

knowledge

Focuses on explainability

and compositional

structure in generative

modeling, contributing to

abstract knowledge

representation

LNN [86] 2020 Presents LNNs that

evaluate logical

equations, integrating

predicate logic within

neural frameworks

Enables neural networks to

process logical

predicates and equations,

enhancing symbolic

representation

Could facilitate logical

reasoning and common-

sense knowledge

application through

neural computation

Advances the field by

embedding weighted

logical systems within

neural networks,

addressing abstract

reasoning challenges
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Table 6 (continued)

Authors/Work

(Ref)

Year Question A: Best way to

integrate

Question B:

Representation and

extraction of symbolic

structures

Question C: Learning and

reasoning about common-

sense knowledge

Question D: Handling

abstract knowledge

DLM [88] 2021 Proposes DLM for tackling

ILP and RL problems

using a neural-logic

architecture

Utilizes predicates as

weights, enabling a

continuous

representation of first-

order logic programs

within neural networks

Demonstrates the

application in solving

complex problems,

implying potential for

common-sense reasoning

Introduces a novel method

for encoding and

processing abstract

logical knowledge

through gradient descent,

enhancing the neuro-

symbolic AI domain

CORGI [89] 2021 Introduces a

conversational approach

for common-sense

reasoning using a neuro-

symbolic theorem prover

Engages in dialogue using

a common-sense

knowledge base,

enhancing user

interaction with AI

Demonstrates the

evocation of common-

sense knowledge through

human speech,

suggesting advancements

in natural language

understanding

Highlights the practical

application of neuro-

symbolic models in

conversational AI,

contributing to the field

of common-sense

reasoning

NSFR [90] 2021 Proposes a novel reasoning

method using

differentiable forward-

chaining based on first-

order logic

Transforms raw inputs into

probabilistic ground

atoms for reasoning,

advancing symbolic

representation in neural

networks

Facilitates seamless

deduction of new facts

from existing knowledge,

aligning with common-

sense reasoning

paradigms

Enhances the

interpretability and

flexibility of neuro-

symbolic reasoning,

pushing the boundaries

of abstract knowledge

handling

autoBOT [91] 2021 Explores autonomous

development of text

representations for

explainable and efficient

AI models

Evolves representations

rather than learning

them, offering a novel

approach to handling

symbolic structures

Contributes to the

advancement of low-

resource, explainable AI

models, potentially

impacting the

representation of abstract

knowledge

DeepLogic [92] 2022 Integrates neural

perception and logical

reasoning in a unified

learning process

Utilizes a tree structure and

logic operators for

sophisticated logical

formulations within

neural networks

Optimizes mutual

supervision signals for

simultaneous learning of

perception and reasoning

Describes first-order

logical formulations,

enhancing abstract

knowledge handling

HRI [93] 2022 Solves ILP issues with a

hierarchical rule

induction approach,

efficiently integrating

neural and symbolic

methods

Matches meta-rule facts

with body predicates

through learned

embeddings,

representing symbolic

structures

Uses a set of generic meta-

rules for common-sense

knowledge reasoning

Employs controlled noise

and interpretability-

regularization for

abstract knowledge

SenticNet 7 [94] 2022 Utilizes auto-regressive

models and kernel

methods for generating

symbolic representations

from text

Transforms real language

into a proto-language for

symbolic processing

Enhances sentiment

analysis with

unsupervised, repeatable,

and interpretable models

Provides a trustworthy and

explainable framework

for abstract knowledge

representation

ASL [95] 2023 Combines deep learning

with abductive logical

reasoning for subconcept

learning and reasoning

Induces logical hypotheses

for subconcept

representation and

detection in neural

networks

Applies meta-interpretive

learning for common-

sense knowledge

acquisition and reasoning

Reduces inconsistency in

model outputs,

advancing abstract

knowledge handling

through integrated

learning
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components is a hallmark of this integrated model type

(Fig. 9). System types 2 include models, which use a

symbolic stack machine to support recursion and sequence

manipulation and a neural network to generate the execu-

tion trace. A notable instance of this hybrid approach is

AlphaGo [208], which integrates Monte Carlo Tree Search

(MCTS) [209] for problem-solving and a neural network

for heuristic evaluations, thereby showcasing the potential

of combining strategic decision-making processes with

neural network-based insights. It’s crucial to clarify that

while AlphaGo exemplifies the innovative use of neural

networks within a decision-making framework, its config-

uration primarily enhances decision strategies and may not

fully encapsulate the traditional neural-symbolic integra-

tion aimed at combining deep semantic reasoning with

neural computation. Another case in point is a rule-based

system that leverages abstract notions recorded by a neural

perception module as I/O requirements and is introduced

for program synthesis from raw visual observations. The

usefulness of combining the skills of symbolic thinking

with brain processing for complicated problem-solving

tasks is brought to light by type 2 systems. Table 8 shows

the properties of some contributions.

2.3.3 Type 3: neuro | symbolic

Type 3 neuro-symbolic AI systems combine neural and

symbolic components to improve both aspects’ perfor-

mance. In this setup, the relationship between the neuro-

logical and symbolic layers is more cooperative than

strictly functional (Fig. 10). Some program synthesis

algorithms, for instance, make use of deep learning to

produce symbolic programs and rule systems that fulfill

high-level task specifications; the interaction between the

neural and symbolic components aids in the model’s per-

formance. To improve decision-making, symbolic planning

is also included in RL in neural-symbolic RL. Similarly,

NLProlog [188] and DeepProbLog [75–77] employ neural

networks to calculate the probabilities of probabilistic facts

and the inference mechanism of ProbLog to compute the

required loss gradient, all of which are instances of type 3

systems. In general, type 3 neuro-symbolic AI systems

combine the benefits of neural and symbolic techniques to

solve difficult problems, as shown in Table 9.

2.3.4 Type 4: neuro-symbolic �! neuro

Systems of this fourth kind of integration include symbolic

rules and information into the design or training of neural

networks (Fig. 11). With the goal of seamlessly integrating

symbolic domain information into connectionist architec-

tures, this method has lately acquired traction. They also

include tightly coupled but localist neuro-symbolic systems

[237–242]. To teach a system in mathematics, for instance,

one may use tree representations of equations and mean-

ingful mathematical expressions [243]. Symbolic programs

are produced and run by the neural network as completely

differentiable operations in Visual Question Answering

models [84]. Graph neural networks (GNNs) [244] are

being used more recently to include external knowledge

bases with entities and relationships. Though some critics

claim GNNs’ reasoning power is lacking, Kautz classifies

such approaches as Type 4. Table 10 shows the properties

of some contributions.

