CAMEO Refresher Exercise Set: December, 2012 Truck Collision Exercise

Scenario:

At 3:10 am on December 1, 2012, a multi-vehicle incident occurred on an Interstate Highway in your jurisdiction, including 3 vehicles with DOT HazMat placards. Responders have secured the immediate area, and have obtained some limited information on the materials using the ERG. The placards are:

UN # 1219 UN # 2014 UN # 2789

All 3 placarded vehicles appear to leaking liquid product, but the size and location of the leaks are currently unknown. In addition, there are a number of damaged vehicles leaking what appears to be any number of products, including gasoline, diesel fuel, hydraulic fluids, anti-freeze, and even possibly battery acid.

Current weather conditions are as follows:

Wind: from the NNW; 8 mph with gusts to	o 14 mph (obtained from local airport)
Ground Roughness: open country	Cloud Cover: Clear Skies
Air Temperature: 72° F	Stability Class: D
No Inversion Height	Relative Humidity: 47%


You are directed to operate CAMEO and supply information to Incident Command for the duration of this event.

CAMEO Chemicals

- 1. Use CAMEO Chemicals to gather information for the various chemicals.
 - a. Are these materials liquid, solid, or gas?
 - b. Is it likely that these materials are carried in Liquid Tankers or Pressurized Tankers?
 - c. What are the primary hazards associated with these materials?
- 2. Use the CAMEO Chemicals "Predict Reactivity" module to evaluate the potential reactive hazards for this incident.
- 3. Are any of these 3 materials incompatible with Gasoline, Diesel Fuel, Hydraulic Fluid, or Water? Show the MyChemicals List screenshot along with the expanded Reactivity Worksheet.
- 4. Determine the Initial Isolation Zone and Evacuation distances appropriate for this scenario.
- 5. Are any of these 3 materials able to be modeled using ALOHA?

MARPLOT

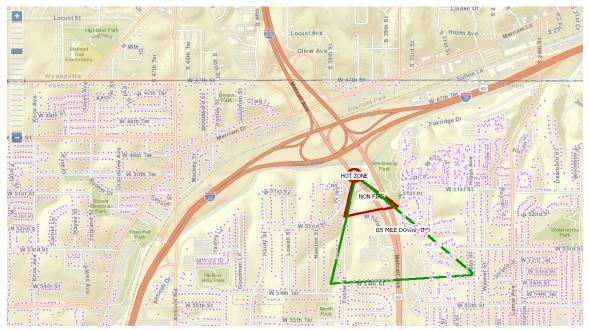
- 1. Launch MARPLOT
- 2. Select a location in your area to use as the incident site
- 3. Navigate to the incident location Mark the incident location using the Symbol tool
- 4. Use the "Circle" drawing tool to display an Immediate Isolation Zone on the map
- 5. Use the "Polygon" drawing tool to display the largest ERG-suggestion downwind evacuation area
- 6. Copy and paste a screenshot of the mapped area from MARPLOT to WORD

This MARPLOT screenshot is the intersection of I-635 and I-35 in Overland Park KS. Your screenshot should be of an area in your jurisdiction.

This MARPLOT screenshot is the intersection of I-635 and I-35 in Overland Park KS. Your screenshot should be of an area in your jurisdiction.

150 foot Immediate Isolation Area; 1000 foot non-Fire Evac Area; 0.5 mile Fire Evac area

150 foot Immediate Isolation Area; 1000 foot non-Fire Evac Area; 0.5 mile Fire Evac area


POPULATION ESTIMATES:

For 150 foot Isolation Zone:	0
For 1000 foot Evac Area:	0
For 0.5 mile Evac Area:	420

Your population numbers should be different than these because these are for the OKC area shown in the MARPLOT screensho

OVERLAND PARK ADDRESS POINTS IN THIS AREA

Note: this part of the exercise can be done ONLY if you have imported a local "address points" shape file to your MARPLOT; I have the address points for OVERLAND PARK in my MARPLOT, and can thus access a list of addresses for any displayed map area

