

Surveillance of Pathogens in Blacklegged Ticks from Southwest Virginia

Peter Schiff Department of Biology Virginia Tech

Objective

To monitor the prevalence of tick-borne pathogens in SW Virginia with emphasis on *Ixodes scapularis* ticks (blacklegged ticks)

Introduction: Blacklegged Ticks

- *Ixodes scapularis*, Blacklegged Ticks, Deer Ticks Key features:

Female

- Anal Groove: "Frowny Face"
- Partial scutum
- Amber Abdomen

Male:

- Anal Groove: "Frowny Face"
- Complete dark scutum
- Immature Life Stages:
 - Nymphs: 8 legs; size of poppy seed
 - Larvae: 6 legs; size of pinhead; not typically found biting people
 - Both have partial scutums

TickEncounter Resource Center Ixodes scapularis (Blacklegged ticks or Deer ticks)

Introduction: Blacklegged Ticks

- Adults: Most active during cooler months
- Nymphs: Most active in spring and summer

nymp

Blacklegged Tick (Ixodes scapularis)

adult

male

adult

female

Photo credits: Centers for Disease Control and Prevention, <u>https://www.cdc.gov/lyme/transmission/blacklegged.html</u>, <u>https://www.cdc.gov/ticks/sur</u> Daniels, T. et. al. https://doi.org/10.1093/jmedent/33.1.140

- *Ixodes scapularis* ticks are vectors of multiple pathogens including ones that cause:
 - Lyme disease (Borrelia burgdorferi)
 - Tick-borne relapsing fever (Borrelia miyamotoi)
 - Anaplasmosis (Anaplasma phagocytophilum)
 - Babesiosis (Babesia microti)
 - Powassan virus

Lyme disease

- Borrelia burgdorferi
- Transmission of the bacteria from an infected tick can occur 36 to 46 hours after attachment
- Nymphs are considered the most dangerous life stage because they can be infected with *B. burgdorferi* and often go unnoticed when they bite humans due to their small size

Tick-borne relapsing fever

- Borrelia miyamotoi
- First characterized in 1995 in Japan
- Detected in *Ixodes* scapularis in the US in 2001
- First human disease cases were reported in 2011 in Russia
- Infected Ix. scapularis and Ix. pacificus ticks detected across the US

Human granulocytic anaplasmosis (HGA)

- Anaplasma phagocytophilum
- Infects neutrophils (common type of white blood cells)
- Causes febrile illness that can lead to severe disease if left untreated

Normal Neutrophil

Infected Neutrophil

Babesiosis

- Babesia microti
- Protozoa (not a bacteria) that infects red blood cells
- Associated with transmission from blood transfusions
- Has been detected in *Ix. scapularis* in Virginia (Lehane et al., 2021)

Powassan virus

- Only tick-borne North American flavivirus
- Can cause fatal encephalitis and neuroinvasive disease in humans
- 2 lineages: POWV (lineage I) and deer tick virus (lineage II)
- Associated with infections in Canada and the northeastern US
- One reported case in 2009 in Virginia

Powassan virus neuroinvasive disease cases reported by state of residence, 2011–2020

Source: ArboNET, Arboviral Diseases Branch, Centers for Disease Control and Prevention

Field Methods

 Tick collection: Flagging in edge and forest habitats

 Ticks were identified and sorted after collection and placed into a -80°C freezer for preservation of genetic material

Surveyed Counties

- **Counties Surveyed** -
 - Montgomery -
 - Floyd
 - Wythe _
- *I. scapularis* ticks are prominent in western Virginia
- Surveillance data shows that SW Virginia is a hot spot for Lyme disease and other pathogens

Molecular Methods

Extraction of DNA and RNA via QIAmp MinElute Virus Spin kit from QIAGEN

- Pathogen testing by utilizing multiplex real-time PCR assays
 - Duplex for *B. burgdorferi* and *B. miyamotoi*
 - Duplex for *A. phagocytophilum* and *Ba. microti*
 - Single-plex RT-PCR assay for Powassan virus

Results: Tick Collections Wythe county

Floyd county

7 6 5 4 4 2 2 1 0 0 0 Bb n=21 Bmiya n=21 Ba. microti n=21 Ap n=21 POWV n=21 Pathogens Tested (n=number of ticks tested)

Positive Negative

■ Positive ■ Negative

Total number of *Ixodes scapularis* tested:

- 13 larvae _
- 39 nymphs
- 308 adults -

Montgomery county

Positive Negative

Results: Borrelia spp.

Pooled Infection Rate (Maximum Likelihood Estimates)

- Floyd county
 - 30.61% for *B. burgdorferi*
 - 2.08% for *B. miyamotoi*
- Montgomery county
 - 28.17% for *B. burgdorferi*
 - 5.26% for *B. miyamotoi*
- Wythe county
 - 28.84% for *B. burgdorferi*
 - 28.84% for *B. miyamotoi*

Results: Anaplasma and Babesia

Pooled Infection Rate (Maximum Likelihood Estimates)

- Floyd county:
 - 6.06% for A. phagocytophilum
- Montgomery county:
 - 5.60% positive for *A. phagocytophilum*
- Wythe county:
 - 4.64% positive for *A. phagocytophilum*
- No positives for Babesia microti.

