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Life as we know it

Karl Friston

The Wellcome Trust Centre for Neuroimaging, Institute of Neurology, Queen Square, London WC1N 3BG, UK

This paper presents a heuristic proof (and simulations of a primordial soup)

suggesting that life—or biological self-organization—is an inevitable and

emergent property of any (ergodic) random dynamical system that possesses

a Markov blanket. This conclusion is based on the following arguments: if

the coupling among an ensemble of dynamical systems is mediated by

short-range forces, then the states of remote systems must be conditionally

independent. These independencies induce a Markov blanket that separates

internal and external states in a statistical sense. The existence of a Markov

blanket means that internal states will appear to minimize a free energy

functional of the states of their Markov blanket. Crucially, this is the same

quantity that is optimized in Bayesian inference. Therefore, the internal

states (and their blanket) will appear to engage in active Bayesian inference.

In other words, they will appear to model—and act on—their world to pre-

serve their functional and structural integrity, leading to homoeostasis and a

simple form of autopoiesis.
1. Introduction

How can the events in space and time which take place within the spatial boundary of
a living organism be accounted for by physics and chemistry?

Erwin Schrödinger [1, p. 2]
The emergence of life—or biological self-organization—is an intriguing issue

that has been addressed in many guises in the biological and physical sciences

[1–5]. This paper suggests that biological self-organization is not as remarkable

as one might think—and is (almost) inevitable, given local interactions between

the states of coupled dynamical systems. In brief, the events that ‘take place

within the spatial boundary of a living organism’ [1] may arise from the very

existence of a boundary or blanket, which itself is inevitable in a physically

lawful world.

The treatment offered in this paper is rather abstract and restricts itself

to some basic observations about how coupled dynamical systems organize

themselves over time. We will only consider behaviour over the timescale

of the dynamics themselves—and try to interpret this behaviour in relation to

the sorts of processes that unfold over seconds to hours, e.g. cellular proces-

ses. Clearly, a full account of the emergence of life would have to address

multiple (evolutionary, developmental and functional) timescales and the

emergence of DNA, ribosomes and the complex cellular networks common

to most forms of life. This paper focuses on a simple but fundamental aspect

of self-organization—using abstract representations of dynamical processes—

that may provide a metaphor for behaviour with different timescales and

biological substrates.

Most treatments of self-organization in theoretical biology have addressed

the peculiar resistance of biological systems to the dispersive effects of fluctu-

ations in their environment by appealing to statistical thermodynamics and

information theory [1,3,5–10]. Recent formulations try to explain adaptive be-

haviour in terms of minimizing an upper (free energy) bound on the surprise
(negative log-likelihood) of sensory samples [11,12]. This minimization usefully

connects the imperative for biological systems to maintain their sensory states

within physiological bounds, with an intuitive understanding of adaptive

behaviour in terms of active inference about the causes of those states [13].

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2013.0475&domain=pdf&date_stamp=2013-07-03
mailto:k.friston@ucl.ac.uk


Table 1. Definitions of the tuple ðV;C; S; A;L; p; qÞ underlying active
inference.

a sample space V or non-empty set from which random fluctuations

or outcomes v [ V are drawn

external states C : C� A�V! R states of the world that

cause sensory states and depend on action

sensory states S : C� A�V! R the agent’s sensations that

constitute a probabilistic mapping from action and external states

action states A : S � L�V! R an agent’s action that depends

on its sensory and internal states

internal states L : L� S �V! R the states of the agent that

cause action and depend on sensory states

ergodic density pðc; s; a; ljmÞ a probability density function over

external c [ C, sensory s [ S, active a [ A and internal states

l [ L for a system denoted by m

variational density q(cjl) an arbitrary probability density function

over external states that is parametrized by internal states
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Under ergodic assumptions, the long-term average

of surprise is entropy. This means that minimizing free

energy—through selectively sampling sensory input—places

an upper bound on the entropy or dispersion of sensory

states. This enables biological systems to resist the second law

of thermodynamics—or more exactly the fluctuation theorem

that applies to open systems far from equilibrium [14,15].

However, because negative surprise is also Bayesian model
evidence, systems that minimize free energy also maximize a

lower bound on the evidence for an implicit model of how

their sensory samples were generated. In statistics and machine

learning, this is known as approximate Bayesian inference and

provides a normative theory for the Bayesian brain hypothesis

[16–20]. In short, biological systems act on the world to place

an upper bound on the dispersion of their sensed states,

while using those sensations to infer external states of the

world. This inference makes the free energy bound a better

approximation to the surprise that action is trying to minimize

[21]. The resulting active inference is closely related to formu-

lations in embodied cognition and artificial intelligence; for

example, the use of predictive information [22–24] and earlier

homeokinetic formulations [25].

The ensuing (variational) free energy principle has been

applied widely in neurobiology and has been generalized

to other biological systems at a more theoretical level [11].

The motivation for minimizing free energy has hitherto used

the following sort of argument: systems that do not mini-

mize free energy cannot exist, because the entropy of their

sensory states would not be bounded and would increase

indefinitely—by the fluctuation theorem [15]. Therefore, bio-

logical systems must minimize free energy. This paper

resolves the somewhat tautological aspect of this argument

by turning it around to suggest: any system that exists will

appear to minimize free energy and therefore engage in

active inference. Furthermore, this apparently inferential or

mindful behaviour is (almost) inevitable. This may sound

like a rather definitive assertion but is surprisingly easy to

verify. In what follows, we will consider a heuristic proof

based on random dynamical systems and then see that bio-

logical self-organization emerges naturally, using a synthetic

primordial soup. This proof of principle rests on four attributes

of—or tests for—self-organization that may themselves have

interesting implications.
2. Heuristic proof
We start with the following lemma: any ergodic random dynami-
cal system that possesses a Markov blanket will appear to actively
maintain its structural and dynamical integrity. We will associate

this behaviour with the self-organization of living organisms.

