

House of 1,000 Corpses Pesticide Resistance Testing in Suffolk, VA

Karen Akaratovic, Biologist Suffolk Mosquito Control kakaratovic@suffolkva.us

Contents

2021 Suffolk In-house Pesticide Resistance Testing Results (CDC Bottle Bioassay) Cornell (NEVBD) Pesticide Resistance Testing Results with Inhibitors (CDC Bottle Bioassay)

NORTHEAST REGIONAL CENTER FOR EXCELLENCE IN VECTOR-BORNE DISEASES

Exploratory Testing to Determine Optimal Health & Survivability of *Cx. pipiens* Future Outlook for Pesticide Resistance Testing in Suffolk

Suffolk In-house Resistance Testing

Aedes albopictus

In-house Testing Results –

Chlorpyrifos, Permethrin, Sumithrin

• End of Season 2020 – mortality at diagnostic time

Chemical Tested	Zone #1 (Downtown 1)	Zone #2 (Downtown 3+4)
Chlorpyrifos	100%	100%
Permethrin	n/a	100%
Sumithrin	n/a	100%

3 failed tests due to high death in control bottles – depleted stock

• End of Season 2021 – mortality at diagnostic time

Chemical Tested	Zone #1 (Downtown 1)	Zone #2 (Downtown 3+4)
Chlorpyrifos	100%	100%
Permethrin	96.97%*	100%
Sumithrin	100%	100%

*indicates may be developing resistance

Culex pipiens complex

In-house Testing Results – Chlorpyrifos, Permethrin, Sumethrin

• Mortalities at diagnostic time

Chei Tes	mical sted	Zone #1 (Downtown 1)	Zone #2 (Downtown 3+4)
Chlor	pyrifos	30 - 74%	Test #1: 38 - 82% Test #2: 54 - 91%
Perm	ethrin	Test #1: failed Test #2: 31%	2 failed tests
Sum	ithrin	2 failed tests	2 failed tests

*Range exists for Chlorpyrifos results where diagnostic times vary for *Cx. pipiens* and *Cx. quinquefasciatus* (unable to morphologically separate in Suffolk)

*7 test failures all due to high death in control bottles – unsure of exact cause(s)

Submissions to NEVBD-Cornell for Resistance Testing

Culex pipiens complex

Cornell-NEVBD Results -

Permethrin and Sumithrin with inhibitors Piperonyl butoxide (PBO) and Diethyl maleate (DM) + Chlorpyrifos with DM

- Sent 40 egg rafts (20/zone)
- Performed 16 tests: greater success than Suffolk in-house (11 tests: 4 successful, 7 failures)
- High resistance to pyrethroids
- Low resistance to organophosphate
- Increase in mortality with addition of <u>PBO</u> (except Sumithrin in DT1 zone) indicates resistance to pyrethroids is due to metabolic mechanism related to oxidase activity
- DM did not have an effect on either chemical class

Exploratory Testing to Determine Optimal Conditions for *Cx. pipiens* Health and Survivability

Preliminary data from 4 factors potentially affecting survival

Egg raft/Larvae Crowding

2 replicates 3 : 5 : 7 rafts per larval tray

Adult Sugar-feeding Options 3 replicates sucrose-soaked cotton balls sucrose wicked via paper towel suspended sugar cubes

Pupal Separation Techniques 4 replicates

Ice water (Kauffman et al. 2017)

Pipette (turkey baster) removal

Pupae/Adult Crowding

4 replicates

300 : 600 pupae per rearing cup/dorm

Egg raft/Larval Crowding

Question: Are we putting too many egg rafts in a tray resulting in overcrowding/malnutrition and subsequent low pupal growth rates?

Methods

- Field-collected egg rafts*
- Verified *Cx. pipiens* as 1st instar
- 6 trays** total : 2 trays each with 3, 5, and 7 egg rafts
- 2 L of filtered tap water
- Food: 200 mL of liver powder-water mix and pinch of fish food flakes on Day 1, 3, 6***
- Kept at room temperature (approx. 24°C)****

Results

Expected number of pupae grew in each tray without significant differences (average of 100-200 pupae per raft)

Takeaway message: We do not need to limit to <7 rafts per tray. They have plenty of space and food to develop into pupae.