2.3.5 Type 5: neuroSymbolic

In order to train a neural network, type 5 neuro-symbolic

AI systems include symbolic information as soft restric-

tions into the loss function (tensors) (Fig. 12). The neural

network is given the ability to reason with the information

thanks to the incorporation of symbolic knowledge into the

network weights. Logic tensor networks (LTNs)

[62, 66–68] are an example of this method; they use fuzzy

relations on real numbers to represent first-order logic

equations in neural computing, enabling gradient-based

sub-symbolic learning. To cope with approximate rather

than accurate reasoning, LTNs soften Boolean first-order

logic as soft fuzzy logic. End-to-end training of networks

using symbolic knowledge is made possible by LTNs by

including logic rules in the network learning aim. When

designing classifiers, class hierarchies are used as both the

classification targets and the background knowledge. The

Fig. 8 Neuro-symbolic AI process flow in type 1 systems. Symbols

are translated into vector representations, processed through neural

networks to capture intricate patterns, and then converted back into

symbolic outputs, integrating the adaptability of neural embeddings

with the precision of symbolic logic
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purpose of objective functions in training is to encourage

consistency between predictions and the existing class

structure. Additional training targets for hierarchical scene

parsing are compositional relations over semantic hierar-

chies. Table 11 shows the properties of some contributions.

2.3.6 Type 6: neuro[symbolic]

Most experts agree that type 6 neuro-symbolic AI has the

most promise for bringing together the best features of

traditional symbolic AI with modern neural-based AI. A

symbolic thinking engine is embedded directly into a

neural engine, making this a completely integrated system

(Fig. 13). Type 6 methods include a family of algorithms

that mimics the logic of tensor calculus to train neural

networks to carry out symbolic operations. Their capacity

for logical thinking, however, remains low. Kautz argues

that type 6 techniques should be able to do combinatorial

reasoning since they are computer models of Kahneman’s

System 1 and System 2, although such a fully fledged

system does not exist yet. According to Kautz, no current

proper integration method comes close to matching the

quality of a Type 6 system. Nevertheless, Type 6 systems

could significantly advance AI by bringing together sym-

bolic reasoning and neural networks. Table 12 shows the

properties of some contributions claiming to be in type 6.

3 Applications

The rapid advancement of neuro-symbolic integration in

recent years has paved the way for the emergence of a

plethora of new applications. Here, we showcase several

widely used applications in an effort to spark future inno-

vation across a wider range of use cases.

3.1 Neuro-symbolic AI in robotics

Neuro-symbolic AI is significantly advancing robotics by

enabling robots to perform complex tasks previously

deemed unattainable, leveraging the fusion of neural net-

work adaptability with the structured logic of symbolic AI.

This synergy enhances robots’ capabilities to perceive,

reason, and act in intricate and unpredictable environments.

Notable implementations include robots learning new skills

from human demonstrations, translating these into sym-

bolic plans, and reasoning about objects’ physical proper-

ties and their environmental interactions.

Table 7 Collection of papers with neuro-symbolic type 1 and their properties

Paper Year Domain Properties

Rep. Learn. Reason. Dec. Mak. Logic Neural Typ.

Burattini et al. [201] 2001 Expert Sys. Loc. � Comm. � � �
Hitzler et al. [202] 2003 Logic Prog. Dist. Ded. � � � FF NN

Coraggio et al. [203] 2008 Robotics Dist. Ded. � � � FF NN

Staffa et al. [204] 2011 Robotics Dist. Diff. Evol. [205] � � � FF NN

Hasoon et al. [206] 2013 Op. Sys. Dist. Ded. � Rule B. � ANN

word2vec [199] 2013 QA Dist. Grad. Desc. � � � RNN

Glove [200] 2014 QA Dist. Grad. Desc. � � � RNN

Golovko et al. [207] 2020 Comp. Vis. Dist. Ded. � Rule B. � ANN

Rep. Representation, Learn. Learning, Reason. Reasoning, Dec. Mak. Decision Making, Logic Logic Type, Neural Typ. Neural Type, Ded.
Deductive, Dist. Distributed, Loc. Localist, FF NN Feed Forward Neural Network, ANN Artificial Neural Network, RNN Recurrent Neural

Network, Comm. Common-sense, Rule B. Rule Based, Grad. Desc. Gradient Descent

Fig. 9 Integration framework of type 2 neuro-symbolic AI. The

diagram illustrates a neural network acting as an intermediary

between input/output flows and a symbolic AI system. The neural

components provide insight-driven inputs to the symbolic problem

solver, characterizing the loosely coupled but predominantly sym-

bolic nature of these systems
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Coraggio et al. [203] devised a neuro-symbolic system

for robot self-localization in minimally sensor-equipped

environments, utilizing natural environmental features as

landmarks for navigation. This approach blends neural

networks’ perceptual strengths with symbolic AI’s logical

reasoning, enabling sophisticated decision-making pro-

cesses based on landmark detection and encoding.

Staffa et al. [204] explored robotic control by tuning

thresholds within a neuro-symbolic network, demonstrating

enhanced adaptability and decision-making in behavior-

based robotics. The dynamic adjustment of behavior in

response to environmental changes showcases the potential

of neuro-symbolic approaches in improving robotic

autonomy and efficiency.

Coraggio and De Gregorio [229] developed a neuro-

symbolic hybrid method for landmark recognition and

robot localization, improving landmark detection robust-

ness and robot navigation accuracy in complex settings.

This method exemplifies the significant contributions of

neuro-symbolic integration to the field of robotics, partic-

ularly in spatial awareness and adaptability applications.

An innovative approach to active video surveillance was

presented in [230], integrating virtual neural sensors with

BDI agents for enhanced system intelligence and reactivity.

This integration yields a highly adaptive surveillance sys-

tem capable of autonomous operation in dynamic envi-

ronments, highlighting the benefits of combining neural

networks’ perceptual abilities with symbolic AI’s reason-

ing capabilities.

Kraetzschmar et al. [226] utilized neuro-symbolic inte-

gration for environmental modeling in mobile robotics,

enabling dynamic and efficient environment representation

crucial for navigation and interaction. This approach

underscores the importance of combining neural

Table 8 Collection of papers with neuro-symbolic type 2 and their properties

Paper Year Domain Properties Neural Typ.

Rep. Learn. Reason. Dec. Mak. Logic

Neuro-Data-Mine [210] 2000 Medical applications Dist. Unsup. � � � �
Corchado et al. [211] 2001 Oceanography Dist. Sup. Case-B. � Prop. Belief network

Riverola et al. [212] 2002 Oceanography Dist. Sup. Case-B. � Prop. RBF ANN

Neagu et al. [213] 2002 Air Quality Dist. Sup. � � � Basic ANN

Corchado et al. [214] 2003 Oceanography Dist. Sup. Case-B. � � Basic ANN

Fsfrt [215] 2003 Oceanography Dist. Sup. Case-B. � Prop. RBF ANN

Policastro et al. [216] 2003 Mechanics Dist. Sup. Case-B. � Prop. MLP

Fernandez et al. [217] 2004 Biology Dist. Unsup. Case-B. � Fuzzy �
Corchado et al. [218] 2005 Business Dist. Sup. Case-B. � � Basic ANN

Prentzas et al. [50, 219] 2008 UCI [220] Dist. Sup. Case-B. � � Basic ANN

Borrajo et al. [221] 2008 Business Loc. Sup. Case-B. Rule B. Prop. �
Hatzilygeroudis et al. [222, 223] 2011 Business Loc. Sup. Case-B. Rule B. Prop. �
Bach et al. [224] 2015 Minecraft Dist. Sup. � Rule B. Prop. �
Bologna et al. [225] 2017 Computer Vision Dist. Sup. � Rule B. Prop. Deep MLP

Rep. Representation, Learn. Learning, Reason. Reasoning, Dec. Mak. Decision Making, Logic Logic Type, Neural Typ. Neural Type, Sup.
Supervised, Unsup. Unsupervised, Case-B. Case-Based, Rule B. Rule Based, Prop. Propositional, Basic ANN Basic Artificial Neural Network,

RBF ANN Radial Basis Function Artificial Neural Network, MLP Multilayer Perceptron, Deep MLP Deep Multilayer Perceptron

Fig. 10 Dynamic interplay in type 3 neuro-symbolic AI systems. The

illustration depicts a cyclical interaction where a neural network and a

symbolic AI system operate in a feedback loop, allowing for both

procedural learning and logical inference. This structure supports

complex tasks like program synthesis, as seen in systems that interpret

visual data through neural perception and apply symbolic reasoning

for output generation
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adaptability with symbolic reasoning in enhancing robots’

real-world operational effectiveness.