There are two key concepts here—ergodicity and a Markov
blanket. Here, ergodicity means that the time average of any

measurable function of the system converges (almost surely)

over a sufficient amount of time [26,27]. This means that one

can interpret the average amount of time a state is occupied

as the probability of the system being in that state when

observed at random. We will refer to this probability measure

as the ergodic density.

A Markov blanket is a set of states that separates two

other sets in a statistical sense. The term Markov blanket was

introduced in the context of Bayesian networks or graphs

[28] and refers to the children of a set (the set of states that
are influenced), its parents (the set of states that influence it)

and the parents of its children. The notion of influence or

dependency is central to a Markov blanket and its existence

implies that any state is—or is not—coupled to another. For

example, the system could comprise an ensemble of subsys-

tems, each occupying its own position in a Euclidean space.

If the coupling among subsystems is mediated by short-range

forces, then distant subsystems cannot influence each other.

The existence of a Markov blanket implies that its states

(e.g. motion in Euclidean space) do not affect their coupling or

independence. In other words, the interdependencies among

states comprising the Markov blanket change slowly with

respect to the states per se. For example, the surface of a cell

may constitute a Markov blanket separating intracellular and

extracellular states. On the other hand, a candle flame cannot

possess a Markov blanket, because any pattern of molecular

interactions is destroyed almost instantaneously by the flux

of gas molecules from its surface.

The existence of a Markov blanket induces a partition of

states into internal states and external states that are hidden

(insulated) from the internal (insular) states by the Markov

blanket. In other words, the external states can only be seen

vicariously by the internal states, through the Markov blanket.

Furthermore, the Markov blanket can itself be partitioned into

two sets that are, and are not, children of external states. We

will refer to these as a surface or sensory states and active
states, respectively. Put simply, the existence of a Markov blan-

ket S � A implies a partition of states into external, sensory,

active and internal states: x [ X ¼ C� S� A� L. Exter-

nal states cause sensory states that influence—but are not

influenced by—internal states, while internal states cause

active states that influence—but are not influenced by—

external states (table 1). Crucially, the dependencies induced

by Markov blankets create a circular causality that is reminis-

cent of the action–perception cycle (figure 1). The circular

causality here means that external states cause changes in

internal states, via sensory states, while the internal states

couple back to the external states through active states—such

that internal and external states cause each other in a reciprocal



active states

E[a]µ–—
a
F (s,a,l)

E[l]µ–—lF (s,a,l)

external states internal states

sensory states

.

.

.

external states internal states

y ŒY 

s = f
s
(y,s,a) + w

y = fy(y,s,a) + w

s ŒS a Œ A l ŒL

Figure 1. Markov blankets and the free energy principle. These schematics illustrate the partition of states into internal states and hidden or external states that are
separated by a Markov blanket—comprising sensory and active states. The upper panel shows this partition as it would be applied to action and perception in the
brain; where—in accord with the free energy principle—active and internal states minimize a free energy functional of sensory states. The ensuing self-organization
of internal states then corresponds to perception, while action couples brain states back to external states. The lower panel shows exactly the same dependencies but
rearranged so that the internal states can the associated with the intracellular states of a cell, while the sensory states become the surface states or cell membrane
overlying active states (e.g. the actin filaments of the cytoskeleton). See table 1 for a definition of variables.
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fashion. This circular causality may be a fundamental and ubi-

quitous causal architecture for self-organization.

Equipped with this partition, we can now consider the

behaviour of any random dynamical system m described by

some stochastic differential equations:

_x ¼ f ðxÞ þ v

and f ðxÞ ¼

fcðc; s; aÞ
fsðc; s; aÞ
faðs; a; lÞ
flðs; a;lÞ

2
664

3
775:

9>>>>=
>>>>;

ð2:1Þ

Here, f (x) is the flow of system states that is subject to random

fluctuations denoted by v. The second equality formalizes

the dependencies implied by the Markov blanket. Because

the system is ergodic it will, after a sufficient amount of

time, converge to an invariant set of states called a pullback
or random global attractor. The attractor is random because

it itself is a random set [29,30]. The associated ergodic den-

sity p(xjm) is the solution to the Fokker–Planck equation

(a.k.a. the Kolmogorov forward equation) [31] describing

the evolution of the probability density over states

_p(xjm) ¼ r � Grp�r � ð fpÞ: ð2:2Þ

Here, the diffusion tensor G is the half the covariance (ampli-

tude) of the random fluctuations. Equation (2.2) shows that

the ergodic density depends upon flow, which can always be

expressed in terms of curl and divergence-free components.
This is the Helmholtz decomposition (a.k.a. the fundamen-

tal theorem of vector calculus) and can be formulated in

terms of an antisymmetric matrix R(x) ¼ 2R(x)T and a scalar

potential G(x) we will call Gibbs energy [32],

f ¼ �ðGþ RÞ � rG: ð2:3Þ

Using this standard form [33], it is straightforward to show

that p(xjm) ¼ exp(2G(x)) is the equilibrium solution to the

Fokker–Planck equation [12]:

pðxjmÞ ¼ expð�GðxÞÞ ) rp ¼ �prG) _p ¼ 0: ð2:4Þ

This means that we can express the flow in terms of the

ergodic density

f ¼ðGþ RÞ � r ln pðxjmÞ;

flðs; a;lÞ ¼ðGþ RÞ � rl ln pðc; s; a; ljmÞ

and faðs; a;lÞ ¼ðGþ RÞ � ra ln pðc; s; a;ljmÞ:

