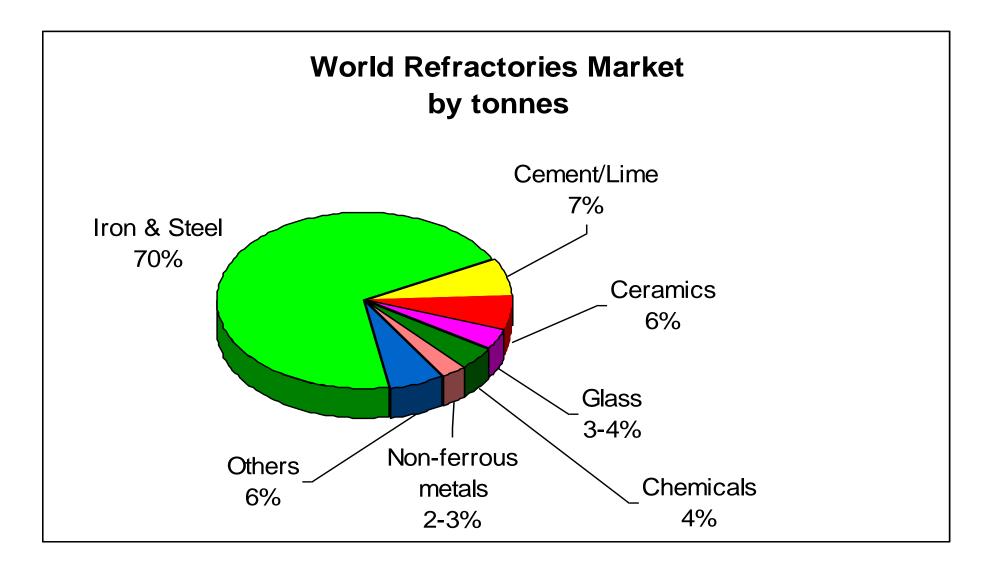


Magnesium Minerals & Markets Conference 30 May-1 June 2023, Grand Hotel Dino, Baveno, Lake Maggiore (Milan)

Refractory Grade Magnesia Market Review

Ted Dickson

TAK Industrial Mineral Consultancy



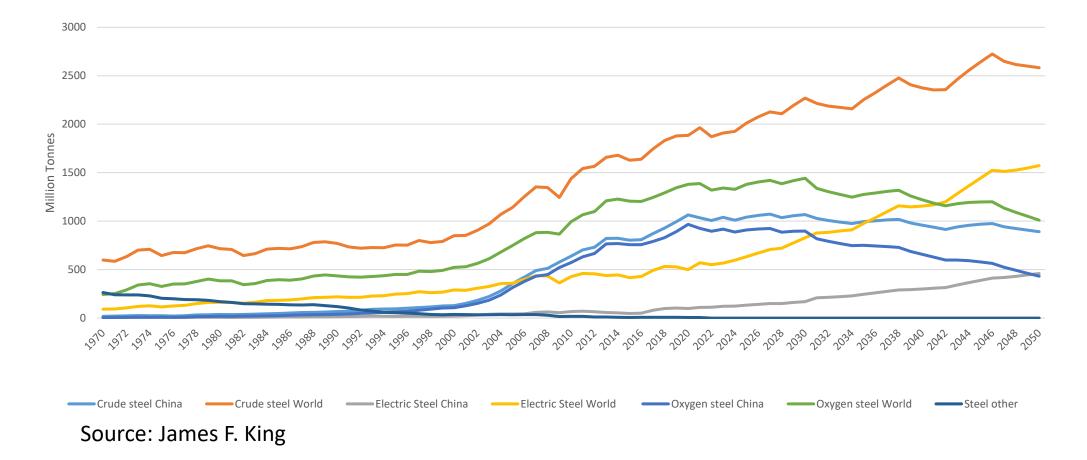
Traditional Market Drivers

Two industry sectors consume most of the magnesia refractories

- Steel Industry
 - Growth in steel production modified by reduced unit consumption of refractories per tonne of steel
- Cement & Lime
 - Very large and growing volumes of cement production but much lower unit consumption
- Ceramics, Glass, Non-Ferrous Metals, Power Generation, Chemicals plus other diverse uses smaller consumers of refractories but less important for magnesia