The research [131] conducted by Google Inc., Byte-

Dance Inc., and Tsinghua University on the neuro-sym-

bolic Neural Logic Machine (NLM) [78] has demonstrated

state-of-the-art methods for solving general application

tasks like array sorting, critical path finding, and more

intricate tasks such as Blocks World. This approach allows

for the application of generalized rules to achieve target

results from randomized layouts, showcasing the potential

of NeSy in enhancing robotic capabilities.

Moreover, the Neuro-Symbolic Concept Learner (NS-

CL) model, designed for the CLEVR dataset [179],

represents a significant advancement in the field. It adopts a

quasi-symbolic approach, utilizing neural networks for

inference and symbolic data for generating logical actions.

This method provides a framework for common-sense

knowledge acquisition and reasoning based on sensory

inputs, thereby offering insights into handling abstract

knowledge through neuro-symbolic interactions.

Furthermore, the development of the Neuro-Symbolic

Dynamic Reasoning (NS-DR) model, tailored for the

CLEVRER video reasoning dataset [280], introduces a

neural dynamics predictor. This learned physics engine is

crucial for accounting for causal relations in dynamic

environments, making it particularly relevant for robotics

applications where understanding and predicting physical

interactions are key.

These are just a handful of the ways that neuro-symbolic

AI is revolutionizing robotics. Several key viewpoints and

limitations emerge that future researchers in the field of

neuro-symbolic AI in robotics can address:

a. Environmental complexity and dynamic adaptation

While neuro-symbolic systems like those developed by

Coraggio et al. [203] and Staffa et al. [204] have shown

promise in navigating and making decisions based on

environmental features, the adaptability of these systems to

rapidly changing or highly complex environments remains

a challenge. Future research could focus on enhancing the

robustness and flexibility of neuro-symbolic systems to

better cope with unpredictable changes in the environment.

b. Perception and landmark recognition The work by

Coraggio and De Gregorio [229] on landmark recognition

for robot localization points to the need for improved

perceptual accuracy and the ability to distinguish between

similar features in the environment. Enhancing the per-

ceptual capabilities of neuro-symbolic systems, possibly

Table 9 Collection of papers with neuro-symbolic type 3 and their properties

Paper Year Domain Properties Neural Typ.

Rep. Learn. Reason. Dec. Mak. Logic

Kraetzschmar et al.[226] 2000 Mobile Robotics Dist. Sup. � � Prop. Voronoi

WiSARD [227, 228] 2003 Computer Vision Dist. Sup. � � F.O. Basic ANN

Coraggio et al. [229] 2007 Robotics Dist. Sup. � � F.O. Basic ANN

De Gregorio et al. [230] 2008 Robotics Dist. Sup. Ded. � F.O. Basic ANN

Qadeer et al. [231] 2009 Home Care Loc. Sup. Ded. Ontology Prop. Basic ANN

Dietrich et al. [232] 2009 Robotics Loc. Sup. Ded. Ontology Prop. Basic ANN

Barbosa et al. [233, 234] 2017 Computer Vision Dist. Sup. � � F.O. Basic ANN

Yi et al. [235] 2018 Computer Vision Dist. Sup. � � Symbolic CNN

NLProlog [188] 2019 Question Answering Dist. ILP [236] � Rule B. Symbolic MLP

Rep. Representation, Learn. Learning, Reason. Reasoning, Dec. Mak. Decision Making, Neural Typ. Neural Type, Sup. Supervised, Ded.
Deductive, Prop. Propositional, F.O. First Order, ILP Inductive Logic Programming, CNN Convolutional Neural Network, MLP Multilayer

Perceptron

Fig. 11 Type 4 neuro-symbolic AI system with explicit mapping.

This figure shows a structure where a distinct mapping layer explicitly

connects the symbolic AI component with the neural network. This

setup allows for direct translation of symbolic reasoning into neural

operations and vice versa, facilitating complex tasks that require tight

integration of both symbolic and sub-symbolic processes
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through more advanced neural network architectures or

more sophisticated symbolic reasoning mechanisms, could

be a valuable area of exploration.

c. Autonomy in surveillance systems The integration of

virtual neural sensors with BDI agents as explored in [230]

highlights the potential for autonomous operation in

surveillance systems. However, ensuring these systems can

operate with minimal human intervention while making

contextually appropriate decisions in dynamic scenarios is

an ongoing challenge. Research could delve into optimiz-

ing the balance between neural network-driven perception

and symbolic agent-driven decision-making to improve

autonomy.

d. Environmental modeling and interaction Kraet-

zschmar et al.’s [226] work on environmental modeling

underscores the importance of efficient and dynamic

environment representation. Future efforts could focus on

developing more sophisticated models that account for a

wider range of environmental variables and enable more

complex interactions between robots and their

surroundings.

e. Generalization and application of rules The successes

of the Neural Logic Machine (NLM) [78] and the Neuro-

Symbolic Concept Learner (NS-CL) [179] in applying

generalized rules to specific tasks suggest an area for fur-

ther research in the generalization capabilities of neuro-

symbolic systems. Investigating how these systems can

learn and apply rules across a broader range of scenarios

without significant retraining could enhance their applica-

bility in robotics.

f. Causal reasoning and physical interactions The

development of the Neuro-Symbolic Dynamic Reasoning

(NS-DR) model [280] addresses the need for understanding

causal relationships in dynamic environments, which is

crucial for robotics. Expanding on this work to include

more complex physical interactions and causal mecha-

nisms could improve the predictive and reasoning capa-

bilities of robotic systems.

Table 10 Collection of papers with neuro-symbolic type 4 and their properties

Paper Year Domain Properties Neural Typ.