9>>=
>>; ð2:5Þ

Although we have just followed a sequence of standard

results, there is something quite remarkable and curious

about this flow: the flow of internal and active states is essen-

tially a (circuitous) gradient ascent on the (log) ergodic

density. The gradient ascent is circuitous because it contains

divergence-free (solenoidal) components that circulate on

the isocontours of the ergodic density—like walking up a

winding mountain path. This ascent will make it look as if

internal (and active) states are flowing towards regions of
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state space that are most frequently occupied despite the
fact their flow is not a function of external states. In other

words, their flow does not depend upon external states

(see the right-hand side equation (2.5)) and yet it ascends

gradients that depend on the external states (see the right-

hand side of equation (2.5)). In short, the internal and

active states behave as if they know where they are in the

space of external states—states that are hidden behind the

Markov blanket.
We can finesse this apparent paradox by noting that the

flow is the expected motion through any point averaged

over time. By the ergodic theorem, this is also the flow aver-

aged over the external states, which does not depend on the

external state at any particular time: more formally, for any

point v[V ¼ S � A � L in the space of the internal states

and their Markov blanket, equations (2.1) and (2.5) tell us

that flow through this point is the average flow under the

posterior density over the external states:
 .org

JR

SocInterface
10:20130475
flðvÞ ¼ Et½ _lðtÞ � ½xðtÞ [ v�� ¼
ð
C

pðcjvÞ � ðGþ RÞ � rl ln pðc; vjmÞdc;

faðvÞ ¼ Et½ _aðtÞ � ½xðtÞ [ v�� ¼
ð
C

pðcjvÞ � ðGþ RÞ � ra ln pðc; vjmÞdc;

)
flðvÞ ¼ ðGþ RÞ � rl ln pðvjmÞ;

and faðvÞ ¼ ðGþ RÞ � ra ln pðvjmÞ:

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð2:6Þ
The Iverson bracket [x(t) [ v] returns a value of one

when the trajectory passes through the point in question

and zero otherwise—and the first expectation is taken over

time. Here, we have used the fact that the integral of a deri-

vative of a density is the derivative of its integral—and

both are zero.

Equation (2.6) is quite revealing—it shows that the flow of

internal and active states performs a circuitous gradient

ascent on the marginal ergodic density over internal states

and their Markov blanket. Crucially, this marginal density

depends on the posterior density over external states. This

means that the internal states will appear to respond to

sensory fluctuations based on posterior beliefs about under-

lying fluctuations in external states. We can formalize this

notion by associating these beliefs with a probability density

over external states q(cjl) that is encoded (parametrized) by

internal states.

Lemma 2.1 Free energy. For any Gibbs energy G(c, s, a, l) ¼ 2ln

p(c, s, a, l), there is a free energy F(s, a, l) that describes the flow of
internal and active states:

flðs; a;lÞ ¼ � ðGþ RÞ � rlF;
faðs; a;lÞ ¼ � ðGþ RÞ � raF

and Fðs; a;lÞ ¼ �
ð
c

qðcjlÞ ln pðc; s; a;ljmÞ
qðcjlÞ dc

¼Eq½Gðc; s; a;lÞ� �H½qðcjmÞ�:

9>>>>>>>=
>>>>>>>;

ð2:7Þ

Here, free energy is a functional of an arbitrary (variational) density
q(cjl) that is parametrized by internal states. The last equality just
shows that free energy can be expressed as the expected Gibbs
energy minus the entropy of the variational density.

Proof. Using Bayes rule, we can rearrange the expression for

free energy in terms of a Kullback–Leibler divergence [34]:

Fðs;a;lÞ ¼� lnpðs;a;ljmÞþDKL½qðcjlÞjjpðcjs;a;lÞ�;
)

flðs;a;lÞ ¼ ðGþRÞ �rl lnpðs;a;ljmÞ� ðGþRÞ �rlDKL

and faðs;a;lÞ ¼ ðGþRÞ �ra lnpðs;a;ljmÞ� ðGþRÞ �raDKL:

9>>=
>>;

ð2:8Þ
However, equation (2.6) requires the gradients of the

divergence to be zero, which means the divergence must be

minimized with respect to internal states. This means that

the variational and posterior densities must be equal:

qðcjlÞ ¼ pðcjs; a;lÞ ) DKL ¼ 0) ðGþ RÞ � rlDKL ¼ 0;
ðGþ RÞ � raDKL ¼ 0:

�

In other words, the flow of internal and active states

minimizes free energy, rendering the variational density

equivalent to the posterior density over external states.

Remarks 2.2. Put simply, this proof says that if one inter-

prets internal states as parametrizing a variational density

encoding Bayesian beliefs about external states, then the

dynamics of internal and active states can be described as a

gradient descent on a variational free energy function of

internal states and their Markov blanket. Variational free

energy was introduced by Feynman [35] to solve difficult

integration problems in path integral formulations of quan-

tum physics. This is also the free energy bound that is used

extensively in approximate Bayesian inference (e.g. variational

Bayes) [34,36,37]. The expression for free energy in equation

(2.8) discloses its Bayesian interpretation: the first term is

the negative log evidence or marginal likelihood of the internal

states and their Markov blanket. The second term is a relative
entropy or Kullback–Leibler divergence [38] between the vari-

ational density and the posterior density over external states.

Because (by Gibbs inequality) this divergence cannot be less

than zero, the internal flow will appear to have minimized

the divergence between the variational and posterior density.