Total current consumption

- Estimated total consumption of refractories ~ 35 million tonnes
- Steel production on a worldwide basis in 2022 was slightly below that of 2019, before Covid, but is expected to rise above that level in 2023
- Total magnesia consumption of the order of 10 million tonnes
- Steel production of 1.87 billion tonnes in 2022
 - Roughly the same as in 2019
 - At average of about 4 kg magnesia per tonne of steel 7.5 M tonnes magnesia
- Cement production of 4.1 billion tonnes
 - At average of 0.4 kg magnesia per tonne of cement 1.6 M tonnes magnesia


Potential future trends

- Decarbonisation of steel industry
- Slower growth in steel production, notably in China
- Potential reductions in cement production as alternatives developed to reduce CO₂ emissions
- Increase in recycling of refractories
- Reducing supply chain distances

Future trends steel

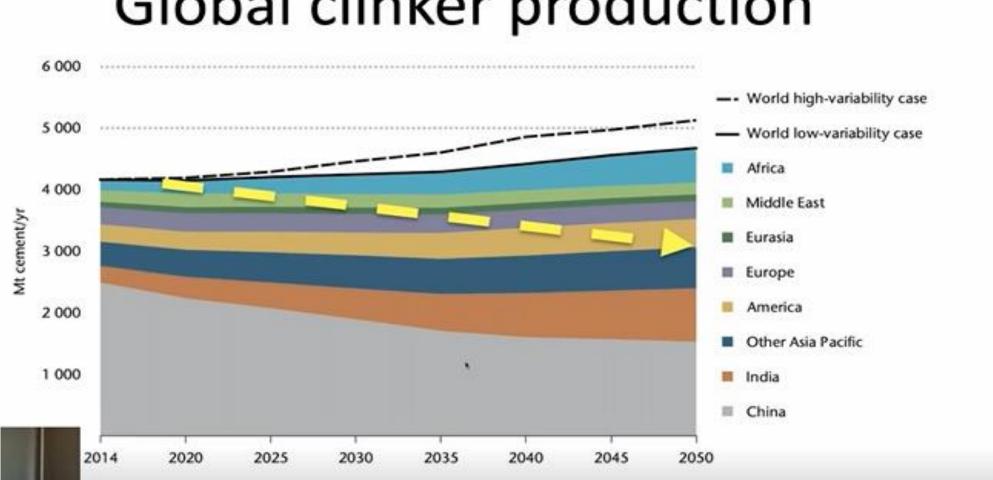
Steel Production Forecasts

Steel trends

Product	million tonnes							annual change	
	2000	2010	2020	2022	2030	2040	2050	2000-20	2020-50
Crude Steel - total	849.2	1437.2	1884.0	1871.4	2269.4	2375.3	2582.9	4.1%	1.1%
EAF steel	289.0	427.1	499.5	550.8	827.6	1154.1	1572.7	2.8%	3.9%
BOF steel	522.4	993.3	1378.7	1320.6	1441.8	1221.1	1010.2	5.0%	-1.0%
Other steel	37.9	16.9	5.8	0.0	0.0	0.0	0.0	-9.0%	
Total primary iron	617.8	1103.3	1423.8	1434.0	1606.3	1490.8	1480.1	4.3%	0.1%
Blast furnace iron	570.5	1020.7	1298.6	1290.3	1386.7	1210.8	1055.1	4.2%	-0.7%
Other pig iron	4.4	9.9	18.9	19.1	22.5	23.8	25.1	7.6%	1.0%
DRI	42.9	72.8	106.3	124.6	197.0	256.2	399.9	4.6%	4.5%
Scrap consumption	382.2	602.6	790.2	812.0	1047.7	1283.8	1578.4	3.7%	2.3%
internal steelworks scrap	86.2	130.5	195.3	215.8	192.8	136.1	108.8	4.2%	-1.9%
external new scrap	96.2	190.6	245.1	230.1	291.7	312.4	338.4	4.8%	1.1%
external old scrap	195.1	285.8	348.9	367.9	567.8	692.6	1138.8	2.9%	4.0%
Arisings of scrap	443.8	688.6	893.1	1084.4	1207.5	1232.9	1365.7	3.6%	1.4%
Collection rate	86.1%	87.5%	88.5%	74.9%	86.8%	104.1%	115.6%		