MARPLOT screenshot with address points displayed

						947	🕈 Object	List (Searc	h Resi	ults)											
100 of 2	290 results	< Prev N	ext >	Page 1 of 3	Go to page	Go	s	how 100	🗸 obj	ects pe	er pag	e									
show All On Map	2021 JOH	NSON ADDRE	SS (290 obje	ects) 🗸	Export Objects	Cop Tab	y Crite le Foun	ria: Search d: 290 obje				f or touch	ing the sele	cted o	bjects	on the	202	1 JOHNSON	ADDRESS la	yer	
Graphic	STEWARD	L_UPDATE	EFF_DATE	EXP_DATE	ADDID	STATE	COUNTY	MUNI	HNO	HNS	PRM	PRD STP	RD	STS	POD	POM I	ESN	MSAGCO	POSTCO	ZIP	ZI
	Johnson County Emergency Communications Data Steward	20140101	20140101	0	19900000000012637	кs		OVERLAND PARK	5200				METCALF	AVE		:	112	OVERLAND PARK	OVERLAND PARK	66202	
	Johnson County Emergency Communications Data Steward	20140101	20140101	0	19900000000012638	кs		OVERLAND PARK	5221				FOSTER	ST		:	112	OVERLAND PARK	OVERLAND PARK	66202	
	Johnson County Emergency Communications Data Steward	20140101	20140101	0	199000000000041111	кs		OVERLAND PARK	5223				FOSTER	ST		:	112	OVERLAND PARK	OVERLAND PARK	66202	
	Johnson County Emergency Communications Data Steward	20140101	20140101	0	19900000000012641	кs		OVERLAND PARK	5225				FOSTER	ST		:	112	OVERLAND PARK	OVERLAND PARK	66202	
	Johnson County Emergency Communications Data Steward	20080129	20140101	0	200302251358014735	кs	JOHNSON COUNTY	MISSION	5240	1A			FOXRIDGE	DR		:	108	MISSION	MISSION	66202	
	Johnson County Emergency Communications Data Steward	20080129	20140101	0	200801290951407684	кs	JOHNSON COUNTY	MISSION	5240	18			FOXRIDGE	DR		:	108	MISSION	MISSION	66202	
	Johnson County Emergency Communications Data Steward	20080129	20140101	0	200801290951459929	кs	JOHNSON COUNTY	MISSION	5240	1C			FOXRIDGE	DR		:	108	MISSION	MISSION	66202	
	Johnson County Emergency	20080120	20140101	0	200801200052012022	K.C	JOHNSON	MISSION	5240	10			EOVRIDGE	nR			108	MISSION	MISSION	66707	