In other words, the internal states will appear to have solved

the problem of Bayesian inference by encoding posterior

beliefs about hidden (external) states, under a generative

model provided by the Gibbs energy. This is known as

approximate Bayesian inference—with exact Bayesian inference

when the forms of the variational and posterior densities are

identical. In short, the internal states will appear to engage in

some form of Bayesian inference: but what about action?

Because the divergence in equation (2.8) can never be less

than zero, free energy is an upper bound on the negative log
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evidence. Now, because the system is ergodic we have

Fðs; a;lÞ � � ln pðs; a;ljmÞ )
Et½Fðs; a; lÞ� � Et½� ln pðs; a; ljmÞ� ¼ H½ pðs; a;ljmÞ�:

�
ð2:9Þ

This means that action will (on average) appear to minimize free

energy and thereby place an upper bound on the entropy of the

internal states and their Markov blanket. If we associate these

states v ¼ fs, a, lg with biological systems, then action places

an upper bound on their dispersion (entropy) and will appear

to conserve their structural and dynamical integrity. Together

with the Bayesian modelling perspective, this is exactly consist-

ent with the good regulator theorem (every good regulator is a

model of its environment) and related treatments of self-organ-

ization [2,5,12,39,40]. Furthermore, we have shown elsewhere

[11,41] that free energy minimization is consistent with infor-

mation-theoretic formulations of sensory processing and

behaviour [23,42,43]. Equation (2.7) also shows that minimizing

free energy entails maximizing the entropy of the variational

density (the final term in the last equality)—in accord with the

maximum entropy principle [44]. Finally, because we have

cast this treatment in terms of random dynamical systems,

there is an easy connection to dynamical formulations that

predominate in the neurosciences [40,45–47].

The above arguments can be summarized with the

following attributes of biological self-organization:

— biological systems are ergodic [26]: in the sense that the aver-

age of any measure of their states converges over a

sufficient period of time. This includes the occupancy of

state space and guarantees the existence of an invariant

ergodic density over functional and structural states;

— they are equipped with a Markov blanket [28]: the existence of a

Markov blanket necessarily implies a partition of states into

internal states, their Markov blanket (sensory and active

states) and external or hidden states. Internal states and

their Markov blanket (biological states) constitute a biological

system that responds to hidden states in the environment;

— they exhibit active inference [11]: the partition of states implied

by the Markov blanket endows internal states with the

apparent capacity to represent hidden states probabilisti-

cally, so that they appear to infer the hidden causes of

their sensory states (by minimizing a free energy bound

on log Bayesian evidence). By the circular causality induced

by the Markov blanket, sensory states depend on active

states, rendering inference active or embodied; and

— they are autopoietic [4]: because active states change—but

are not changed by—hidden states (figure 1), they will

appear to place an upper (free energy) bound on the dis-

persion (entropy) of biological states. This homoeostasis is

informed by internal states, which means that active states

will appear to maintain the structural and functional

integrity of biological states.

When expressed like this, these criteria appear perfectly

sensible but are they useful in the setting of real biophysical

systems? The premise of this paper is that these criteria apply

to (almost) all ergodic systems encountered in the real world.

The argument here is that biological behaviour rests on the

existence of a Markov blanket—and that a Markov blanket is

(almost) inevitable in coupled dynamical systems with short-

range interactions. In other words, if the coupling between

dynamical systems can be neglected—when they are separated

by large distances—the intervening systems will necessarily
form a Markov blanket. For example, if we consider short-

range electrochemical and nuclear forces, then a cell membrane

forms a Markov blanket for internal intracellular states

(figure 1). If this argument is correct, then it should be possible

to show the emergence of biological self-organization in any

arbitrary ensemble of coupled subsystems with short-range

interactions. The final section uses simulations to provide a

proof of principle, using the four criteria above to identify

and verify the emergence of lifelike behaviour.

3. Proof of principle
In this section, we simulate a primordial soup to illustrate the

emergence of biological self-organization. This soup comprises

an ensemble of dynamical subsystems—each with its own

structural and functional states—that are coupled through

short-range interactions. These simulations are similar to (hun-

dreds of) simulations used to characterize pattern formation in

dissipative systems; for example, Turing instabilities [48]: the

theory of dissipative structures considers far-from-equilibrium

systems, such as turbulence and convection in fluid dynamics

(e.g. Bénard cells), percolation and reaction–diffusion systems

such as the Belousov–Zhabotinsky reaction [49]. Self-assembly

is another important example from chemistry that has biologi-

cal connotations (e.g. for pre-biotic formation of proteins). The

simulations here are distinguished by solving stochastic differ-

ential equations for both structural and functional states. In

other words, we consider states from classical mechanics that

determine physical motion—and functional states that could

describe electrochemical states. Importantly, the functional

states of any system affect the functional and structural states

of another. The agenda here is not to explore the repertoire of

patterns and self-organization these ensembles exhibit—but

rather take an arbitrary example and show that, buried

within it, there is a clear and discernible anatomy that satisfies

the criteria for life.

