ECOLOGY OF EMERGING TICK DISEASE VECTO

Amanda Whitlow

Entomology Department

WHY ARE WE INTERESTED IN TICKS?

- Capable of transmitting diseases such as: Lyme Disease, Rocky Mountain Spotted Fever, Anaplasmosis, Ehrlichiosis, Babesiosis, Powassan, etc.
 - Co-infections: Ticks can carry more than l pathogen (risk for humans or animals to gain multiple infections from a single tick bite)

PUBLIC & ANIMAL HEALTH CONCERN

Each dot represents a reported case in the county of residence

Eisen R. Emerging tickborne diseases. CDC Public Health Grand Rounds, March 21, 2017. www.cdc.gov/cdcgrandrounds/archives/2017/March2017.htm. Accessed June 7, 2017.

LYME DISEASE IN VIRGINIA HOTSPOT IN SWVA

Smyth

2016 Virginia Lyme Disease Cases per 100,000 Population 0.00 0.01 - 5.00 5.01 - 10.00 hens Do Falls Charets 10.01 - 25.00 25.01 - 50.00 50.01 - 100.00 Rockingham maga_ Switord 100.01 - 469.00 Suctingham. Apparation Bachwein

Pitayhana

Halfax.

Lunenburg

Mecklerburg

Brunswick

EMERGENCE OF NEW TICKS/NEW PATHOGENS

- •We are seeing **new invasive species** of ticks in the USA (e.g. *Haemaphysalis longicornis*)
- •New disease pathogens could shift in the region (e.g. Powassan)

IMPORTANT VECTORS FOUND IN VA

Dermacentor variabilis (American Dog Tick)

Amblyomma americanum (Lone Star Tick)

Ixodes scapularis (Black-legged Tick)

WHAT IS NOT KNOWN ABOUT TICKS HERE

- 900 species of ticks 90 in the USA
 - 17 tick species in VA
 - What is their distribution?
 - What is the population structure of tick communities across varying habitat types?
 - Association of pathogens?
- Ticks have 4 life stages: Egg, Larva, Nymph and Adult
 - When are the different life stages peaking?
 - Influence of seasonality on pathogen transmission?
- Different species predominate at different times of year

OBJECTIVES

- Determine species abundance and overall diversity across varying habitat types
- 2. Assess seasonality corresponding to different life stages
- 3. Screen collected tick specimens for tick-borne pathogens
 - Temporal/spatial trends in pathogen prevalence

CURRENT THINKING: HABITAT PREFERENCES OF TICKS IN THE USA

- Dermacentor variabilis
 - Grassy meadows, young forests, roadways and trails
- Amblyomma americanum
 - Woodlands with dense underbrush, grassy meadows, young forests
- Ixodes scapularis
 - Deciduous forests and adjacent brush or grass
- Haemaphysalis longicornis
 - Can be found in open areas (grass/meadows/wood edge).

METHODS

- 8 counties
 - Per county: 1 pasture site, 1 urban site, and 1 forest site
 - 24 total sites
- Each site was dragged for 30 minutes approximately every 2 weeks

Drag was inspected approximately every few minutes / 10 yds

SITE EXAMPLES

UrbanWithers Park
Wythe County

Forest
Bartlett Crowe
Field Station
Washington
County

Pasture
Kentland Farm
Montgomery
County

VIRGINIA TECH.

GIS SURVEY APPLICATION DEVELOPMENT

urveillance 🚜 😑		
Birds		
Bears		
Cats		
Rabbits		
Cattle		
Preliminary Count (Nymph) *		
Preliminary Count (Adult) *		

X 181 ⊤	ick Identification 🚜 💻	
Identification of ticks collected in predetermined sites along I-81 to the species level		
Date Collected		
Date Date		
Tick Identification	n Number	
Site Type		
Urban	Forest	
Pasture		
Lifestage		
Larva	Nymph	
Adult		
Gender		
Male	Female	
Other		

