Q2 Review

Ms. Larsh

Model evidence of Earth's interior to describe the cycling of matter by thermal convection

Earth's Systems are Interconnected

Recycled Materials

- Water
- Oxygen
- Carbon Dioxide
- Nitrogen
- Carbon
- Earth's Crust

What is Thermal Convection?

Convection, process by which **heat** is transferred by the movement of a heated fluid such as air, water, or magma

Convection Current, a current in a fluid that results from convection

Geothermal energy, or the heat generated by the **radioactive decay** of elements deep in the interior of the Earth heats up magma, creating convection currents that drive plate tectonics

Harry Hess & the Theory of Seafloor Spreading

Lithosphere - Earth's Crust and upper part of the Mantle

Asthenosphere - Upper layer of Earth's Mantle just below the Lithosphere

Describe Seafloor Spreading

Seafloor spreading is a process that occurs at **mid-ocean ridges**, where new oceanic crust is formed at a **divergent boundary** through volcanic activity

At a **convergent boundary**, the oceanic plate **subducts** beneath the other plate resulting in a **deep sea trench**

The seafloor continuously "recycles" back into the mantle at these locations.

Thus, the oldest seafloor is only around 200 million years old.

Seafloor Spreading Model

Deep-ocean Trench Mid-ocean ridge Seafloor Continental Spreading Crust Oceanic crust Subduction Convection Currents Molten Mantle Material

Remember, Convection
Currents drive every major
process on Earth

Seafloor spreading & plate tectonics are powered by convection currents produced by geothermal energy

Subduction & Volcanic Activity

Large amounts of water enter the mantle at subduction sites

The **boiling point** of magma is **lowered** and more magma is able to **rises** upward

The magma escapes through Earth's crust causing **volcanic activity**

The **Ring of Fire** sits along various subduction zones of and near the Pacific Plate

These are locations where **oceanic crust** *subducts* at **convergent boundaries**

Most of Earth's **active volcanoes** sit along the Ring of Fire

Many **metals** and **minerals** are found in **ore** at these volcanic locations

Alfred Wegener & the Theory of Continental Drift

Continental drift was a theory that explained how continents shift position on Earth's surface

He proposed that at one point, all of the continents were a single land mass, which he called **Pangea**

- Fossils on different continents match up
- Mountain Ranges match up
- Coastlines seemed to fit like puzzle pieces
- Glacial scarring and deposits
- Some fossils could never have survived on the continents they were found on in their current location

3 Types of Plate Boundaries

Oceanic Plates

Type of Margin	Divergent	Convergent	Transform
Motion	Spreading	Subduction	Lateral sliding
Effect	Constructive (oceanic lithosphere created)	Destructive (oceanic lithosphere destroyed)	Conservative (lithosphere neither created or destroyed)
Topography	Ridge/Rift	Trench	No major effect
Volcanic activity?	Yes	Yes	No
Lithosphere Asthenosphere (a)	Ridge	Volcanoes (volcanic arc) Trench Earthquakes (b)	Earthquakes within crust

Continental Convergent Boundary

 Folded Mountains occur when 2 continental plates collide

http://tasaclips.com/illustrations/Convergent Boundary.jpg

Ex: The Himalayas

Continental Divergent Boundary

Great Rift Valley, Africa

The Himalayas, Asia

What are some Natural Disasters that occur along Plate Boundaries?

- Volcanic Eruptions
- Earthquakes
- Tsunamis resulting from Earthquakes

Model evidence of changes in Earth's magnetic field through seafloor spreading & volcanic events throughout geologic time

Volcanism

Volcanic Eruptions & the Rock Record

The **ash** from volcanic eruptions often changes the **composition of rock** layers

Geologists can identify times of volcanic eruptions through the noticeable **bands of sediment** that are different in color.

Igneous rock, or rock layers formed from **magma**, are often noticeable as intrusions and crosscuts where magma interacted with other, older rock layers

Volcanic Activity & Earth's Magnetic Field

Magma interacts with Earth's magnetic field and retains the polarity at the time it solidifies

This banded pattern is studied across the ocean floor and supports the **Theory of Seafloor Spreading**

The magnetic field flip flops in a symmetrical pattern across the seafloor

As well as on land where layers of sediment build around active volcanoes

Model evidence of Earth's interior composition through the use of seismographic data

Earthquakes

- An earthquake is a shaking of the Earth's crust caused by a release of energy.
- A fault is a break in the lithosphere along which movement has occurred.
- The focus of an earthquake is the point at which movement first occurs.
- The epicenter of an earthquake is the point on the surface of the Earth directly above the focus.

Earthquake animation

Seismic Waves Radiate from the Focus of an Earthquake

Seismic Waves

P-waves travel the fastest and move side to side in the direction that the wave is traveling

S-waves are slower and move up and down and cannot move through liquid

*S-waves led seismologists to conclude that the Earth's has an **outer liquid core**

Surface waves are the most destructive

Secondary Waves & the Discovery of Earth's Liquid Outer Core

*S-waves led seismologists to conclude that the Earth's has an outer liquid core