3.1. The primordial soup
To simulate a primordial soup, we use an ensemble of

elemental subsystems with (heuristically speaking) Newto-

nian and electrochemical dynamics f~p;~qg [ X:

_~p ¼ fpð~p;~qÞ þ v

and _~q ¼ fqð~p;~qÞ þ v

)
ð3:1Þ

Here, ~pðtÞ ¼ ð p; p0; p00; . . .Þ are generalized coordinates of motion

describing position, velocity, acceleration—and so on—of the

subsystems, while ~qðtÞ correspond to electrochemical states

(such as concentrations or electromagnetic states). One can

think of these generalized states as describing the physical and

electrochemical state of large macromolecules. Crucially, these

states are coupled within and between the subsystems compris-

ing an ensemble. The electrochemical dynamics were chosen

to have a Lorenz attractor: for the ith system with its own rate

parameter k(i):

_qðiÞ ¼ kðiÞ �
10ðqðiÞ2 � qðiÞ1 Þ

ð32þ �qð jÞ1 Þ � q
ðiÞ
1 � qðiÞ2 � x3qðiÞ1

qðiÞ1 qðiÞ2 � 8
3q
ðiÞ
3

2
664

3
775þ kðiÞ � �qðiÞ þ v;

�qðiÞ ¼
P

j qð jÞ � Aij;

Aij ¼ ½jDijj , 1�
and Dij ¼ pð jÞ � pðiÞ:

9>>>>>>>>>>>=
>>>>>>>>>>>;
ð3:2Þ
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Changes in electrochemical states are coupled through

the local average �qðiÞof the states of subsystems that lie within

a distance of one. This means that A can be regarded as an

(unweighted) adjacency matrix that encodes the dependencies

among the functional (electrochemical) states of the ensemble.

The local average enters the equations of motion both linearly

and nonlinearly to provide an opportunity for generalized syn-

chronization [50]. The nonlinear coupling effectively renders

the Rayleigh parameter of the flow 32þ �qð jÞ1 state-dependent.

The Lorenz form for these dynamics is a somewhat

arbitrary choice but provides a ubiquitous model of electrody-

namics, lasers and chemical reactions [51]. The rate parameter

kðiÞ ¼ 1
32ð1� expð�4 �UÞÞ was specific to each subsystem,

where U [ (0, 1) was selected from a uniform distribution.

This introduces heterogeneity in the rate of electrochemical

dynamics, with a large number of fast subsystems—with a

rate constant of nearly one—and a small number of slower sub-

systems. To augment this heterogeneity, we randomly selected

a third of the subsystems and prevented them from (electro-

chemically) influencing others, by setting the appropriate

column of the adjacency matrix to zero. We refer to these as

functionally closed systems.

In a similar way, the classical (Newtonian) motion of each

subsystem depends upon the functional status of its neighbours:

_pðiÞ ¼ p0ðiÞ þ v;

_p0ðiÞ ¼ 1
32 � w

ðiÞ � 1
4 � p

0ðiÞ � 1
1024 pðiÞ þ v;

wðiÞ ¼
X

j

Dij

jDijj
�

w
ðiÞ
f

jDijj
� 1

jDijj2

0
@

1
A � Aij

and w
ðiÞ
f ¼ 8 � expð2 � jqð jÞ3 � qðiÞ3 jÞ � 2:

9>>>>>>>>>>=
>>>>>>>>>>;

ð3:3Þ

This motion rests on forces w(i) exerted by other subsys-

tems that comprise a strong repulsive force (with an inverse

square law) and a weaker attractive force that depends on

their electrochemical states. This force was chosen so that

systems with coherent (third) states are attracted to each

other but repel otherwise. The remaining two terms in the

expression for acceleration (second equality) model viscosity

that depends upon velocity and an exogenous force that

attracts all locations to the origin—as if they were moving

in a simple (quadratic) potential energy well. This ensures

the synthetic soup falls to the bottom of the well and enables

local interactions.

Note that the ensemble system is dissipative at two levels:

first, the classical motion includes dissipative friction or vis-

cosity. Second, the functional dynamics are dissipative in

the sense that they are not divergence-free. We will now

assess the criteria for biological self-organization within this

coupled random dynamical ensemble.
3.2. Ergodicity
In the examples used below, 128 subsystems were integrated

using Euler’s (forward) method with step sizes of 1/512 s

and initial conditions sampled from the normal distribution.

Random fluctuations were sampled from the unit normal

distribution. By adjusting the parameters in the above equa-

tions of motion, one can produce a repertoire of plausible

and interesting behaviours (the code for these simulations

and the figures in this paper are available as part of

the SPM academic freeware). These behaviours range from
gas-like behaviour (where subsystems occasionally get close

enough to interact) to a cauldron of activity, when sub-

systems are forced together at the bottom of the potential

well. In this regime, subsystems get sufficiently close for the

inverse square law to blow them apart—reminiscent of sub-

atomic particle collisions in nuclear physics. With particular

parameter values, these sporadic and critical events can

render the dynamics non-ergodic, with unpredictable high

amplitude fluctuations that do not settle down. In other

regimes, a more crystalline structure emerges with muted

interactions and low structural (configurational) entropy.

However, for most values of the parameters, ergodic be-

haviour emerges as the ensemble approaches its random

global attractor (usually after about 1000 s): generally, subsys-

tems repel each other initially (much like illustrations of the

big bang) and then fall back towards the centre, finding

each other as they coalesce. Local interactions then mediate

a reorganization, in which subsystems are passed around

(sometimes to the periphery) until neighbours gently jostle

with each other. In terms of the dynamics, transient synchro-

nization can be seen as waves of dynamical bursting (due to

the nonlinear coupling in equation (3.2)). In brief, the motion

and electrochemical dynamics look very much like a restless

soup (not unlike solar flares on the surface of the sun, figure

2)—but does it have any self-organization beyond this?
3.3. The Markov blanket
Because the structural and functional dependencies share

the same adjacency matrix—which depends upon position—

one can use the adjacency matrix to identify the principal

Markov blanket by appealing to spectral graph theory:

the Markov blanket of any subset of states encoded by a

binary vector with elements xi [ f0, 1g is given by [B . x] [

f0, 1g, where the Markov blanket matrix B ¼ A þ AT þATA
encodes children, parents and parents of children. This

follows because the ith column of the adjacency matrix

encodes the directed connections from the ith state to all its

children. The principal eigenvector of the (symmetric)

Markov blanket matrix will—by the Perron–Frobenius

theorem—contain positive values. These values reflect the

degree to which each state belongs to the cluster that is most

interconnected (cf., spectral clustering). In what follows, the

internal states were defined as belonging to subsystems with

the k ¼ 8 largest values. Having defined the internal states,

the Markov blanket can be recovered from the Markov blanket

matrix using [B . x] and divided into sensory and active

states—depending upon whether they are influenced by the

hidden states or not.

