Big Red Math Competition

 Proof RoundINSTRUCTIONS - PLEASE READ THIS NOW

- Show your work. To receive full credit, your answers must be neatly written and logically organized.
- Simplification. Please simplify all answers as much as possible. For example, $\frac{\cos \pi}{\frac{1}{2}}$ can be simplified to -2 .
- You have 1 hour to complete this exam.
- This is a closed book exam. You are NOT allowed to use a calculator, computer, notes, or any other resources.

Please sign below to indicate that you have read and agree to these instructions.

Signature of Student:

Please don't mark anything below on the page, it's for official use only.

Grader 1:	Grader 2:	Grader 3:
1.	1. _ـ_ / 10_	1.
2.	2.	2.
3. \qquad / 20 \qquad	3. \qquad / 20 \qquad	3.
4. \qquad / 30 \qquad	4. \qquad 1 30 \qquad	4. \qquad / 30 \qquad
Total: ___ / 80 _	Total: ___ / 80 _	Total: ___ / 80 _

Question 1. (10 points) Let x, y, z be positive real numbers. Prove that

$$
\sqrt{(z+x)(z+y)}-z \geq \sqrt{x y}
$$

Question 2. (20 points) This season, there are $3 n+1$ teams in the MLS (Major League Soccer). As of now, each team has played exactly $n-1$ matches. Prove that there exist 4 teams such that none of the 4 teams have faced each other.

This page intentionally left blank

Question 3. (20 points) Find all positive integer pairs (m, n) such that $m-n$ is a positive prime number and $m n$ is a perfect square. Justify your answer.

This page intentionally left blank

Question 4. (30 points) Let square $A B C D$ and circle Ω be on the same plane, and $A A^{\prime}$, $B B^{\prime}, C C^{\prime}, D D^{\prime}$ be tangents to Ω. Let $W X Y Z$ be a convex quadrilateral with side lengths $W X=A A^{\prime}, X Y=B B^{\prime}, Y Z=C C^{\prime}$ and $Z W=D D^{\prime}$. If $W X Y Z$ has an inscribed circle, prove that the diagonals $W Y$ and $X Z$ are perpendicular to each other.

This page intentionally left blank

