

Big Red Math Individual F		Name:Student ID:		
		10/26/2024		
simplified to −2. • You have 2 hour	e and Student ID. Please simplify all ans to complete this	swers as much as possib	ble. For example, $\frac{\cos \pi}{\frac{1}{2}}$ can be alculator, computer, notes, or	
Please sign below Signature, Print Nan	-	ou have read and ag	ree to these instructions.	
Answer Sheet:				
1	5	9	13	
2	6	_ 10	14	
3	7	_ 11	15	
4	8	12	16	
Please don't	mark anything bel	low on the page, it's	for official use only.	
Grader 1 Name:	Grader 2	Name:	Grader 3 Name:	
Tally:	Tally:	T	Tally:	

Score:

Score:

Score:

- 1. Define the sequence $\{a_n\}_{n\geq 0}$ such that $a_0=a_1=2024^{2024!}$ and $a_n=\frac{a_{n-1}}{a_{n-2}}$ for all integers $n\geq 2$. Compute a_{2024} .
- 2. Two 3×3 squares are placed next to each other so that they share an edge of length 1 as shown in the figure below. How many ways can we cover all 18 squares with 2×1 tiles?

- 3. A fair 10-sided die with sides labeled 1, 2, ..., 10 is rolled three times. What is the probability that the median of these three rolls is 3?
- 4. Given an isosceles trapezoid ABCD with $AB \parallel CD$, let W, X, Y, Z be points inside ABCD such that WXAB and YZCD are isosceles trapezoids that do not overlap each other and with $WX \parallel AB$ and $YZ \parallel CD$. Suppose that AB + WX = CD + YZ = 20 and ZZ' = 4 where Z' is the point on line WX such that $ZZ' \perp WX$. Given that the height of trapezoid ABCD is 29, compute the combined area of trapezoids WXAB and YZCD.

- 5. Alex has 42 pairwise distinct positive integers. He takes each integer and computes its remainder when divided by 6. Of these 42 remainders, exactly 7 of them evaluate to 0, exactly 7 of them evaluate to 1, exactly 7 of them evaluate to 2, and so on. Of the original 42 integers that Alex started with, what is the maximum number of prime numbers could he have had?
- 6. Bradley can perform one of two operations on an integer: he can either square it or add 1 to it. If Bradley starts with the integer 1, what is the minimum number of operations that Bradley needs to perform to reach exactly 1000.
- 7. Let S(n) denote the sum of all digits of n in base 10. Find the number of integers $1 \le n \le 2024$ such that 11 divides n S(n).
- 8. Let $\triangle ABC$ be a right triangle such that $\angle ABC = 90^{\circ}$ and the altitude from B onto AC has length $\sqrt{6}$. If AB^2 and BC^2 are both integers, find the maximum possible area of $\triangle ABC$.
- 9. Find the number of permutations a_1, a_2, \ldots, a_{20} of the integers $1, 2, \ldots, 20$ such that for all integers $1 \le i, j \le 20$, if i divides j, then a_i divides a_j .

- 10. Let ABCD be a rhombus with side length 4. Suppose the circumcircle of $\triangle ABD$ intersects line segment CD at P. Given that CP = 1, find the area of ABCD.
- 11. Let $S = \{1, 2, ..., 10\}$. Suppose $f : S \to S$ is a function chosen uniformly at random among all possible functions from S to S. Find the probability that f(f(f(f(1)))) = 1.
- 12. Let n=2024 and $\omega=e^{2\pi i/n}$. For each integer $1 \le k \le n$, let S_k be the set of the first n positive integers with the integer k removed. (For example, $S_3=\{1,2,4,5,6,\ldots,n\}$.) Also, for each integer $1 \le k \le n$, define

$$a_k = \prod_{j \in S_k} (2 + \omega^j)$$

where the product is taken over all values $j \in S_k$. Compute $a_1 + a_2 + \cdots + a_n$.

13. Find the number of injective functions $f: \{1, 2, \dots, 2024\} \rightarrow \{1, 2, \dots, 2024\}$ such that

$$f(x+y) \equiv f(x) + f(y) \pmod{2024}$$

for all integers $1 \le x, y \le 2024$.

(For non-empty sets X and Y, we say a function $f: X \to Y$ is injective if $f(x) \neq f(x')$ for all distinct $x, x' \in X$.)

- 14. Jiming flips 50 coins and records the resulting sequence of coin flips. Let a be the number of times he flips two heads in a row and b be the number of times he flips two tails in a row. For example, the sequence TTTHHHTT would yield a = 2 and b = 3. What is the expected value of the product ab?
- 15. Let ABCDEF be a regular hexagon with side length 1, and let W be the midpoint of side AB. Suppose X, Y, and Z are points on sides BC, DE, and FA, respectively, such that W, X, and Z are not collinear. Find the minimum possible value of the perimeter of quadrilateral WXYZ.
- 16. Let n = 2024. Given a point $X = (x_1, ..., x_n) \in \mathbb{R}^n$ and an integer r > 0, Alex can r-amplify the point X to get a new point $X' \in \mathbb{R}^n$ given by

$$X' = (x_1, rx_1 + x_2, r^2x_1 + rx_2 + x_3, \dots, r^{n-1}x_1 + r^{n-2}x_2 + \dots + x_n)$$

where the k-th coordinate of X' is $\sum_{i=1}^{k} r^{k-i} x_i$.

Suppose Alex starts with the point $A_0 = (a_0, a_1, \dots, a_{n-1}) \in \mathbb{R}^n$ where

$$a_0 = 1,$$
 $a_{2k-1} = 0,$ $a_{2k} = \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} (-1)^k i_1^2 i_2^2 \cdots i_k^2$

for each integer $k \geq 1$. (The summation is taken over all integers $1 \leq i_1 < i_2 \cdots < i_k \leq n$.) Alex first 1-amplifies A_0 to get a new point A_1 . He then 2-amplifies A_1 to get a new point A_2 . He continues this process until he n-amplifies A_{n-1} to get a new point A_n . Compute the sum of the n coordinates of A_n .