Given the internal states and their Markov blanket, we can

now follow their assembly and visualize any structural or func-

tional characteristics. Figure 3 shows the adjacency matrix used

to identify the Markov blanket. This adjacency matrix has

non-zero entries if two subsystems were coupled over the last

256 s of a 2048 s simulation. In other words, it accommoda-

tes the fact that the adjacency matrix is itself an ergodic

process—due to the random fluctuations. Figure 3b shows

the location of subsystems with internal states (blue) and

their Markov blanket—in terms of sensory (magenta) and

active (red) locations. A clear structure can be seen here,

where the internal subsystems are (unsurprisingly) close

together and enshrouded by the Markov blanket. Interestingly,

the active subsystems support the sensory subsystems that are
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Figure 2. Ensemble dynamics. (a) The position of (128) subsystems comprising an ensemble after 2048 s. a(i) The dynamical status (three blue dots per subsystem)
of each subsystem centred on its location (larger cyan dots). a(ii) The same information, where the relative values of the three dynamical states of each subsystem
are colour-coded (using a softmax function of the three functional states and a RGB mapping). This illustrates the synchronization of dynamical states within each
subsystem and the dispersion of the phases of the Lorenzian dynamics over subsystems. (b,c) The evolution of functional and structural states as a function of time,
respectively. The (electrochemical) dynamics of the internal (blue) and external (cyan) states are shown for the 512 s. One can see initial (chaotic) transients that
resolve fairly quickly, with itinerant behaviour as they approach their attracting set. (c) The position of internal (blue) and external (cyan) subsystems over the entire
simulation period illustrate critical events (circled) that occur every few hundred seconds, especially at the beginning of the simulation. These events generally reflect
a pair of particles (subsystems) being expelled from the ensemble to the periphery, when they become sufficiently close to engage short-range repulsive forces.
These simulations integrated the stochastic differential equations in the main text using a forward Euler method with 1/512 s time steps and random fluctuations of
unit variance.
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exposed to hidden environmental states. This is reminiscent of

a biological cell with a cytoskeleton that supports some sensory

epithelia or receptors within its membrane.

Figure 3c highlights functionally closed subsystems

(filled circles) that have been rusticated to the periphery of

the system. Recall that these subsystems cannot influence or

engage other subsystems and are therefore expelled to the

outer limits of the soup. Heuristically, they cannot invade

the system and establish a reciprocal and synchronous exchange

with other subsystems. Interestingly, no simulation ever pro-

duced a functionally closed internal state. Figure 3d shows the

slow subsystems that are distributed between internal and
external states—which may say something interesting about

the generalized synchrony that underlies self-organization.
3.4. Active inference
If the internal states encode a probability density over the

hidden or external states, then it should be possible to predict

external states from internal states. In other words, if internal

events represent external events, they should exhibit a signifi-

cant statistical dependency. To establish this dependency, we

examined the functional (electrochemical) status of internal

subsystems to see whether they could predict structural
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last 256 s of the simulation. The adjacency matrix has been reordered to show the partition of hidden (cyan), sensory (magenta), active (red) and internal (blue)
subsystems, whose positions are shown in (b)—using the same format as in the previous figure. Note the absence of direct connections (edges) between external or
hidden and internal subsystem states. The circled area illustrates coupling between active and hidden states that are not reciprocated (there are no edges between
hidden and active states). The spatial self-organization in the upper left panel is self evident; where the internal states have arranged themselves in a small loop
structure with a little cilium, protected by the active states that support the surface or sensory states. When viewed as a movie, the entire ensemble pulsates in a
chaotic but structured fashion, with the most marked motion in the periphery. (c,d ) Highlights those subsystems that cannot influence others (closed subsystems (c))
and those that have slower dynamics (slow subsystems (d)). The remarkable thing here is that all the closed subsystems have been rusticated to the periphery—
where they provide a locus for vigorous dynamics and motion. Contrast this with the deployment of slow subsystems that are found throughout the hidden, sensory,
active and internal partition.
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events (movement) in the external milieu. This is not unlike

the approach taken in brain mapping that searches for statisti-

cal dependencies between, say, motion in the visual field and

neuronal activity [52].

To test for statistical dependencies, the principal patterns

of activity among the internal (functional) states were sum-

marized using singular value decomposition and temporal

embedding (figure 4). A classical canonical variates analysis

was then used to assess the significance of a simple linear

mapping between expression of these patterns and the move-

ment of each external subsystem. Figure 4a illustrates these

internal dynamics, while figure 4c shows the Newtonian

motion of the external subsystem that was best predicted.

The agreement between the actual (dotted line) and predic-

ted (solid line) motion is self-evident, particularly around

the negative excursion at 300 s. The internal dynamics that

predict this event appear to emerge in their fluctuations

before the event itself (figure 4)—as would be anticipated if

internal events are modelling external events. Interestingly,

the subsystem best predicted was the furthest away from

the internal states (magenta circle in figure 4d ).

This example illustrates how internal states infer or

register distant events in a way that is not dissimilar to
the perception of auditory events through sound waves—or

the way that fish sense movement in their environment.

