Q1. Forty-five
(a) Fill in the missing numbers so that the answer is always 45.

The first one is done for you.

(b) Fill in the gaps below to make the answer 45.

You may use any of these signs: $+-\times \div$
es,
28 2 $31=45$

Q2. Triangles

This is a right-angled triangular tile:

You can fit 8 of the tiles into
a 4 cm by a 4 cm square like this:

ψ
Number of tiles: \qquad

> Number of tiles:
\qquad

2 marks

Number of tiles: \qquad

Number of tiles: \qquad

Q3. Angles in a square
(a) How many degrees are there in a right angle?

(b) The diagram shows a square.

How many degrees is angle a ?

Q4.
Youth club
20 children went to a youth club.
The dot plot shows their ages in years.

(a) What was the most common age?

1 mark
(b) How many of the children were aged $\mathbf{1 2}$ or older?
\qquad
(c) 14 children went to a different youth club.

Here is information about their ages in years.

The youngest children were aged 10
3 children were aged 11
More children were aged 12 than were aged 11
The most common age was 13
No children were older than 13

Show this information on the dot plot below.
sis
total 14 children

2 marks

Q5. Point A is marked on the grid. The corrdinates of A are (4, 4)

Mark one point on the grid that has:
an \boldsymbol{x} coordinate that is equal to 4 , and a \boldsymbol{y} coordinate that is greater than 4

Q6. Number line
The number line below goes up in equal steps.
Fill in the missing numbers.

Q7. Clubs

A sports centre has two different clubs.
(a) $\mathbf{2 2}$ children go to the gym club.

Complete the pictogram.

(b) $\mathbf{1 0}$ more girls than boys go to the swimming club.

Complete the key.

Q8. Magic square

Look at the three by three table.
Fill in the missing numbers so that
each row adds up to 3 ,
each column adds up to 3 and
each diagonal adds up to 3

Q9. Remainder

999 will divide exactly by 37
There is no remainder.
(a) Write down the remainder when $\mathbf{1 0 0 0}$ is divided by 37
\qquad

1 mark
(b) Write down the remainder when 998 is divided by 37
\qquad
1 mark
(c) Write down a multiple of 37 that is Bigger than 1000
\qquad

Q10. Areas
(a) The diagram shows a rectangle 18 cm long and $\mathbf{1 4} \mathbf{c m}$ wide.

It has been split into four smaller rectangles.
Write the area of each small rectangle on the diagram.
One has been done for you.
<

What is the area of the whole rectangle?
<
\qquad
1 mark
(b) The diagram shows a rectangle $(n+3) \mathrm{cm}$ long and $(n+2) \mathrm{cm}$ wide.

It has been split into four smaller rectangles.
Write a number or an expression for the area of each small rectangle on the diagram.
One has been done for you.

What is $(n+3)(n+2)$ multiplied out?

Q11. Rectangles

A rectangle has an area of $\mathbf{2 4} \mathbf{c m}^{2}$
How long could the sides of the rectangle be?
Give three different examples.
........................ cm and cm

Q12. Cubes

This shape is made from four cubes joined together.

The table shows information about the shape.

Volume	$4 \mathrm{~cm}^{3}$
Surface Area	$18 \mathrm{~cm}^{2}$

The same four cubes are then used to make this new shape.

Complete the table for the new shape.

Volume	$\ldots \ldots \ldots . \mathrm{cm}^{3}$
Surface Area	$\ldots \ldots \ldots . \mathrm{cm}^{2}$

Q13. Solving

(a) When $\boldsymbol{x}=\mathbf{5}$, work out the values of the expressions below.
c.

$$
\begin{aligned}
& 2 x+13=\ldots . ~ \\
& 5 x-5=\ldots . ~
\end{aligned}
$$

(b) When $2 y+11=17$, work out the value of y Show your working.
es.

$$
y=.
$$

$$
2 \text { marks }
$$

Q14. Set of three

The mean of these numbers is 6

Write three numbers that have a mean of 7

Q15. Temperature wWW.cambridgeacademictuition.co.uk

The graph shows the temperature in a town between 6am and 2pm on 7th February and 7th August one year.

(a) Estimate as accurately as you can the time when the temperature reached $20^{\circ} \mathrm{C}$ on 7th August.
\qquad am
1 mark
(b) What was the difference between the temperatures at 12 noon on the two days?
\qquad ${ }^{\circ} \mathrm{C}$
1 mark
(c) On 7th February between 6am and 2pm the temperature dropped.

How many degrees did the temperature drop?
\qquad ${ }^{\circ} \mathrm{C}$

Q16. Nets
(a) The diagram shows a net that folds to make a cube.

When the net is folded, which face will be opposite the shaded face?
Put a tick (\checkmark) inside the correct face.
is

(b) When the net is folded, the two edges shown in bold join together.

Which edge will join the one shown in bold on the nets below?
Show your answers by drawing a line on each net.

Q17. Solving

Solve these equations.
Show your working.
(a) $4 y=2 y+13$
s.

$$
y=\text {......................... }
$$

(b) $3 y+10=2 y+7$
\qquad

$$
y=.
$$

Q18. Angle p
This shape has been made from two congruent isosceles triangles.

$$
p=. \circ
$$

Q19. Fractions
(a) Match each calculation with the correct fraction answer.

The first one is done for you.

$$
\begin{equation*}
\frac{2}{5}+\frac{1}{4} \tag{1}
\end{equation*}
$$

$$
\frac{7}{8}-\frac{3}{4}
$$

$\frac{1}{2}-\frac{1}{3}$
(b) Work out $\frac{1}{2}+\frac{1}{3}$

Q20. Test results

There are $\mathbf{2 5}$ pupils in a class.
The table shows information about their test results in maths and English.

		English		
		Level 5	Level 6	
maths	Level 5	0	1	
	Level 6	2	7	
	Level 7	2	1	

(a) How many pupils had the same level in both maths and English?
\qquad
(b) How many pupils had a higher level in maths than in English?
\qquad

www.cambridgeacademictuition.co.uk
 Q21. Counter probabilities

In a bag there are only red, blue and green counters.
(a) I am going to take a counter out of the bag at random.

Complete the table below.

Colour of counters	Number of counters	Probability
Red	6	
Blue		$\frac{1}{5}$
Green	6	

(b) Before I take a counter out of the bag, I put one extra blue counter into the bag.

What effect does this have on the probability that I will take a red counter?
Tick (\imath^{\prime}) the correct box.
es
\square

> The probability has increased.
\square
The probability has decreased.
\square
The probability has stayed the same.
\square
It is impossible to tell.
www.cambridgeacademictuition.co.uk