Rep. Learn. Reason. Dec. Mak. Logic

NEURULES [237] 2000 Medical applications Loc. LMS � Rule B. Prop. �
INSS [238] 2001 Monk’s Problem [243] Loc. Incr. � Rule B. Prop. Cascade correlation

Garcez et al. [239] 2001 Molecular Biology Loc. Ded. � Rule B. Prop. Basic NN

Prentzas et al. [240] 2002 Intelligent Tutoring Loc. Ded. � Rule B. Prop. Basic NN

Salgado et al. [241] 2003 Neurobiology Loc. Ded. � Rule B. Prop. Basic NN

Omlin et al. [245] 2003 Medical diagnosis Dist. Ind. � Rule B. Prop. Basic NN

Bologna et al. [246] 2003 Medical diagnosis Dist. Ind. � Rule B. Prop. MLP

Obot et al. [247] 2009 Medical diagnosis Dist. Sup. C-B. Rule B. Prop. MLP

Boulahia et al. [248] 2015 UCI [220] Dist. Sup. C-B. Rule B. Prop. Basic NN

Prentzas et al. [52] 2016 Life Insurance Dist. Sup. Neurule Rule B. Prop. Basic NN

Ghosh et al. [249] 2018 Medical applications Dist. Sup. � Rule B. Prop. Basic NN

Bhatia et al. [250] 2018 Code Correction Dist. Sup. Constr.-based Rule B. � RNN

Prentzas et al. [242] 2019 Medical diagnosis Loc. Ded. � Rule B. Prop. Basic NN

Rep. Representation, Learn. Learning, Reason. Reasoning, Dec. Mak. Decision Making, Logic Logic Type, Neural Typ. Neural Type, Sup.
Supervised, Unsup. Unsupervised, Case-B. Case-Based, Rule B. Rule Based, Prop. Propositional, Basic ANN Basic Artificial Neural Network,

RBF ANN Radial Basis Function Artificial Neural Network, MLP Multilayer Perceptron, RNN Recurrent Neural Network, LMS Least Mean

Square, Incr. Incremental, C-B. Case-Based, Constr.-based Constraint-based

Fig. 12 Type 5 neuro-symbolic AI with tensor-based transformation.

This visualization presents the conversion of symbolic first-order

logic (FoL) into tensors, processed by a neural network, and then re-

converted into symbolic FoL, highlighting a system where symbolic

logic is seamlessly integrated with tensorial neural computation
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Addressing these limitations and exploring these view-

points could significantly advance the field of neuro-sym-

bolic AI in robotics, leading to more capable, adaptable,

and intelligent robotic systems.

3.2 Neuro-symbolic AI in question answering

The field of question answering (QA) has seen remarkable

advancements through the integration of neuro-symbolic

AI, blending the strengths of neural networks’ data pro-

cessing with symbolic AI’s logical reasoning. Notably,

models like Word2Vec and GloVe have revolutionized

word representation, enabling AI systems to understand

and process natural language queries more effectively.

Mikolov et al.’s work on efficient word representations

[199] and Pennington et al.’s development of GloVe [200]

have set significant milestones in semantic understanding,

essential for interpreting complex questions.

Table 11 Collection of papers with neuro-symbolic type 5 and their properties

Paper Year Domain Properties Neural Typ.

Rep. Learn. Reason. Dec. Mak. Logic

Souici et al. [251] 2004 Text Recognition Dist. Ded. Case-B. Rule B. Prop. Basic ANN

Perrier et al. [252] 2005 Autonomous vehicles Dist. Sup. Case-B. Rule B. Prop. Basic ANN

Sanchez et al. [253] 2008 Textiles Dist. Incr. Case-B. Rule B. - Basic ANN

Velik et al. [254] 2010 Computer Vision Dist. Incr. Ded. � Prop. Basic ANN

SHERLOCK [255] 2011 � Dist. Ind. Ded. � F.O. Basic ANN

Saikia et al. [256] 2016 Optimization Dist. ILP Ded. � F.O. DBN

k-il [257] 2019 Medical Dist. Ind. Knowledge Graph Rule B. F.O. LSTM

Khan et al. [258] 2020 Computer Vision Dist. Sup. Knowledge Graph Rule B. F.O. DNN

Kapanipathi et al. [259] 2020 Question Answering Dist. Sup. Knowledge Graph Rule B. F.O. LNN

Neurasp [260] 2020 Computer Vision Dist. Unsup. Common Sense Rule B. F.O. Basic ANN

NSSE [261] 2021 Aircraft Maintenance Dist. Sup. Knowledge Graph Rule B. F.O. LSTM

Stammer et al. [262] 2021 Computer Vision Dist. Unsup. Ded. Rule B. F.O. CNN

Kimura et al. [263] 2021 Question Answering Dist. Sup. Knowledge Graph Rule B. F.O. LNN

Evans et al. [264] 2021 Computer Vision Dist. Unsup. � Rule B. Prop. LSTM

PIGLeT [177] 2021 Question Answering Dist. Unsup. Common Sense Rule B. Prop. LSTM

DUA [265] 2022 Optimization Dist. ILP Inductive Rule B. F.O. �

Rep. Representation, Learn. Learning, Reason. Reasoning, Dec. Mak. Decision Making, Logic Logic Type, Neural Typ. Neural Type, Sup.
Supervised, Ded. Deductive, Incr. Incremental, Case-B. Case-Based, Rule B. Rule Based, Prop. Propositional, Basic ANN Basic Artificial

Neural Network, RBF ANN Radial Basis Function Artificial Neural Network, MLP Multilayer Perceptron, RNN Recurrent Neural Network, LMS
Least Mean Square, ILP Inductive Logic Programming, DBN Deep Belief Network, LSTM Long Short-Term Memory, DNN Deep Neural

Network, LNN Logical Neural Network

Fig. 13 Type 6 neuro-symbolic AI integration model. The process

begins with a neural unit that feeds into a series of logical units,

symbolizing the transition from sub-symbolic neural processing to

higher-level logical reasoning. This represents an advanced form of

integration where the neural network output is not just interpreted but

also informs and shapes logical unit operations. This illustration

conceptualizes the ideal of a fully integrated system, embedding a

symbolic reasoning engine within a neural framework. As proposed

by Kautz, it symbolizes the aspiration for a comprehensive AI model

capable of both Kahneman’s intuitive (System 1) and deliberate

(System 2) thinking processes
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Further enhancing QA systems, the Neuro-Symbolic

Program Synthesis (NSPS) approach [62] exemplifies the

seamless integration of symbolic knowledge into neural

frameworks, enabling the execution of symbolic programs

for query resolution. This method stands out for its per-

formance on benchmark datasets like WikiTableQuestions

and Spider, highlighting its efficacy in deriving accurate

answers from structured data.

Innovations such as the PIGLeT model by Zellers et al.

[177] introduce a novel dimension to QA by grounding

language in a 3D world, merging physical common-sense

with linguistic understanding. This dual approach, com-

bining a physical dynamics model with a language model,

allows for the prediction and verbalization of object

interactions, showcasing the model’s proficiency in neuro-

symbolic interaction.

Research by Weber et al. [188], which integrates Pro-

log’s reasoning with natural language processing, and the

comparative study by Ma et al. [281] on common-sense

QA, further illustrate the diversity of strategies employed

to enhance question understanding and answer generation.

These studies underscore the importance of knowledge

base compatibility and the integration techniques’ role in

model performance, advocating for a hybrid approach that

leverages both data-driven and knowledge-driven pro-

cesses for superior reasoning and explainability in AI

systems.