Figure 4d also shows the subsystems whose motion could be

predicted reliably. This predictability is the most significant

at the periphery of the ensemble, where the ensemble has

the greatest latitude for movement. These movements are

coupled to the internal states—via the Markov blanket—

through generalized synchrony. Generalized synchrony refers

to the synchronization of chaotic dynamics, usually in skew-

product (master-slave) systems [53,54]. However, in our

set-up there is no master–slave relationship but a circular

causality induced by the Markov blanket. Generalized syn-

chrony was famously observed by Huygens in his studies of

pendulum clocks—that synchronized themselves through the

imperceptible motion of beams from which they were sus-

pended [55]. This nicely illustrates the ‘action at a distance’

caused by chaotically synchronized waves of motion. Circular

causality begs the question of whether internal states predict

external causes of their sensory states or actively cause them

through action. Exactly the same sorts of questions apply

to perception [56,57]: for example, are visually evoked neur-

onal responses caused by external events or by our (saccadic

eye) movements?
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Figure 4. Self-organized perception. This figure illustrates the Bayesian perspective on self-organized dynamics. (a) The first ( principal) 32 eigenvariates of the
internal ( functional) states as a function of time over the last 512 s of the simulations reported in the previous figures. These eigenvariates were obtained by a
singular value decomposition of the timeseries over all internal functional states (lagged between plus and minus 16 s). These represent a summary of internal
dynamics that are distributed over internal subsystems. The eigenvariates were then used to predict the (two-dimensional) motion of each external subsystem using
a standard canonical variates analysis. The (classical) significance of this prediction was assessed using Wilks’ lambda (following a standard transformation to the x2

statistic). The actual (dotted line) and predicted (solid line) position for the most significant external subsystem is shown in (c)—in terms of canonical variates (best
linear mixture of position in two dimensions). The agreement is self-evident and is largely subtended by negative excursions, notably at 300 s. The fluctuations in
internal states are visible in (a) and provide a linear mixture that correlates with the external fluctuation (highlighted with a white arrow). The location of the
external subsystem that was best predicted is shown by the magenta circle on (d ). Remarkably, this is the subsystem that is the furthest away from the internal
states and is one of the subsystems that participates in the exchanges a closed subsystem in the previous figure. (c) Also shows the significance with which the
motion of the remaining external states could be predicted (with the intensity of the cyan being proportional to the x2 statistic above). Interestingly, the motion
that is predicted with the greatest significance is restricted to the periphery of the ensemble, where the external subsystems have the greatest latitude for move-
ment. To ensure this inferential coupling was not a chance phenomenon, we repeated the analysis after flipping the external states in time. This destroys any
statistical coupling between the internal and external states but preserves the correlation structure of fluctuations within either subset. The distribution of the
ensuing x2 statistics (over 82 external elements) is shown in (b ) for the true (black) and null (white) analyses. Crucially, five of the subsystems in the true analysis
exceeded the largest statistic in the null analysis. The largest value of the null distribution provides protection against false positives at a level of 1/82. The
probability of obtaining five x2 values above this threshold by chance is vanishingly small p ¼ 0.00052.

rsif.royalsocietypublishing.org
JR

SocInterface
10:20130475

9

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

06
 J

ul
y 

20
24

 

3.5. Autopoiesis and structural integrity
The previous section applied a simple sort of brain mapping

to establish the statistical dependencies between external

and internal states—and their functional correlates. The

final simulations also appeal to procedures in the biological

sciences—in particular neuropsychology to examine the

effects of lesions. To test for autopoietic maintenance of struc-

tural and functional integrity, the sensory, active and internal

subsystems were selectively lesioned—by rendering them

functionally closed—in other words, by preventing them

from influencing their neighbours. This is a relatively mild

lesion, in the sense that they remain physically coupled

with intact dynamics that respond to neighbouring elements.

Because active states depend only on sensory and internal

states one would expect to see a loss of structural integrity

not only with lesions to action but also to sensory and internal

states that are an integral part of active inference.
Figure 5 illustrates the effects of these interventions by fol-

lowing the evolution of the internal states and their Markov

blanket over 512 s. Figure 5a shows the conservation of struc-

tural (and implicitly functional) integrity in terms of spatial

configuration over time. Contrast this with the remaining

three panels that show structural disintegration as the integ-

rity of the Markov blanket is lost and internal elements are

extruded into the environment.
4. Conclusion
Clearly, there are many issues that need to be qualified and

unpacked under this formulation. Perhaps the most prescient

is its focus on boundaries or Markov blankets. This contrasts

with other treatments that consider the capacity of living

organisms to reproduce by passing genetic material to their
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relatively subtle lesion on active states—that are rapidly expelled from the interior of the ensemble, allowing sensory states to invade and disrupt the internal
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simulations illustrate the effective death of biological self-organization that is a well-known phenomenon in dynamical systems theory—known as oscillator death:
see [58]. In our setting, they are a testament to autopoiesis or self-creation—in the sense that self-organized dynamics are necessary to maintain structural or
configurational integrity.

rsif.royalsocietypublishing.org
JR

SocInterface
10:20130475

10

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

06
 J

ul
y 

20
24

 

offspring [1]. In this context, it is not difficult to imagine

extending the simulations above to include slow (e.g. diur-

nal) exogenous fluctuations—that cause formally similar

Markov blankets to dissipate and reform in a cyclical fashion.

The key question would be whether the internal states of a

system in one cycle induce—or code for—the formation of

a similar system in the next.

The central role of Markov blankets speak to an important

question: is there a unique Markov blanket for any given

system? Our simulations focused on the principal Markov

blanket—as defined by spectral graph theory. However, a

system can have a multitude of partitions and Markov blan-

kets. This means that there are many partitions that—at some

spatial and temporal scale—could show lifelike behaviour.

