

Big Red Math Compe Proof Round	tition Name: Student ID: 10/26/2024	
 INSTRUCTIONS — PLEA Show your work. To receive logically organized. Simplification. Please simple can be simplified to −2. You have 1 hour to comple This is a closed book exam. notes, or any other resources. Please sign below to indicate tions. 	re full credit, your answers lify all answers as much as ete this exam. You are NOT allowed to	must be neatly written and spossible. For example, $\frac{\cos \pi}{\frac{1}{2}}$ use a calculator, computer,
Signature of Student: Please don't mark anythi	ing below on the page,	it's for official use only.
Grader 1: G	brader 2:	Grader 3:
m / 1 / 00 m	1.4.1 / 00	TD-4-1 / 00

1. Let $\triangle ABC$ be a non-degenerate triangle. Suppose there exists a point P on side BC such that AP splits $\triangle ABC$ into two non-degenerate triangles that are both similar to $\triangle ABC$. Prove that $\angle BAC = 90^{\circ}$.

2. Prove that if x, y, z are integers such that

$$5x^2 + 2y^2 - z^2 = 2xy + 2yz,$$

then
$$x = y = z = 0$$
.

3. Let $n \geq 3$ be an integer. The integers from 1 to n, inclusive, are written around a circle in some order. We say an unordered pair of integers on the circle is *Cornellian* if they don't occupy neighboring positions and at least one of the two arcs they enclose contains exclusively integers that are smaller than both of the pair. For example, suppose n=6 and the integers are placed around the circle in the following order: 1, 4, 3, 2, 5, 6. Then the pair $\{4,5\}$ is *Cornellian* because the arc between 4 and 5 containing 2 and 3 only contains integers that are less than both 4 and 5.

For each integer $n \geq 3$, find all integers $k \geq 0$ such that there exists a configuration of the integers 1 to n, inclusive, on the circle with exactly k Cornellian pairs.

4. Let $\{x_n\}_{n\geq 0}$ be a sequence given by $x_0=0,\,x_1=1,$ and

$$x_{n+2} = x_n + \sqrt{21x_{n+1}^2 + 4}$$

for all integers $n \ge 0$. Show that all terms of the sequence are integers.