MARPLOT screenshot following address points Search

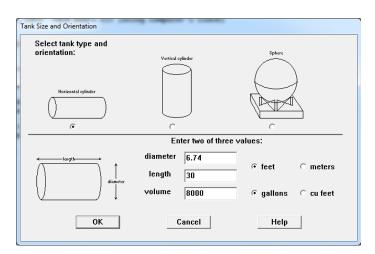
	ge Layout Formulas D	lata Review View PDF	Architect 6 Creator	V Tell me wi	hat you want	to do										1, Tom 🛛	∔ Sł
Cut Calibri	* 11 * A A	= = 🚽 🇞 - 📑 Wrap T	ext General	~	₽	and a	Normal	Ba	d	Good		· 🖶	*	∑ Auto	Sum * A	T \mathcal{P}	
te Copy - B I	U A -	= = = 🖬 🖬 Merge	3. Center - \$ - %	, 50 .00	Conditional	Format as	Neutral	Ca	lculation	Check	Cell	Insert	Delete For	nat 🦑 Clea	Sort	: & Find &	
· · · · · · · · · · · · · · · · · · ·					Formatting	r Table *						· ·	· ·	Clea	FILE	er * Select *	•
Clipboard G	Font G	Alignment	5 Nu	mber G				Styles					Cells		Editing		
	fx LABEL																
	5																
A	вс	D E F	G H	1 1 1		к		м	N	0	Р	0	R	s	т	U	
LABEL	COUNTY MUNI ESI				LAT	ĸ	L	M	IN	0	٢	Q	к	2		U	H
5200 METCALF AVE	JOHNSON OVERLANE	112 OVERLANE OVERLANE		-94,6703													
5221 FOSTER ST	JOHNSON OVERLANE	112 OVERLANI OVERLANI		-94.6722													
5223 FOSTER ST	JOHNSON OVERLANE	112 OVERLANE OVERLANE			39.03438												
5225 FOSTER ST	JOHNSON OVERLANE	112 OVERLANE OVERLANE		-94,6721													
5240 FOXRIDGE DR APT 1A	JOHNSON MISSION	108 MISSION MISSION	66202 APT 1A	-94.6662													
5240 FOXRIDGE DR APT 1B	JOHNSON MISSION	108 MISSION MISSION	66202 APT 1B	-94,6662													
5240 FOXRIDGE DR APT 1C	JOHNSON MISSION	108 MISSION MISSION	66202 APT 1C		39.03437												
5240 FOXRIDGE DR APT 1D	JOHNSON MISSION	108 MISSION MISSION	66202 APT 1D	-94,6662	39.03433												
5240 FOXRIDGE DR APT 2A	JOHNSON MISSION	108 MISSION MISSION	66202 APT 2A	-94,6663	39.03447												
5240 FOXRIDGE DR APT 2B	JOHNSON MISSION	108 MISSION MISSION	66202 APT 2B	-94,6663	39.03442												
5240 FOXRIDGE DR APT 2C	JOHNSON MISSION	108 MISSION MISSION	66202 APT 2C	-94.6663	39.03437												
5240 FOXRIDGE DR APT 2D	JOHNSON MISSION	108 MISSION MISSION	66202 APT 2D	-94.6663	39.03432												
5240 FOXRIDGE DR APT 3A	JOHNSON MISSION	108 MISSION MISSION	66202 APT 3A	-94.6664	39.03443												
5240 FOXRIDGE DR APT 3B	JOHNSON MISSION	108 MISSION MISSION	66202 APT 3B	-94.6664	39.03437												
5244 FOXRIDGE DR APT 1A	JOHNSON MISSION	108 MISSION MISSION	66202 APT 1A	-94.6662	39.03429												
5244 FOXRIDGE DR APT 1B	JOHNSON MISSION	108 MISSION MISSION	66202 APT 1B	-94.6662	39.03426												
5244 FOXRIDGE DR APT 1C	JOHNSON MISSION	108 MISSION MISSION	66202 APT 1C	-94.6662	39.03423												
5244 FOXRIDGE DR APT 1D	JOHNSON MISSION	108 MISSION MISSION	66202 APT 1D	-94.6663	39.03421												
5244 FOXRIDGE DR APT 2A	JOHNSON MISSION	108 MISSION MISSION	66202 APT 2A	-94.6663	39.03428												
5244 FOXRIDGE DR APT 2B	JOHNSON MISSION	108 MISSION MISSION	66202 APT 2B	-94.6663	39.03424												
5244 FOXRIDGE DR APT 2C	JOHNSON MISSION	108 MISSION MISSION	66202 APT 2C	-94.6663	39.03422												
5244 FOXRIDGE DR APT 2D	JOHNSON MISSION	108 MISSION MISSION	66202 APT 2D	-94.6663	39.0342												
5244 FOXRIDGE DR APT 3A	JOHNSON MISSION	108 MISSION MISSION	66202 APT 3A	-94.6664	39.03427												
5244 FOXRIDGE DR APT 3B	JOHNSON MISSION	108 MISSION MISSION	66202 APT 3B	-94.6664	39.03422												
5245 FOSTER ST	JOHNSON OVERLANE	112 OVERLANI OVERLANI	66202	-94.672	39.03349												
5250 FOXRIDGE DR	JOHNSON MISSION	108 MISSION MISSION	66202	-94.6665	39.0341												
5280 EOXRIDGE DR Sheet1	IOHNSON MISSION	108 MISSION MISSION	66202	-94.6668	39.03349												
Sheet1 🕀								•									

MARPLOT Basemap address points exported to an EXCEL spreadsheet

<u>ALOHA</u>

- 1. Determine which, if any, of these materials can be modeled using ALOHA.
 - a. For the first ALOHA scenario, use Acetic Acid
 - b. Model for the Toxic, Vapor Cloud Explosion, and BLEVE zones
 - c. Repeat for the other substances
- 2. Use the following weather data:

ATMOSPHERIC DATA: (MANUAL INPUT OF DATA)


Wind: 14 miles/hour from NNW at 3 meters

Ground Roughness: open country Cloud Cover: 0 tenths

Air Temperature: 72° F Stability Class: D

No Inversion Height Relative Humidity: 47%

- 3. Use the following Tank dimensions for all 3 products:
 - a. Horizontal cylinder; 30 feet long, 8000 gallon capacity

b. Liquid product at ambient temperature

Chemical State and Temperature	
Enter state of the chemical:	Help
• Tank contains liquid	
C Tank contains gas only	
O Unknown	
Enter the temperature within the tank:	Help
Chemical stored at ambient temperature	
C Chemical stored at 72 degrees	● F ⊂ C
	_
OK Cancel	