For example, the Markov blanket of an animal encloses

the Markov blankets of its organs, which enclose Markov

blankets of cells, which enclose Markov blankets of nuclei

and so on. Formally, every Markov blanket induces active

(Bayesian) inference and there are probably an uncountable

number of Markov blankets in the universe. Does this mean

there is lifelike behaviour everywhere or is there something
special about the Markov blankets of systems we consider

to be alive?

Although speculative, the answer probably lies in the stat-

istics of the Markov blanket. The Markov blanket comprises a

subset of states, which have a marginal ergodic density. The

entropy of this marginal density reflects the dispersion or

invariance properties of the Markov blanket, suggesting

that there is a unique Markov blanket that has the smal-

lest entropy. One might conjecture that minimum entropy

Markov blankets characterize biological systems. This conjec-

ture is sensible in the sense that the physical configuration

and dynamical states that constitute the Markov blanket

of an organism—or organelle—change slowly in relation to

the external and internal states it separates. Indeed, the

physical configuration must be relatively constant to avoid

destroying anti-edges (the absence of an edge or coupling)

in the adjacency matrix that defines the Markov blanket.

This perspective suggests that there may be ways of charac-

terizing the statistics (e.g. entropy) of Markov blankets that

may quantify how lifelike they appear. Note from equation

(2.9) that systems (will appear to) place an upper bound on
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the entropy of the Markov blanket (and internal states).

This means that the marginal ergodic entropy measures the

success of this apparent endeavour.

However, minimum entropy is clearly not the whole story,

in the sense that biological systems act on their environment—

unlike a petrified stone with low entropy. In the language of

random attractors, the (internal and Markov blanket) states of

a system have an attracting set that is space filling but has a
small measure or entropy—where the measure or volume

upper bounds the entropy [11]. Put simply, biological systems

move around in their state space but revisit a limited number

of states. This space filling aspect of attracting sets may rest

on the divergence-free or solenoidal flow (equation (2.3)) that

we have largely ignored in this paper but may hold the key

for characterizing life forms.

Clearly, the simulations in this paper are a long way off

accounting for the emergence of biological structures such as

complex cells. The examples presented above are provided

as proof of principle and are as simple as possible. An interest-

ing challenge now will be to simulate the emergence of

multicellular structures using more realistic models with a

greater (and empirically grounded) heterogeneity and formal

structure. Having said this, there is a remarkable similarity

between the structures that emerge from our simulations and

the structure of viruses. Furthermore, the appearance of little

cilia (figure 3) are very reminiscent of primary cilia, which

typically serve as sensory organelles and play a key role in

evolutionary theory [59].

A related issue is the nature of the dynamical (molecular

or cellular) constituents of the ensembles considered above.

Nothing in this treatment suggests a special role for carbon-

based life or, more generally, the necessary conditions for

life to emerge. The contribution of this work is to note

that if systems are ergodic and possess a Markov blanket,

they will—almost surely—show lifelike behaviour. However,

this does not address the conditions that are necessary for the

emergence of ergodic Markov blankets. There may be useful

constraints implied by the existence of a Markov blanket

(whose constituency has to change more slowly than the

states of its constituents). For example, the spatial range of

electrochemical forces, temperature and molecular chemistry

may determine whether the physical motion of molecules

(that determine the integrity of the Markov blanket) is

large or small in relation to fluctuations in electrochemical

states (that do not). However, these questions are beyond

the scope of this paper and may be better addressed in

computational chemistry and theoretical biology.
This touches on another key issue, namely that of evolu-

tion. In this treatment, we have assumed biological systems

are ergodic. Clearly, this is a simplification, in that real

systems are only locally ergodic. The implication here is

that self-organized systems cannot endure indefinitely and

are only ergodic over a particular (somatic) timescale,

which raises the question of evolutionary timescales: is evol-

ution itself the slow and delicate unwinding of a trajectory

through a vast state space—as the universe settles on its

global random attractor? The intimation here is that adap-

tation and evolution may be as inevitable as the simple sort

of self-organization considered in this paper. In other

words, the very existence of biological systems necessarily

implies they will adapt and evolve. This is meant in the

sense that any system with a random dynamical attractor

will appear to minimize its variational free energy and can

be interpreted as engaging in active inference—acting upon

its external milieu to maintain an internal homoeostasis.

However, the ensuing homoeostasis is as illusory as the free

energy minimization upon which it rests. Does the same

apply to adaptation and evolution?

Adaptation on a somatic timescale has been interpreted

as optimizing the parameters of a generative model (encoded

by slowly changing internal states like synaptic connection

strengths in the brain) such that they minimize free energy. It

is fairly easy to show that this leads to Hebbian or associative

plasticity of the sort that underlies learning and memory [21].

Similarly, at even longer timescales, evolution can be cast in

terms of free energy minimization—by analogy with Bayesian

model selection based on variational free energy [60]. Indeed,

free energy functionals have been invoked to describe natural

selection [61]. However, if the minimization of free energy is

just a corollary of descent onto a global random attractor,

does this mean that adaptation and evolution are just ways of

describing the same thing? The answer to this may not be

straightforward, especially if we consider the following possi-

bility: if self-organization has an inferential aspect, what

would happen if systems believed their attracting sets had

low entropy. If one pursues this in a neuroscience setting, one

arrives at a compelling explanation for the way we adaptively

sample our environments—to minimize uncertainty about the

causes of sensory inputs [62]. In short, this paper has only con-

sidered inference as emergent property of self-organization—

not the nature of implicit (prior) beliefs that underlie inference.
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