*confirm collection containers are not contaminated with pesticide **18" x 12.5" x 2"

***in the past we may have only fed 2x

****room temp questionable – office building hvac shuts off on weekends sometimes

Adult sugar-feeding options

Question: Is our sugar-feeding method suboptimal?

Methods

- 9 dorms total : 6 large (24" cube-tent), 3 small (12" cube)
- 300 pupae added to each dorm
- All dorms given water-soaked cotton pads**
- Kept at room temperature, covered with towels (wet daily) for increased humidity
- Recorded # living adults on Day 5 post-emergence
- Tested physiological health of adults by exposing to acetonecoated bottles (mimic PR controls) on Day 5

Results/Observations

- Observational notes: observed large number feeding on cup with wicking paper
- No significant difference in living adults on Day 5 between sugar methods
- No significant difference in ability to survive control bottles between sugar methods

HOWEVER...

*10% sucrose changed from previous years' 5% concentration **additional measure not used in past years

*10% sucrose-soaked cotton balls

*10% sucrose in cup wicked via paper towel

Sugar cubes suspended in mesh bag

Adult sugar-feeding results

- Significantly more living adults on Day 5 in small cubes (p = 0.01)
- Ability to survive in control bottles not significantly different (p = 0.08) <u>BUT</u>
- Difference in humidity levels : large tent (70-75%) vs. small cube (81%)
- Smaller area = easier aspiration/observed more feeding

Significant differences between dorm types: large tent vs. small cube

Takeaway message: Need larger sample size, but we feel that the smaller cubes and the cup with wicking paper is best

Pupal Separation Techniques

Goal: Assess the most efficient way to separate pupae from larvae in rearing trays without affecting survivability and adult health

Pipette (turkey baster) removal

- One by one; for higher pupae:larvae ratio, use the swirl method (above)
- Hypothesized minor mechanical stress to pupae/larvae
- can be <u>VERY</u> time-consumptive

Methods 8 trays: 4 pipetted, 4 iced into 8 dorms 300 pupae each 4 pipetted, 4 iced Water soaked cotton pads Sucrose wicking paper cup Room temp Humidity via wet towels Recorded adults on Day 5 & in control bottles

Ice water method

- Described in Kauffman et al. 2017; pupae float, larvae sink
- Hypothesized more stressful temporary (but severe?) physiological shock
- Significantly faster than manual removal, especially in situations with low pupae:larvae ratio

Pupal Separation Techniques Results

- No significant difference in living adults on Day 5
- No significant difference in ability to survive control bottles
- Significant time difference
 - Pipette 1 tray = 30 min-1 hr
 - Ice water 1 tray = 5 min

Takeaway message: Since neither method seems to affect survival, ice water is better logistics

Pupae/Adult Crowding

Goal: To determine optimal amount of pupae per cup and subsequent hatched adults per dorm to avoid overcrowding

Standard rearing cups in 12" cubes 4 dorms with 300, 4 dorms with 600 pupae in a cup Water, sucrose, temp, and humidity as previous exp Recorded adults & control bottle survival on Day 5

Pupae/Adult Crowding Results

- No significant difference in living adults on Day 5
- No significant difference in ability to survive in control bottles

Takeaway message: Up to 600 pupae in a standard rearing cup/600 adults in a 12" cube does not seem to result in overcrowding that affects hatch/survival rates

Conclusions and future directions?

Screenshot sentiments from Reynolds, Aaron (2019). Effin' birds. Berkeley, CA: Ten Speed Press. & on IG @EffinBirds

What (we think) we have learned

Notes: Small sample sizes, Temp & Humidity control is questionable

Our protocol of <u>7 egg rafts per larval tray</u> does not seem to negatively affect pupal development

Any of the 3 sugar-feeding methods is ok; however, wicking paper in cup seems best.

Smaller cubes are better than large tents.

Either method of removing pupae is ok; however, ice water method is much faster.

600 pupae per cup/dorm does not result in overcrowding - low hatch rates or poor adult health

New equipment and considerations

- Use small cube dorms
- Stick to 7 egg rafts per larval tray and 600 pupae per cup/dorm to avoid overcrowding
- Provide water pads and 10% sucrose solution in wicking cup
- Send more to NEVBD
- Purchase (hopefully) an incubator for better temperature and humidity control
- Use deionized water
- Test on Day 3 or 4 instead of 5
- Try different aspirator(s)

Thank you!

kakaratovic@suffolkva.us