c. Tank is 90% full

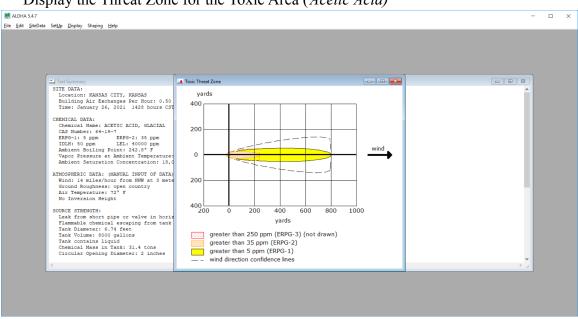
Liquid Mass or Volume									
Enter the mass in the tank OR volume of the liquid The mass in the tank is: 31.4 C pounds The mass in the tank is: 131.4 C tons(2,000 lbs)									
	⊂ kilograms								
	0R								
Enter liquid level OR volu	Ime The liquid Volume is: 7,199	 gallons cubic feet liters cubic meters 							
	90 % full by volu	ıme							
ОК	Cancel	Help							

d. Tank is leaking but not burning

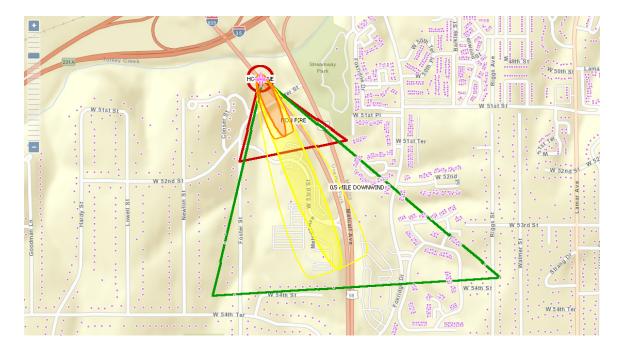
Scenario: Tank containing an unpressurized flammable liquid.
Type of Tank Failure:
• Leaking tank, chemical is not burning and forms an evaporating puddle
$^{\circ}$ Leaking tank, chemical is burning and forms a pool fire
\cap BLEVE, tank explodes and chemical burns in a fireball
Potential hazards from flammable chemical which is not burning as it leaks from tank:
- Downwind toxic effects
- Vapor cloud flash fire
- Overpressure (blast force) from vapor cloud explosion
QK <u>Cancel</u> <u>H</u> elp

e. Hole size is 2" short pipe or valve

Area and Type of Leak	and the second se					
Select the shape that best represents the shape of the opening through which the pollutant is exiting						
(-diameter	width — length — >					
Circular opening O	Rectangular opening					
Opening diameter: 2	 Inches C feet C centimeters C meters 					
ls leak through a hole or short pipe/valve?						
C Hole 📀	Short pipe/valve					
OK	Help					

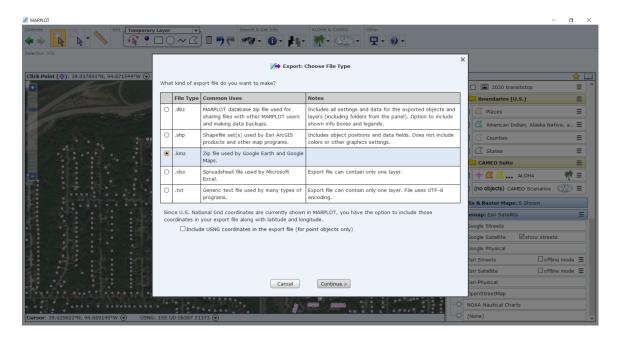

f. Leak is located on the bottom of the tank

Height of the Tank Opening	- 10-
liq.level	▲ The bottom of the leak is:
	OR ▼ 0 % of the way to the top of the tank
ОК	Cancel Help

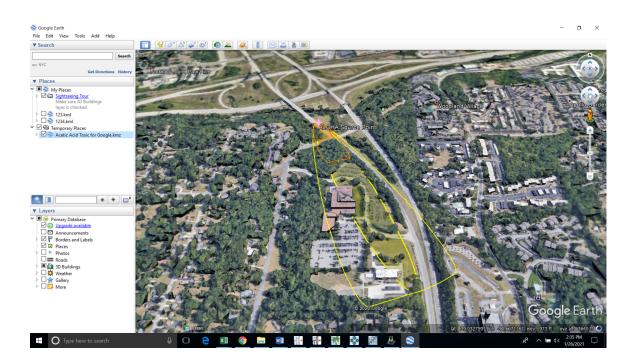

g. Default for Soil Type and Ground Temp; Puddle Size is Unknown

Puddle Parameters	
Select ground type Help	
Default soil (select this if unknown)	
C Concrete	
Sandy dry soil	
O Moist sandy soil	
○ Water	
Input ground temperature Help	
• Use air temperature (select this if unknown)	
⊂ Ground temperature is 72 deg. ◦ F	⊂ C
Input maximum puddle diameter or area Help	1
• Unknown	− ⊙ft
O Maximum diameter	⊖yds
C Maximum area IS	C meters
OK	el