Through these pioneering works, the QA domain con-

tinues to evolve, with neuro-symbolic AI playing a pivotal

role in developing more nuanced, context-aware systems

capable of tackling the intricacies of human language and

cognition. This fusion has led to more sophisticated natural

language understanding and processing, essential for

interpreting and responding to complex queries. Some key

viewpoints in this domain can be:

a. Semantic understanding and word representation The

development of models like Word2Vec and GloVe by

Mikolov et al. [199] and Pennington et al. [200], respec-

tively, has been instrumental in enhancing semantic

understanding in QA systems. Future research could delve

into further improving word representation models to

capture nuanced linguistic features and contextual mean-

ings, potentially through more advanced and higher

dimensional integration of symbolic knowledge.

b. Symbolic program execution for query resolution The

Neuro-Symbolic Program Synthesis (NSPS) approach

introduced by Parisotto et al. [62] exemplifies the suc-

cessful incorporation of symbolic knowledge into neural

frameworks for query resolution. However, extending the

applicability of such models to a broader range of natural

language queries and diverse datasets remains a challenge,

inviting further exploration into adaptable and scalable

neuro-symbolic integration techniques.

c. Grounding language in physical reality The PIGLeT

model by Zellers et al. [177] merges physical common-

sense with linguistic understanding, a novel approach in

QA. Expanding on this, future work could focus on

enhancing the integration of physical dynamics models

with language models to improve the prediction and ver-

balization of complex object interactions, moving toward

more holistic neuro-symbolic systems that can reason

about both the physical and linguistic aspects of queries.

d. Knowledge base compatibility and reasoning Studies

such as those by Weber et al. [188] highlight the impor-

tance of integrating reasoning capabilities, like those in

Prolog, with natural language processing for QA.

Enhancing knowledge base compatibility and the tech-

niques for integrating symbolic reasoning into neural

models could lead to more accurate and explainable QA

systems. Research could explore advanced methods for

seamlessly merging data-driven insights with structured

knowledge bases to improve reasoning and context-

awareness in responses.

Table 12 Collection of papers with neuro-symbolic type 6 and their properties

Paper Year Domain Properties Neural Typ.

Rep. Learn. Reason. Dec. Mak. Logic

Alshahrani et al. [266] 2017 Biology Dist. Unsup. K. Graph Rule B. F.O. G. Embed. [267]

Agibetov et al. [268] 2018 Biology Dist. Unsup. K. Graph Rule B. F.O. G. Embed. [269]

Bianchi et al. [270] 2019 DBpedia Dist. Unsup. K. Graph Rule B. F.O. G. Embed. [271]

Oltramari et al. [272] 2019 Question Answering [273] Dist. Unsup. K. Graph Rule B. F.O. G. Embed. [274]

Doldy et al. [275] 2021 Edge Computing Dist. Unsup. K. Graph Rule B. F.O. G. Embed. [276]

Sun et al. [277] 2021 Table Understanding Dist. Unsup. PSL [278] Rule B. F.O. G. Embed. [279]

Rep. Representation, Learn. Learning, Reason. Reasoning, Dec. Mak. Decision Making, Logic Logic Type, Neural Typ. Neural Type, Unsup.
Unsupervised, K. Graph Knowledge Graph, Rule B. Rule Based, F.O. First Order, G. Embed. Graph Embedding
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e. Hybrid approaches for enhanced reasoning and

explainability The diversity of strategies employed in the

QA domain underscores the potential of hybrid approaches

that combine data-driven and knowledge-driven processes.

Future research could investigate new methods for lever-

aging both neural network capabilities and symbolic AI’s

structured reasoning to create QA systems with superior

reasoning, adaptability, and explainability.

Addressing these viewpoints and limitations could sig-

nificantly advance the field of QA, leading to the devel-

opment of AI systems that are not only more capable of

handling complex queries but also more intuitive and

aligned with human cognitive processes.

3.3 Neuro-symbolic AI in medical applications

The medical industry presents a promising landscape for

the integration of neuro-symbolic AI, significantly

advancing clinical decision support systems. By blending

the analytical precision of symbolic AI with the adapt-

ability of neural networks, neuro-symbolic reasoning

(NSR) has been effectively employed for more accurate

and personalized diagnoses. Research has demonstrated

NSR’s capability in accurately identifying acute abdominal

pain, showcasing its potential in improving diagnostic

accuracy [282].

Further, neuro-symbolic integration (NSI) has been

applied to electronic health records analysis, combining

deep learning with symbolic reasoning to extract actionable

insights, potentially enhancing patient care [283]. The

Neuro-Data-Mine framework by Ultsch [210] is notable for

its efficient transformation of sub-symbolic to symbolic

data, crucial for making high-dimensional medical data

interpretable. This approach underlines the utility of neuro-

symbolic methods in complex tasks like cerebrospinal fluid

analysis, emphasizing their role in advancing precision

medicine through improved data analysis and

intelligibility.

Hybrid formalisms, such as those proposed by Hatzi-

lygeroudis and Prentzas [237], integrate production rules

with neural units to streamline knowledge bases, demon-

strating improved inference efficiency in medical contexts

like bone inflammation diagnosis. This approach highlights

the effectiveness of neuro-symbolic systems in managing

complex decision-making and pattern recognition tasks,

offering superior performance compared to traditional

methods.

Omlin and Snyders’ work [245] on inductive bias in

neural networks, tailored by prior knowledge, showcases

the potential of neuro-symbolic approaches in medical

analysis, such as breast tissue characterization from mag-

netic resonance spectroscopy. Bologna’s development of

the discretized interpretable multi-layer perceptron

(DIMLP) [246] furthers the transparency of neural net-

works in medical diagnostics, enabling rule extraction that

aligns with neural network responses and uncovering sig-

nificant biomarkers for disease classification.

The framework by Obot and Uzoka [247] represents a

comprehensive integration of case-based, rule-based, and

neural network methodologies, overcoming individual

limitations and providing a robust diagnostic tool. This

hybrid system has shown strong correlations with con-

ventional neural network results while offering additional

explanatory insights, marking a significant step toward

explainable and reliable medical AI applications.

The application of neuro-symbolic AI in the medical

domain offers promising advancements, particularly in

enhancing clinical decision support systems by merging the

precision of symbolic AI with the adaptability of neural

networks. This integration facilitates more accurate and

personalized diagnoses, improving patient care through

more insightful analyses of complex medical data. Some

key viewpoint might be:

a. Diagnostic accuracy and personalization: The capa-

bility of neuro-symbolic reasoning (NSR) in precise med-

ical diagnosis, such as the identification of acute abdominal

pain, illustrates its potential in refining diagnostic processes

[282]. Future research could focus on expanding the range

of medical conditions NSR can accurately diagnose,

ensuring broader applicability and personalization in

patient care.

b. Interpretability of high-dimensional data The Neuro-

Data-Mine framework by Ultsch [210] emphasizes the

importance of transforming sub-symbolic data into a

symbolic format to make complex medical data more

interpretable. Enhancing these transformation techniques

could further improve the clarity and usability of medical

data, aiding in more nuanced data analysis and decision-

making in healthcare.

c. Efficiency in knowledge base management The inte-

gration of production rules with neural units, as demon-

strated by Hatzilygeroudis and Prentzas [237], showcases

the potential for neuro-symbolic systems to streamline

knowledge bases and improve inference efficiency in

medical diagnostics. Research could explore advanced

hybrid formalisms that further optimize knowledge base

management and inference processes in medical

applications.

d. Transparency in medical diagnostics The develop-

ment of models like the discretized interpretable multi-

layer perceptron (DIMLP) by Bologna [246] highlights the

need for transparency in neural network-based medical

diagnostics. Future efforts could aim at enhancing rule

extraction techniques to align more closely with neural

network responses, facilitating the identification of critical
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biomarkers and disease classifications with greater accu-

racy and interpretability.

e. Comprehensive diagnostic tools The comprehensive

framework by Obot and Uzoka [247], which combines

case-based, rule-based, and neural network methodologies,

overcomes the limitations of individual approaches and

offers a more robust diagnostic tool. Expanding this inte-

gration to incorporate the latest advancements in neural

network architectures and symbolic reasoning methods

could yield even more powerful and explainable medical

diagnostic systems.

