Date	Period	Name	
Date .	1 01100	1 141110	

CHAPTER STUDY GUIDE

GALAXIES AND THE UNIVERSE

SECTION 30.1 The Milky Way Galaxy

In your textbook, read about discovering the Milky Way.

For each item in Column A, write the letter of the matching item in Column B.

			Column A	Column B				
		1.	Stars in the giant branch of the H-R diagram that pulsate in brightness because of the expansion and contraction of their layers	a. Cepheid variablesb. luminosity				
		2.	Stars that have periods of pulsations between 1.5 hours and 1.2 days, and on average, have the same luminosity	c. RR Lyrae variablesd. Sagittarius				
		3.	Stars with pulsation periods between 1 day and more than 100 days	e. variable stars				
		4.	By measuring a star's period of pulsation, astronomers can determine this					
		5.	Direction of the center of the Milky Way is toward this constellation					
In	your textl	book	read about the shape of the Milky Way.					
For	· each stai	temer	t below, write true or false.					
			6. Radio waves are used to map the Milky Way because the interstellar gas and dust without being scattered or absor	• •				
			7. The Milky Way's galactic nucleus is surrounded by a nu of the galactic disk.	clear bulge that sticks out				
			8. Measurements of star luminosity at different distances properties way's spiral arms.	rovide a hint of the Milky				
			9. Around the Milky Way's nuclear bulge and disk is the haclusters are located.	alo, where the globular				
			10. Astronomers mapped the emission wavelength of nitrog conclusively determine the existence of spiral arms in th					
			11. Five major spiral arms and a few minor arms were ident	ified in the Milky Way.				
			12. The Sun is located in the Milky Way's minor arm Orion from the galactic center.	at a distance of 26,000 ly				
			13. In its 5-billion-year life, the Sun has orbited the galaxy a	approximately 100 times.				

Name _

galaxy

2.6 million

CHAPTER STUDY GUIDE

SECTION 30.1 The Milky Way Galaxy, continued

dark matter

In your textbook, read about the mass of the Milky Way.

Use each of the terms below just once to complete the passage.

100 billion

stellar remnants	halo	supermassive black	hole				
The mass located	l within the circle o	of the Sun's orbit through th	ne galaxy is about				
(14)	use the Sun is of average mass						
astronomers have	e concluded there a	re about 100 billion stars w	rithin the disk of the				
(15)	·						
		ce that much more mass ex	ists in the outer galaxy.				
Evidence indicate	nass is contained in the						
(16)	This	This mass is not observed in the form of normal stars,					
		ome of this unseen matter is					
(17)	, sucl	h as white dwarfs, neutron	stars, and black holes.				
The remainder of	f this mass, usually	called (18)	, is a mystery.				
			A indicate that this area has				
about (19)		times the mass of the Sun	, but is smaller than our solar				
			that glows				
		ounding it and spiraling into					

Name

CHAPTER

STUDY GUIDE

continued

SECTION 30.2 Other Galaxies in the Universe

In	vour	textbook,	read	about	discov	ering	other	galaxies.
	,							5

Circle the letter of	of the	choice	that b	est co	mpletes	the st	tatement	or	answers	the	question.
----------------------	--------	--------	--------	--------	---------	--------	----------	----	---------	-----	-----------

- 1. The question about other objects existing in the sky was answered by Edwin Hubble in 1924. What did he discover in the Great Nebula in the Andromeda constellation?
 - **a.** Cepheid variable stars

c. RR Lyrae variables

b. a supernova

- d. a black hole
- 2. Disklike galaxies with spiral arms are divided into which of the following two subclasses?
 - a. normal spirals and flat spirals
- c. flat spirals and barred spirals
- **b.** normal spirals and barred spirals
- **d.** loose spirals and flat spirals
- 3. Galaxies that are not flattened into disks and do not have spiral arms are called
 - a. dwarf galaxies.

- c. elliptical galaxies.
- **b.** barred elliptical galaxies.
- d. nebular galaxies.
- 4. Galaxies that do not fit into the spiral or elliptical classifications are called
 - a. dwarf galaxies.

c. barred galaxies.

b. Hubble galaxies.

d. irregular galaxies.

In your textbook, read about groups and clusters of galaxies.

For each statement, write true or false.