- 4. SOURCE STRENGTH:
- 5. Leak from short pipe or valve in horizontal cylindrical tank
- 6. Flammable chemical escaping from tank (not burning)
- 7. Tank Diameter: 6.74 feet Tank Length: 30 feet
- 8. Tank Volume: 8000 gallons
- 9. Tank contains liquid Internal Temperature: 72° F
- 10. Chemical Mass in Tank: 31.4 tons Tank is 90% full
- 11. Circular Opening Diameter: 2 inches
- 12. Opening is 0 feet from tank bottom
- 13. Ground Type: Default soil
- 14. Ground Temperature: equal to ambient
- 15. Max Puddle Diameter: Unknown
- 16. Release Duration: ALOHA limited the duration to 1 hour
- 17. Max Average Sustained Release Rate: 56.9 pounds/min
- 18. (averaged over a minute or more)
- 19. Total Amount Released: 2,018 pounds
- 20. Note: The chemical escaped as a liquid and formed an evaporating puddle.
- 21. The puddle spread to a diameter of 40 yards.



Display the Threat Zone for the Toxic Area (Acetic Acid)



- 22. Select the ALOHA Layer menu and choose Expport Layer
- 23. Select mz as the file type

- 24. name the file "Acetic Acid Toxic for Google"; Save the kmz file
- 25. navigate to the save kmz file and double click on it, this should automatically open Google Earth and display the Threat Zone

- 26. Repeat the above processes for the Isopropanol and the Hydrogen Peroxide resulting in the following:
 - a. Toxic Threat Zone for each product
 - b. VCE Threat Zone for each product
 - c. All Toxic and VCE Threat Zones displayed on both MARPLOT and Google Earth

ANSWERS:

UN # 1219	Isopropanol
UN # 2014	Hydrogen Peroxide, Aqueous Solution
UN # 2789	Acetic Acid, Glacial

CAMEO Chemicals

- 1. Use CAMEO Chemicals to gather information for the various chemicals. (CAMEO Companion pages 31-34)
 - a. Are these materials liquid, solid, or gas? <u>ALL ARE LIQUIDS</u>
 - b. Is it likely that these materials are carried in Liquid Tankers or Pressurized Tankers? <u>ALL WOULD LIKELY SHIP IN LIQUID TANKERS</u>
 - c. What are the primary hazards associated with these materials? <u>ISOPROPANOL: FLAMMABLE</u> <u>HYDROGEN PEROXIDE: HEALTH AND OXIDIZER</u> <u>ACETIC ACID: TOXIC AND FLAMMABLE</u>
- 2. Use the CAMEO Chemicals "Predict Reactivity" module to evaluate the potential reactive hazards for this incident. (CAMEO Companion pages 34-35)

	ACETIC ACID, GLACIAL				
ISOPROPANOL	Heat generation Intense reaction	ISOPROPANOL			
HYDROGEN PEROXIDE, AQUEOUS SOLUTION, WITH NOT LESS THAN 20% BUT NOT MORE THAN 60% HYDROGEN PEROXIDE (STABILIZED AS NECESSARY)	Combustion-enh ancing gas Corrosive Explosive Flammable Flammable gas Heat generation Toxic Toxic gas	Explosive Flammable Heat generation Toxic gas			

 Are any of these 3 materials incompatible with Gasoline, Diesel Fuel, Hydraulic Fluid, or Water? Show the MyChemicals List screenshot along with the Reactivity Worksheet screenshot. <u>THE ACETIC ACID IS POTENTIALLY</u> <u>WATER-REACTIVE. THE HYDROGEN PEROXIDE POTENTIALLY</u> <u>REACTS WITH ANY OF THE OTHER MATERIALS.</u>

