Entrance Examination

11+ Entry 2016
 Mathematics

Name: \qquad

Current School: \qquad

- 45 minutes allowed
- Please show any working
- Attempt all questions
- No calculators allowed

For Official Use Only

Mark	Comment:
Percentage	

Please return by
www.cambridgeacademictuition.co.uk

SECTION A - You do not need to show working. Write answers in the spaces provided. All questions are worth 1 mark each

No	Question	Answer	Leave blank
1	Calculate 7×9		
2	Calculate $42 \div 7$		
3	Calculate $80 \div 10$		
4	Calculate $6000 \div 100$		
5	Calculate 34.2×10		
6	Calculate 98.9×1000		
7	Change $\frac{3}{4}$ to a percentage		
8	What are the 10th term of this sequence $7,12,17,22,27 \quad \ldots . . . \quad \text {...... }$		
9	Calculate - $54+36$		
10	Calculate 17 - - 34		
11	Calculate $\frac{7}{9}+\frac{1}{9}$		
12	Calculate $\frac{5}{8}-\frac{1}{4}$		
13	Simplify $\frac{16}{20}$		
14	Write as a mixed number $\frac{10}{3}$		
15	Round 3.456 to 2 decimal places		

SECTION B - You must show all your working.

Q1. Number grid

Here is a number grid.

41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90

Two squares are shaded.
(a) What is the total of the numbers in the two shaded squares?
(b) Shade two different squares that have the same total as the answer to part (a).
(c) What is the total of the numbers in all four shaded squares?

Q2. Dishes
In a restaurant, the colour of each dish shows how much the food in it costs.
The table shows the different colours and costs.

Colour of dish	Cost
Green	$£ 1.50$
Blue	$£ 2.00$
Red	$£ 2.50$
Orange	$£ 3.00$
Pink	$£ 3.50$

(a) Meera pays for two blue dishes and two pink dishes.

Altogether, how much did they cost?

(b) Victor pays for one green, one red and one pink dish.

He pays with a $£ 10$ note.
How much change should he get?
(c) Rachel pays for two dishes that cost exactly $£ 4.50$ altogether.

What colours could her dishes be?
There are two possible answers. Write them both.
colours: \qquad and \qquad
or colours: \qquad and \qquad

Q3. Populations
The table shows the approximate populations of five different places.

Place	Approximate population
London	7000000
Sheffield	700000
Harrogate	70000
Ash Vale	7000
Binbrook	700

(a) Which of the places has a population of about seventy thousand?
(b) Use the table to complete these sentences.

The population of Harrogate is about 10 times as big as
the population of \qquad
The population of \qquad is about $\mathbf{1 0 0}$ times as big as the population of Harrogate.

The population of Sheffield is about \qquad times as big as the population of Ash Vale.

Q4. Areas
(a) What is the area of this rectangle?

cm^{2}
(b) I use the rectangle to make four triangles.

Each triangle is the same size.
What is the area of one of the triangles?

cm^{2}
(c) I use the four triangles to make a trapezium.

What is the area of the trapezium?

Q5. Coordinates
Look at the graph.

(a) Write down the coordinates of points A and C .

A is (\quad, \quad)	1 mark	
C is $(\quad$,	$)$	1 mark

(b) Point D can be marked so that $A B C D$ is a rectangle.

Mark point D accurately on the graph.

Q6. Spinner

Tom has a fair spinner with 8 equal sections.
He is going to spin the pointer.

Draw lines to show how likely the following are.
One is done for you.

Q7. Clock

(a) The time on this clock is 30^{\prime} clock.

What is the size of the angle between the hands?
(b) What is the size of the angle between the hands at 1 o'clock?
(c) What is the size of the angle between the hands at 5 o'clock?

1 mark
(d) How long does it take for the minute hand to move 360° ?

1 mark

www.cambridgeacademictuition.co.uk

Q8. Prime factors
You can write any whole number as a product of its prime factors.
Here is an example for the number 60:

Write $\mathbf{2 2 5}$ as a product of its prime factors.

Q9. 28 times table
If I know that $\mathbf{9 \times 2 8}$ is $\mathbf{2 5 2}$
What is 27×28 ?

Q10. Finding D
(a) Where should you put point D so that shape $A B C D$ is a square?

Mark point D on the grid.

(b) Where could you put point E so that shape $A B C E$ is a trapezium?

Mark point E on the grid below.

Now write the coordinates of point E

Q11. Children's party

A boat can be hired for children's parties.

The formula below shows the cost.

Cost $=£ 13.50 \times$ the number of children $+£ 23$
(a) What is the cost of a party for $\mathbf{8}$ children?

1 mark
(b) A different children's party cost $£ 225.50$

How many children were at the party?

Q12. Shoe sizes

(a) There are four people in Sita's family.

Their shoe sizes are 4, 5, 7 and 10
What is the median shoe size in Sita's family?
(b) There are three people in John's family.

The range of their shoe sizes is 4
Two people in the family wear shoe size 6 John's shoe size is not $\mathbf{6}$ and it is not 10

What is John's shoe size?

Q13. Fairground shooting

In a fairground shooting gallery each target I hit has a score which is an integer. My three shots are all scored, all three scores were different, and each score was an even number. My total was 18.

How many different solutions are there? What are they?

Q14. Walls

In these walls each brick is made by adding the two bricks underneath it.

(a) Write an expression for the top brick in this wall.

Write your expression as simply as possible.

(b) Fill in the missing expression on these walls.

Write your expression as simply as possible.

(c) In the wall below, h j and k can be any whole numbers.

Explain why the top brick of the wall must always be an even number.
You can fill in the missing expressions if you want to.