Addressing these aspects could significantly advance

neuro-symbolic AI’s contribution to the medical field,

leading to the development of highly effective, transparent,

and patient-centric clinical decision support systems.

3.4 Neuro-symbolic AI in computer vision

In the evolving landscape of computer vision, neuro-sym-

bolic AI has emerged as a pivotal force, driving innova-

tions across various domains including object recognition,

scene interpretation, and image categorization. The inte-

gration of symbolic reasoning with deep learning models,

facilitated by approaches like graph neural networks

(GNNs) [244], has enabled the embedding of items and

relations within external knowledge bases, such as

ontologies or knowledge graphs, enhancing the interpretive

capabilities of AI systems in understanding complex visual

content.

A notable advancement in this field is the Neuro-Sym-

bolic Concept Learner (NS-CL) framework [179], which

leverages GNNs to encode the relationships between visual

features and their corresponding concepts within a

knowledge graph, thereby predicting potential concepts in

new images. This framework exemplifies the fusion of sub-

symbolic learning with symbolic knowledge, where logical

principles are rendered into fuzzy relations using logic

tensor networks (LTNs) [62, 66–68], offering a robust

mechanism for interpreting visual scenes and reasoning

about abstract ideas.

The application of neuro-symbolic AI in computer

vision is vividly illustrated in the work of Golovko et al.

[207], who developed an intelligent decision support sys-

tem (IDSS) for enhancing product labeling quality control.

This system epitomizes the synergy between deep neural

networks, for image localization and recognition, and

semantic networks, for intelligent data processing,

demonstrating the efficacy of neuro-symbolic approaches

in real-world manufacturing environments.

Further enriching the discourse, Bologna and Hayashi

[225] explored the transparency of deep learning systems

by characterizing symbolic rules within deep discretized

interpretable multi-layer perceptrons (DIMLPs). Their

work underscores the potential of deep learning models to

maintain a balance between accuracy and interpretability, a

crucial aspect in the application of AI in sensitive fields

such as medical diagnostics.

In the realm of multimedia and language integration,

Burattini et al. [227] and Grieco et al. [228] have con-

tributed significantly by exploring the synergy between

verbal and visual information and the concept of generating

pattern examples from ‘‘mental’’ images, respectively.

These studies highlight the multifaceted nature of neuro-

symbolic AI in bridging the gap between cognitive rea-

soning and sensory perception, offering novel insights into

pattern recognition and generation.

The neuro-symbolic approach has also been pivotal in

spatial-temporal pattern analysis, as demonstrated by Bar-

bosa et al. [233, 234] in their work on GPS trajectory

classification. Their methodology exemplifies the integra-

tion of neural network adaptability with symbolic AI’s

structured logic, enhancing the interpretability and com-

putational efficiency of trajectory analysis.

Moreover, the exploration of reasoning, vision, and

language understanding by Yi et al. [235] through Neural-

Symbolic Visual Question Answering (VQA) and the

advancements in multimedia event processing by Khan and

Curry [258] further underscore the breadth of neuro-sym-

bolic AI’s application in computer vision and beyond.

As the field continues to evolve, the focus on developing

sophisticated neuro-symbolic architectures that seamlessly

combine the learning process of neural networks with the

structured knowledge representation of symbolic systems

remains paramount. The future of computer vision lies in

creating more adaptable and generalized models that not

only mimic human visual capabilities but also encapsulate

transparent and comprehensible reasoning processes,

bridging the chasm between artificial intelligence and

human cognition. Some key viewpoints in this domain can

be:

a. Enhancing interpretive capabilities The integration of

graph neural networks (GNNs) with symbolic reasoning

has facilitated the embedding of visual elements and their

relationships within external knowledge bases, improving

AI systems’ ability to understand intricate visual scenes.

Future research could focus on refining these integrations

to handle more complex, abstract visual concepts and their

interrelations.

b. Predicting concepts in images The Neuro-Symbolic

Concept Learner (NS-CL) framework represents a leap in

encoding relationships between visual features and con-

cepts within knowledge graphs. Expanding this framework

to encompass a broader array of concepts and visual fea-

tures could further enhance the predictive accuracy and

applicability of neuro-symbolic systems in computer

vision.
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c. Real-world application in manufacturing The intelli-

gent decision support system developed by Golovko et al.

[207] exemplifies the practical application of neuro-sym-

bolic AI in enhancing product labeling quality control.

Research aimed at extending such systems to other man-

ufacturing domains could revolutionize quality assurance

processes across various industries.

d. Balancing accuracy and interpretability The work by

Bologna and Hayashi [225] on characterizing symbolic

rules within deep learning models highlights the impor-

tance of maintaining a balance between model accuracy

and interpretability. Future efforts could explore novel

methodologies to enhance the transparency and explain-

ability of deep learning models without compromising their

performance.

e. Bridging cognitive reasoning and sensory perception

Studies by Burattini et al. [227] and Grieco et al. [228]

underline the potential of neuro-symbolic AI in integrating

verbal and visual information and generating pattern

examples from ‘‘mental’’ images. Advancing these

approaches could offer deeper insights into cognitive pro-

cesses and sensory perception, facilitating more intuitive

human-AI interactions.

f. Spatial-temporal pattern analysis The methodology

employed by Barbosa et al. [233, 234] for GPS trajectory

classification demonstrates the effectiveness of combining

neural network adaptability with symbolic logic. Further

research in this area could enhance the interpretability and

efficiency of analyzing spatial-temporal patterns, with

broad implications for navigation, urban planning, and

environmental monitoring.

g. Integrating reasoning, vision, and language The

exploration of neuro-symbolic approaches in tasks like

Visual Question Answering (VQA) by Yi et al. [235] and

multimedia event processing by Khan and Curry [258]

showcases the vast potential of neuro-symbolic AI beyond

traditional computer vision tasks. Expanding these

methodologies to more complex, multimodal interactions

could significantly advance AI’s cognitive capabilities.

Addressing these aspects could propel the field of

computer vision forward, leading to the development of AI

systems that not only emulate human visual and cognitive

abilities but also offer transparent and understandable

reasoning processes, narrowing the gap between artificial

intelligence and human-like cognition.

3.5 Neuro-symbolic AI in programming
and optimization

The science of computer programming and optimization

has greatly benefited from the integration of neuro-sym-

bolic AI. The objective of program synthesis is to generate

programs that fulfill a specified task, a challenge that

remains to be fully automated. Neuro-symbolic AI tech-

niques, which combine symbolic reasoning with neural

network models, have shown promise in overcoming this

challenge, enabling effective program synthesis for tasks

such as sorting or searching algorithms [62]. Moreover,

neuro-symbolic AI extends to enhancing software effi-

ciency, where optimizations are discovered by blending

symbolic reasoning with insights derived from neural net-

work training on program execution patterns.