MyChemicals

MyChemicals Collection

1. ACETIC ACID, GLACIAL

2.	ISOPROPANOL	Remove
3.	<u>HYDROGEN PEROXIDE, AQUEOUS SOLUTION, WITH NOT LESS THAN 20% BUT NOT MORE</u> THAN 60% HYDROGEN PEROXIDE (STABILIZED AS NECESSARY)	Remove
4.	<u>Water</u>	Remove
5.	GASOLINE	Remove
6.	FUEL OIL, [DIESEL]	Remove
7.	BRAKE FLUID, HYDRAULIC	Remove

Add Water Add Reactive Group

	ACETIC ACID, GLACIAL				
ISOPROPANOL	Heat generation Intense reaction	ISOPROPANOL			
HYDROGEN PEROXIDE, AQUEOUS SOLUTION, WITH NOT LESS THAN 20% BUT NOT MORE THAN 60% HYDROGEN PEROXIDE (STABILIZED AS NECESSARY)	Combustion- enhancing gas Corrosive Explosive Flammable Flammable gas Heat generation Toxic Toxic gas	Explosive Flammable Heat generation Toxic gas	HYDROGEN PEROXIDE, AQUEOUS SOLUTION, WITH NOT LESS THAN 20% BUT NOT MORE THAN 60% HYDROGEN PEROXIDE (STABILIZED AS NECESSARY)		
Water	Corrosive		Combustion-en hancing gas Corrosive Heat generation Intense reaction Toxic gas	Water	
GASOLINE			Explosive Flammable Heat generation Nonflammable, nontoxic gas Toxic gas		GASOLINE

FUEL OIL, [DIESEL]	Explosive Flammable Heat generation Nonflammable, nontoxic gas Toxic gas		FUEL OIL, [DIESEL]
BRAKE FLUID, HYDRAULIC	Explosive Flammable Heat generation Nonflammable, nontoxic gas Toxic gas		

 Determine the Initial Isolation Zone and Evacuation distances appropriate for this scenario. (CAMEO Companion pages 31-34) <u>THE ERG PROTECTIVE</u> <u>DISTANCES ARE NOW INCLUDED ON THE CAMEO CHEMICALS</u> <u>"DATASHEET". SCROLL DOWN THE DATASHEET TO THE "RESPONSE</u> <u>RECOMMENDATIONS" SECTION TO VIEW THE ERG-REFERENCED</u> <u>INFORMATION.</u>

ACETIC ACID DATASHEET EXCERPT

Response Recommendations

What is this information?

Isolation and Evacuation

Excerpt from <u>GUIDE 132</u> [Flammable Liquids - Corrosive]:

As an immediate precautionary measure, isolate spill or leak area for at least 50 meters (150 feet) in all directions.

SPILL: Increase, in the downwind direction, as necessary, the isolation distance shown above.

FIRE: If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions. (ERG, 2012)

ISOPROPANOL DATASHEET EXCERPT

Response Recommendations

What is this information? 🕨

Isolation and Evacuation

Excerpt from GUIDE 129 [Flammable Liquids (Polar / Water-Miscible / Noxious)]:

As an immediate precautionary measure, isolate spill or leak area for at least 50 meters (150 feet) in all directions.

LARGE SPILL: Consider initial downwind evacuation for at least 300 meters (1000 feet).

FIRE: If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions. (ERG, 2012)

HYDROGEN PEROXIDE DATASHEET EXCERPT

Response Recommendations

What is this information?

Isolation and Evacuation

Excerpt from GUIDE 140 [Oxidizers]:

As an immediate precautionary measure, isolate spill or leak area in all directions for at least 50 meters (150 feet) for liquids and at least 25 meters (75 feet) for solids.

LARGE SPILL: Consider initial downwind evacuation for at least 100 meters (330 feet).

FIRE: If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions. (ERG, 2012)

FROM THE ABOVE DATASHEET INFORMATION, THE LARGEST RECOMMENDED ISOLATION ZONE IS 150 FEET, LARGEST DOWNWIND EVACUATION AREA IS 1000 FEET. IF THERE IS A POTENTIAL FOR "FIRE", EVACUATION AREA OF ½ MILE IS SUGGESTED.

5. Are any of these 3 materials able to be modeled using ALOHA? <u>ALL 3</u> <u>MATERIALS CAN BE MODELED USING ALOHA, AS EVIDENCED BY</u> <u>THE "ALOHA ICON" DISPLAYED NEXT TO THE CAS NUMBER ON</u> <u>EACH DATASHEET.</u>

CAS Number	CAS Number	CAS Number	
64-19-7 🎊	67-63-0 🎊	7722-84-1 🌃	