Results: Powassan virus

Pooled Infection Rate (Maximum Likelihood Estimates)

- Floyd county
 - 1% for Powassan virus
 - Confirmed positives were reported in Cumbie et al. 2022
- Montgomery county
 - 0.48% for Powassan virus
 - First report of Powassan virus in its tick vector in Montgomery county

Sequence confirmation of POWV positive tick from Montgomery county

 Pool of two adult male *lxodes* scapularis- only one positives

 Amplified a fragment from the TBE virus complex nonstructural protein gene (*NS*-5) in one direction using Sanger sequencing

Sequence confirmation of POWV positive tick from Montgomery county

- Analyzed raw sequences and chromatograms in Geneious Prime
- The sequence was aligned and compared to known isolates of Powassan virus using NCBI BLAST

1 Mww	million	20 MMMM	30		50 MMMM		7.0	NWW.	90 WWW	190 MWWMM	110 WWWWW	120	130		150
160	170	180	190	200	210	220	230	24	0 25	0 26	0 27	0 28 لبا	0 290) 300	310
	<u>www</u>	<u>/////////////////////////////////////</u>	<u>WWW</u>	<u> </u>	<u>www</u>	WWW	<u>//////</u>	<u>/////////////////////////////////////</u>	<u>www</u>	MMMM	WMM	MMMM	MMM /	<u>www</u>	<u>NWWW</u>
MM		MMM	WW	<u>m/m/</u>		Manno	MMM	MMMM	MMM	MMMM		MM	WWW	AMM	M
470	480	490	500	510	520	530	540	550	560	570	580	590	600	610	620
630	0 640	<u>65</u>	0 66 WWWW	0 670	680 680	69 69	0 694	<u>an y</u> r	MIN		<u> WWW</u>	<u> ann ann</u>	<u> XXXXXXXXX</u> X	WILL NE	
de	W.M.	Max x	And	Mar V	Marc	March 1									

	Hit Table Query Centric View Annotations Distances Info											
\checkmark	Bit-Score	E Value	Grade 🗸	Hit start	Hit end		Name	Description	Modified	Seque		
\checkmark	1,152.74	0	98.4%	8,076	8,767	Ç	MW001306	Powassan virus isolate POWV_D00	.06 Jan 2022 9:45 pm	693		
	1,152.74	0	98.4%	8,076	8,767	Ç.	MW001305	Powassan virus isolate POWV_D00	.06 Jan 2022 9:45 pm	693		
	1,152.74	0	98.4%	8,076	8,767	Ç.	MW001304	Powassan virus isolate POWV_D00	.06 Jan 2022 9:45 pm	693		
	1,148.23	0	98.3%	8,183	8,874	Ç.	MW665120	Powassan virus isolate RTS 245, p	06 Jan 2022 9:45 pm	693		
	1,148.23	0	98.3%	8,183	8,874	Ç.	MK309362	Powassan virus strain MeW17-228	.06 Jan 2022 9:45 pm	693		
	1,148.23	0	98.3%	8,189	8,880	Ç	MG647780	Powassan virus isolate RTS82 poly	06 Jan 2022 9:45 pm	693		
	1,148.23	0	98.3%	540	1,231	Ç)	AF310949	Powassan virus 12542 NS5 gene,	06 Jan 2022 9:45 pm	693		

Discussion

- The results display how the *I. scapularis* ticks harbor multiple pathogens of medical and veterinary importance in a high prevalence
 - High numbers of *A. phagocytophilum* and *B. burgdorferi* in this region of Montgomery county (indicated on the map with the red dot)
 - Public health concern

Discussion: Powassan virus

- Powassan virus in Montgomery county
 - Concern for public health in the region

- Increased collection at this site
 - Small mammal trapping

Future Directions

- Further monitoring and testing of pathogens in Southwest Virginia
- Testing of larger regions of SW Virginia
- Increase public awareness of Powassan virus in Montgomery county and surrounding counties

Acknowledgements

- Gillian Eastwood
- Alexandra Cumbie
- Fellow lab members and field assistants: Lindsey Faw, Ahmed Garba, Lucas Raymond, Mikayla Hearne, Rebecca Trimble, Melanie Turner
- Funding Sources: This work was supported by The Assistant Secretary of Defense for Health Affairs through the Tick-Borne Disease Research Award, endorsed by the Department of Defense, through the Congressionally Directed Medical Research Programs under Award No. W81XWH-19-TBDRP-CDA. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the Department of Defense."

Questions

Thank You!

Ways to contact me/Eastwood lab

- Email: peterfs@vt.edu
- Website: <u>https://eastwoodlab.weebly.com/</u>
- Twitter: @LabEastwood