In the domain of programming and optimization, Bhatia,

Kohli, and Singh [250] introduced a groundbreaking neuro-

symbolic program corrector tailored for introductory pro-

gramming assignments. This tool harnesses both neural

networks and symbolic AI to identify and rectify errors in

student-submitted code, providing an automated and

intelligent feedback system that enhances the learning

experience for programming novices. The neuro-symbolic

approach not only detects syntactic errors but also grasps

the semantic intent behind the code, ensuring corrections

are accurate and contextually relevant.

Sen et al. [87] present a novel approach to inductive

logic programming (ILP) by integrating it with logical

neural networks (LNNs), offering a neuro-symbolic ILP

framework that merges ILP’s structured reasoning with the

adaptability of LNNs. This combination facilitates the

extraction and refinement of logical rules from data,

marking a significant advancement in AI, particularly in

programming and optimization.

Chaudhuri et al. [19] delve into neuro-symbolic pro-

gramming, highlighting the fusion of neural networks with

symbolic programming paradigms to address the limita-

tions of purely data-driven or rule-based systems. This

synthesis represents a pivotal shift toward creating more

adaptable, interpretable, and robust AI systems in the

programming and optimization domain.

Yin and Neubig [284] introduce a syntactic neural

model for general-purpose code generation, leveraging

structural patterns in programming languages to generate

code from natural language descriptions. This advancement

holds significant promise for automating coding tasks and

bridging the gap between natural language processing and

software engineering.

Ritchie et al. [285] explore the application of neuro-

symbolic models in computer graphics, addressing the

challenges of generating, rendering, and manipulating

graphical content. This novel integration promises to rev-

olutionize computer graphics by introducing more intelli-

gent and adaptable systems.

Reddy and Balasubramanian [286] explore estimating

treatment effects using Neuro-Symbolic Program Synthe-

sis, offering a nuanced understanding of treatment efficacy

and potentially transforming fields such as healthcare and

policy analysis.
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Li, Huang, and Naik [287] introduce ‘‘Scallop,’’ a lan-

guage designed for neuro-symbolic programming, aiming

to bridge the gap between neural and symbolic computing

paradigms and facilitate the development of neuro-sym-

bolic applications.

Varela’s doctoral dissertation [288] investigates the

impact of hybrid neural networks on meta-learning objec-

tives, shedding light on the potential of hybrid networks to

enhance the efficiency and effectiveness of meta-learning

processes.

Mundhenk et al. [289] explore symbolic regression via

neural-guided genetic programming, aiming to enhance the

efficiency and accuracy of symbolic regression tasks by

leveraging the strengths of neural networks.

Chen et al. [290] embark on the symbolic discovery of

optimization algorithms, signifying a pivotal shift toward

automating the design of optimization algorithms and

potentially accelerating the advancement of AI and com-

putational sciences.

The infusion of neuro-symbolic AI into programming

and optimization heralds a promising horizon, marked by

enhanced learning tools, innovative problem-solving

methodologies, and a deeper understanding of complex

systems. While strides have been made, the journey toward

fully realizing the potential of neuro-symbolic AI contin-

ues, with future research poised to tackle the remaining

challenges of scalability, interpretability, and the seamless

integration of neural and symbolic systems. The key points

from the programming and optimization domain can be

consolidated into broader themes to capture the essence of

current achievements and future directions:

a. Advancements in program synthesis and software

optimization The progress in automating program synthe-

sis, exemplified by neuro-symbolic techniques [62], and the

strides in enhancing software efficiency underscore the

potential of neuro-symbolic AI in transforming software

development practices. Future research could aim to extend

these methodologies to more complex and diverse pro-

gramming tasks, further automating and optimizing soft-

ware development processes.

b. Improving programming education and software

development Innovations such as the neuro-symbolic pro-

gram corrector [250] highlight the potential for AI to sig-

nificantly impact programming education by providing

more nuanced error detection and correction. Extending

these tools to accommodate a wider range of programming

languages and complexities could revolutionize learning

experiences and software development workflows.

c. Expanding the scope of neuro-symbolic integration

The work in inductive logic programming [87], neuro-

symbolic programming paradigms [19], and dedicated

neuro-symbolic programming languages [287] demon-

strates the evolving landscape of neuro-symbolic AI.

Future efforts could focus on developing sophisticated

frameworks and languages that ease the integration of

neural and symbolic components, enhancing AI’s adapt-

ability and interpretability across various applications.

d. Cross-disciplinary applications and innovations The

exploration of neuro-symbolic AI in fields such as com-

puter graphics [285] and healthcare [286] illustrates its

versatile applicability. Research aimed at exploring and

expanding neuro-symbolic AI’s capabilities in diverse

domains could unlock new possibilities for innovative

applications, from digital media to precision medicine.

e. Automating the design of optimization algorithms The

initiative to automate the discovery of optimization algo-

rithms [290] opens up new research avenues in making AI

systems more efficient and autonomous. Investigating

autonomous methods for identifying and implementing

optimizations could lead to breakthroughs in computational

efficiency and AI model performance.

By focusing on these consolidated themes, future

research in neuro-symbolic AI within the programming and

optimization domain can address existing challenges and

unlock new potentials, paving the way for more intelligent,

efficient, and user-friendly AI systems.

4 Challenges

The subject of neuro-symbolic AI is expanding quickly,

thanks to its ability to integrate deep learning methods with

symbolic reasoning to produce more robust and versatile

AI systems. There are, however, obstacles that must be

overcome before its full potential may be tapped. The

following are some of the major obstacles facing neuro-

symbolic AI:

Integration of deep learning and symbolic reasoning A

critical challenge lies in the effective amalgamation of

neural and symbolic components, a task that requires

innovative architectural designs and learning paradigms.

The question of how to seamlessly integrate these com-

ponents without diluting their respective strengths remains

open. Works like the Neuro-Symbolic Concept Learner

(NS-CL) and Logical Tensor Networks (LTNs) offer

promising directions, yet the quest for a universally effi-

cient integration strategy continues. This challenge is

compounded by the need for sophisticated representation

schemes that can encapsulate symbolic structures within

the fluidity of neural architectures, ensuring that the

extracted symbolic knowledge retains its logical integrity

and is amenable to rigorous reasoning processes.

Need of a spatial-temporal explainable learning and

reasoning framework Developing frameworks that can

interpret and reason about spatial-temporal data with

transparency, as highlighted by the need for explainable
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neuro-symbolic AI in applications like smart city man-

agement and environmental monitoring, is paramount.

Innovations such as CIL2P [36] and NSL [38] showcase

strides toward this goal, yet the quest for fully explainable

and generalizable systems persists. The integration of

graph neural networks (GNNs) with symbolic reasoning

mechanisms offers a pathway to imbue AI systems with an

enhanced understanding of spatial-temporal dynamics,

pertinent to domains such as environmental modeling and

autonomous navigation. The endeavor to refine these

frameworks, extending their applicability and accuracy,

stands as a crucial frontier in neuro-symbolic AI research.