5. Most galaxies are spread evenly throughout the universe.
6. The Milky Way belongs to a small cluster of galaxies called the Local Group.
7. The Milky Way and the Andromeda Galaxy are two of the smallest members of the Local Group.
 8. When galaxies move away from each other, they form strangely shaped galaxies or galaxies with more than one nucleus.
 9. Studies of clusters of galaxies provide astronomers with the strongest evidence that most of the matter in the universe is visible and accounted for

In your textbook, read about the expanding universe, active galaxies, and quasars.

For each item in Column A, write the letter of the matching item in Column B.

	Column A	Column B		
1	0. Feature in the spectra of galaxies that indicates that they are moving away from Earth	a. active galactic nucleib. Hubble constant		
1	1. About 70 km per second per megaparsec	c. quasars		
1	2. Extremely bright galaxies that are often giant elliptical galaxies emitting as much or more energy in radio wavelengths than in wavelengths of visible light	d. radio galaxiese. redshift		
1	3. Starlike objects with emission lines in their spectra			
1	4. Provide important clues for astronomers to study the origin and evolution of the universe			

Name _____

Wilkinson Microwave Anistropy Probe

cosmic background radiation

CHAPTER STUDY GUIDE

continue

SECTION 30.3 Cosmology

2.725 K

compressed

In your textbook, read about models of the universe.

radiation

in 2001, mapped the radiation in detail.

Use each of the terms below just once to complete the passage.

background noise

cosmology density expanding closed open The study of the universe, including its current nature, its origin, and its evolution is called (1) . The fact that the universe is (2) _____ implies that it had a beginning. The theory that the universe began as a point and has been expanding ever since is called the (3) _____ theory. The (4) ____ of the universe determines the outcome of the Big Bang. In a(n) (5) universe the expansion will never stop. In a(n) (6) universe the expansion stops and becomes a contraction. According to the more accepted theory, the Big Bang Theory, if the universe began in a highly (7) _____ state, it would have been very hot, and the high temperatures would have filled it with (8) ______. As the universe expanded and cooled, the radiation would have been shifted to (9) energies and longer wavelengths. In 1965, scientists discovered a persistent in their radio antenna. The noise was caused by weak radiation called the (11) ______. It appeared to come from all directions in space and corresponded to an emitting object having a temperature of about (12) , which is close to the temperature predicted by the

Big Bang

lower

Big Bang theory. An orbiting observatory called the (13) ______, launched

Name

CHAPTER STUDY GUIDE

SECTION 30.3 Cosmology, continued

In your textbook, read about the Big Bang model.

Circle the letter of the choice that best completes the statement or answers the question.

- **14.** What are the three possible outcomes for the universe?
 - a. open universe, closed universe, and flat universe
 - **b.** expanding universe, closed universe, and flat universe
 - c. open universe, closed universe, and static universe
 - **d.** open universe, barred universe, and flat universe
- 15. All three possible outcomes for the universe are based on the premise that the rate of expansion has
 - **a.** remained the same since the beginning of the universe.
 - **b.** slowed down since the beginning of the universe.
 - **c.** increased since the beginning of the universe.
 - **d.** doubled since the beginning of the universe.
- **16.** The total amount of matter in the universe is expressed in terms of the
 - **a.** critical density of matter.
- **c.** average density of matter.
- **b.** average critical density of matter.
- **d.** absolute density of matter.
- 17. Observations of visible galaxies reveal a(n)
 - a. average density equal to critical density.
 - **b.** average density much less than critical density.
 - **c.** absolute density greater than average critical density.
 - **d.** critical density much less than average density.
- 18. Evidence suggests that the universe contains a great amount of
 - a. visible matter.

c. mystery matter.

b. invisible matter.

- d. dark matter.
- 19. The universe began as a point and has been expanding ever since is called the
 - **a.** Big Bang theory.

c. critical density theory.

b. flat universe model.

- **d.** Hubble constant model.
- 20. When the rate of expansion of the universe is known, it is possible to calculate the
 - **a.** date the universe will end.
- **c.** distance to each galaxy.

b. date the universe began.

- **d.** age of the universe.
- 21. Based on the best value for H that has been calculated, the age of the universe is hypothesized to be about
 - **a.** 1.3 billion years.

c. 13.7 billion years.

b. 13.7 million years.

d. 13 trillion years.