DISTRIBUTION OF TICKS

Tick Population Structure in Relation to Habitat Type

SPECIES DIVERSITY

Pasture Urban **Forest**

- Amblyomma americanum
- Haem aphysalis leporispalustris Haem aphysalis longicornis
- Ixodes scapularis

- Dermacentor variabilis
- kodes spinipalpus

Shannon's Diversity Index (H')

- Forest: 1.194
- Pasture: 0.372
- Urban: 1.046

Equitability (E_{H})

- Forest: 0.67
- Pasture: 0.27
- Urban: 0.75

SEASONALITY

- Amblyomma americanum
 - Larva peaks in August-September

- Dermacentor variabilis
 - Adult peaks in May
- Haemaphysalis longicornis
 - Overlapping presence of larva, nymphs, and adults
- Ixodes scapularis
 - Larva in October and November
 - Nymphs in the spring and fall
 - Adults in November

DISCUSSION

OUTCOMES

Understand Tick populations

- Preliminary data suggests:
 - a) Ixodes scapularis is predominantly in Forest habitat
 - b) Haemaphysalis longicornis is predominantly in Pasture habitat
- Seasonality:
 - a) Overlapping of life stages in Haemaphysalis longicornis
 - b) Ixodes nymph activity in the spring and fall

EMERGENCE OF A NEW TICK & POTENTIAL VECTOR

Haemaphysalis longicornis (Asian Longhorned tick)

- Identified across 12 states
 - 30 confirmed counties in VA (USDA 2019)
- Parthogenic
- Wide host range
- Confirmed identification of *Theileria orientalis* in *H. longicornis* found in the U.S. (Oakes et al. 2019)
- Agricultural concern Infests livestock to point of anemia!
- Abroad it transmits Powassan, SFTS(severe fever with thrombocytopenia syndrome), Anaplasma, Ehrlichia, Babesia spp.)
- As yet, we don't know human threat here

AMBLYOMMA MACULATUM (GULF COAST TICK) RANGE EXPANDING INTO THE MID-ATLANTIC REGION

Amblyomma maculatum in the United States

Adult Female

Amblyomma maculatum in the United States

- Habitat: Open mowed grassy habitat.
 - SE Virginia
- Vector for <u>Spotted Fever Rickettsiosis</u> (Rickettsia parkeri – bacteria)
- Escar-associated febrile illness

CONFOUNDING FACTORS

- Site selection
- Uneven sampling between habitat types
 - Incomplete season of sampling
- Sampling Efforts- weight data accordingly

FUTURE DIRECTION

- Continuation of site sampling in 2020
 - Inclusion of Floyd and Giles County
- Screen all collected ticks for pathogens to establish prevalence
- Establishment of baseline data of tick populations in the region

SIGNIFICANCE OF SURVEILLANCE & ESTABLISHING A BASELINE

- So we're aware of changes
 - New ticks
 - Novel pathogen emergence
 - Seasonal trends
 - Current distribution and abundance

ACKNOWLEDGEMENTS

- Dr. Gillian Eastwood
- Natalie Wickenkamp
- Virginia Tech Department of Entomology
 - Alwood Society
 - Hill Travel Scholarship

Questions?

Amanda Whitlow
amandamw19@vt.edu
Office: 202 Price Hall

EXTRA SLIDES

POWASSAN VIRUS

Powassan virus neuroinvasive disease cases reported by state of residence, 2009–2018

Powassan virus neuroinvasive disease average annual incidence by county of residence, 2009–2018

- Most cases have occurred in the northeastern and Great Lakes regions of the United States from the late spring through mid-fall when ticks are most active.
- Can lead to sever disease including encephalitis and meningitis
- Approximately 1 out of 10 people with severe disease die.

CDC REPORTED CASES OF LYME DISEASE

1 dot placed randomly within county of residence for each confirmed case

2018

2012

CDC SPOTTED FEVER RICKETTSIOSIS. REPORTED CASES

LIFE CYCLE OF IXODES SCHPULARIS TICK