Data quality and bias The quality and representative-

ness of training data are crucial across domains. Biases

inherent in the data can lead to skewed AI models, making

the development of comprehensive and unbiased datasets,

as well as algorithms capable of identifying and correcting

for bias, a universal challenge.

Human–machine collaboration Enhancing interfaces

and methodologies to foster effective human-AI collabo-

ration is vital. While frameworks like NSBL [42] and NTN

[56] have made progress, creating systems that intuitively

integrate human insights and AI capabilities remains a

broad challenge.

Representation and handling of abstract knowledge The

ability to represent and reason about abstract knowledge, a

theme recurrent in works from neuro-symbolic cognitive

architectures like MicroPsi [58] to logic-enhanced models

like LTN [66], is a critical hurdle. Expanding AI’s capacity

to manage abstract concepts through novel neuro-symbolic

integrations is essential for advancing AI’s cognitive

capabilities.

Ethical considerations As neuro-symbolic AI continues

to evolve, it is imperative to address the ethical challenges

that accompany its development and application. The

integration of neural networks with symbolic reasoning

introduces complex ethical dimensions that warrant careful

consideration.

Neuro-symbolic AI systems, by leveraging the strengths

of both neural networks and symbolic AI, have the

potential to address complex problems with a high degree

of interpretability and adaptability. However, the integra-

tion of these two paradigms introduces complexities in

identifying and mitigating biases. Neural networks, known

for their capacity to learn from vast datasets, may inad-

vertently encode and amplify existing biases within the

data, leading to decisions that can perpetuate societal

inequalities. Symbolic AI, while providing a framework for

logical reasoning and interpretability, relies on the pre-

mises and rules defined by humans, which can also be a

source of bias [291, 292].

The literature emphasizes the importance of trans-

parency, fairness, and accountability in AI systems to

address these challenges. For instance, the concept of

‘‘algorithmic auditing’’ has been proposed as a means to

scrutinize and evaluate the ethical implications of AI

algorithms, including those used in neuro-symbolic sys-

tems. This process involves a thorough examination of the

algorithms’ decision-making processes, data sources, and

outcomes to identify potential biases and ensure that the

systems operate within ethical boundaries [293].

Moreover, the development of interpretable models is

advocated to enhance the transparency of AI systems,

making it easier to understand how decisions are made and

on what basis. This is particularly relevant for neuro-

symbolic AI, where the rationale behind decisions should

be accessible and understandable to users, especially in

high-stakes domains such as healthcare, criminal justice,

and public policy [292].

Addressing the ethical challenges of bias and fairness in

neuro-symbolic AI also involves considering the broader

societal impacts of these technologies. The potential for

reinforcement of existing social inequalities through biased

decision-making underscores the need for ethical frame-

works that prioritize inclusivity, equity, and justice.

Engaging with diverse perspectives and disciplines can

provide a more comprehensive understanding of the social

implications of neuro-symbolic AI and guide the devel-

opment of more ethical and fair AI systems [294, 295].

Finally, the effects of neuro-symbolic AI on the labor

market are a source of worry. Ethical concerns regarding

the social effect and the necessity for retraining and edu-

cation is raised as technology develops and threatens

human jobs in specific sectors. Concerns about the morality

of developing and deploying neuro-symbolic AI must be

addressed if the technology is to be utilized for the greater

good of society. ‘‘Neuro-symbolic AI should ensure

transparency by making decision-making processes

understandable, uphold accountability through clear

delineation of responsibility for decisions, maintain fair-

ness by actively mitigating biases in data and algorithms,

protect privacy by safeguarding personal data, and adhere

to non-maleficence by preventing harm and ensuring the

benefits of AI applications outweigh potential risks.’’

As we navigate the future of neuro-symbolic AI, a

multidisciplinary approach that amalgamates insights from

cognitive science, computer science, and ethics is para-

mount. The exploration of novel integration strategies,

advanced representation techniques, and ethical frame-

works will be instrumental in realizing the full potential of

neuro-symbolic AI across its diverse applications. The

journey ahead, while fraught with challenges, holds the

promise of transformative breakthroughs that could
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redefine the paradigms of artificial intelligence in an array

of domains.

5 Conclusion

As this article has shown, neuro-symbolic AI is gaining

traction in the area of AI as it seeks to integrate the best

features of both symbolic reasoning and connectionist

learning. Throughout this study, we have covered the

representation, learning, reasoning, and decision-making

aspects of neuro-symbolic AI. Robotics, question answer-

ing, healthcare, computer vision, and programming are just

a few of the areas where neuro-symbolic AI has found

success. The limits and difficulties of neuro-symbolic AI,

including its scalability, explainability, and ethical impli-

cations, have also been examined. There is still a long way

to go, but neuro-symbolic AI shows promise for creating

AI systems with human-level intelligence and resemblance.
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91. Škrlj B, Martinc M, Lavrač N, Pollak S (2021) autobot: evolving

neuro-symbolic representations for explainable low resource

text classification. Mach Learn 110:989–1028

92. Duan X, Wang X, Zhao P, Shen G, Zhu W (2022) Deeplogic:

Joint learning of neural perception and logical reasoning. IEEE

Trans Pattern Anal Mach Intell

93. Glanois C, Jiang Z, Feng X, Weng P, Zimmer M, Li D, Liu W,

Hao J (2022) Neuro-symbolic hierarchical rule induction. In:

International conference on machine learning, PMLR,

pp 7583–7615

94. Cambria E, Liu Q, Decherchi S, Xing F, Kwok K (2022) Sen-

ticnet 7: A commonsense-based neurosymbolic ai framework for

explainable sentiment analysis. In: Proceedings of the thirteenth

language resources and evaluation conference, pp 3829–3839

95. Han Z, Cai L-W, Dai W-Z, Huang Y-X, Wei B, Wang W, Yin Y

(2023) Abductive subconcept learning. Sci China Inf Sci

66(2):1–13

96. Wermter S, Sun R (2001) The present and the future of hybrid

neural symbolic systems some reflections from the nips work-

shop. AI Mag 22(1):123–123

97. Kelley TD (2003) Symbolic and sub-symbolic representations in

computational models of human cognition: what can be learned

from biology? Theory Psychol 13(6):847–860

98. Rapaport WJ (2003) How to pass a turing test: Syntactic

semantics, natural-language understanding, and first-person

cognition. The Turing test: the elusive standard of artificial

intelligence, 161–184

99. Bader S, Hitzler P, Hölldobler S (2004) The integration of

connectionism and first-order knowledge representation and

reasoning as a challenge for artificial intelligence. arXiv preprint

cs/0408069

100. Pugeda TGS III (2005) Artificial intelligence and ethical

reflections from the catholic church. Intelligence 26(4):53

101. Ray O, Garcez AS (2006) Towards the integration of abduction

and induction in artificial neural networks. In: Proceedings of

the ECAI, vol 6. Citeseer, pp 41–46

102. Rawbone P, Paor P, Ware JA, Barrett J (2006) Interactive

causation: a neurosymbolic agent. In: IC-AI. Citeseer, pp 51–55

103. Velik R, Bruckner D (2008) euro-symbolic networks: intro-

duction to a new information processing principle. In: 2008 6th

IEEE international conference on industrial informatics. IEEE,

pp 1042–1047
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