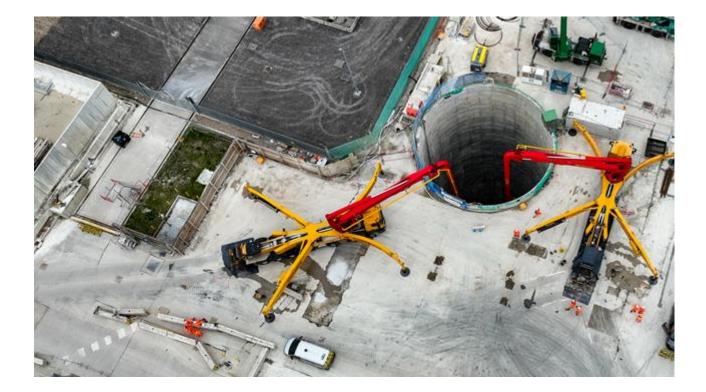
Crude Steel and Steel Metallics

Steel trends


- Total steel production to grow by about 1% per annum 2020-2050
- Much slower than previous 2 decades with reductions in China and industrialised countries offset by growth in India and developing nations.
- Still means a total increase of 700 million tonnes by 2050
- Big change in how steel will be made
- Significant growth in electric steelmaking tripling by 2050 but that still leaves over 1 billion tonnes of steel with blast furnace production of liquid iron and BOF furnaces.
- Scrap generation and DRI production not sufficient to sustain greater growth in EAF steel

How does this influence refractories consumption

- BOF steel typically uses 10kg refractories per tonne of steel in Europe 15kg in China
- EAF typically 5kg per tonne of steel
- Reduction in total refractories consumption
- Less of a factor for magnesia which is used extensively both in EAF and BOF as well as in ladles and tundishes but not in liquid iron production or transport


CementTrends

- Efforts to reduce the carbon footprint of cement are challenging with both the calcium carbonate component and the fuel releasing CO₂
- Many efforts looking at reducing the usage of cement with alternative materials
- Could lead to a reduction in total cement production
- Success at finding an economical large scale method for carbon capture or use could mitigate the reduction

Global clinker production

National Grid completes record-breaking pour of cement-free concrete at London Power Tunnels

•National Grid and contractor HOCHTIEF-MURPHY Joint Venture have extensively tested Earth Friendly Concrete prior to its use on the £1bn London Power Tunnels project to rewire London.

•736 m3 poured saves an estimated 82 tonnes of CO2, the equivalent emissions of driving a petrol car around the world 18 times

•World record-breaking pour is part of National Grid's ambition to achieve net zero construction across all its projects by 2025/26

Future uncertainty

- Steel production still growing but slower
- Scale of move to electric steelmaking depending on technology changes and DRI developments
- Total refractories consumption to decline but magnesia less influenced by changes
- If cement is replaced by low carbon alternatives consumption of all refractories including magnesia will decline as cement production declines.

Thank you for listening

If you have any questions I am happy to answer in this session if possible. Otherwise please feel free to send them to me at the contact details below TAK Industrial Mineral Consultancy

> The Garden House 22 Battlemead Close Maidenhead Berks SL6 8LB UK Phone: +44 1628 633222 Mobile: +44 7769978341 Email: ted@takindustrialminerals.com Web: www.takindustrialminerals.com