KAWEAH SUBBASIN 2ND AMENDED GSP REVISIONS

Monday, June 24, 2024

PRESENTED BY Kaweah Subbasin Technical Team

PRESENTED TO State Water Resources Control Board and the Interested Public

Kaweah Subbasin Path to Sustainability

Sustainability Strategy

The Revised GSPs Address All DWR Deficiencies

Addressing SWRCB New Deficiencies Continuing Our Path to Sustainability

SUSTAINABILITY STRATEGY

Sustainability

Can't
The 3 GSAs have continued to implement projects & management actions while drafting the 2nd Amended GSPs.

Impacts to Beneficial Users, Uses, and Property Interests Demand Management Projects Mitigation

PROJECTS

DEMAND

MANAGEMENT

MITIGATION

INTENDED TO ADDRESS IMPACTS FROM CONDITIONS THAT CANNOT BE SUSTAINED DURING CRITICAL DROUGHT CONDITIONS. THE KAWEAH SUBBASIN'S STRATEGY IS TO AVOID THE NEED FOR MITIGATION THROUGH DEMAND MANAGEMENT, PROJECTS, AND PROACTIVE MEASURES.

Indicates if the activity has been implemented

Developed by Kaweah Subbasin GSAs Tracks Evapotranspiration (ET)

Incorporates Land IQ data

Tracks Water Use

Surface Water Use Groundwater Use Precipitation Use

SAllows growers to see allocation

Tracks monthly ET Invoices growers Informs growers on their water use

Simplemented Features

Water Marketing Strategy

Future Features

Crop Planning Tool Other Agronomic Tools

WA0000027: Tulare Irrigation District ~

Explore your estimated total water use data Current ET Data is available up to August 2022

ort Name		¢	Asc	¢	Filters:	-	Grou	ps 🗸			GSA	~
Field Name	GSA		APN Acres			eld cres		/TD Usag AF)	le		Usage Field A	c.)
Y2022 Water Account Total			223.42		5	6.81		29.25		0.5	2	
mapped Fields 2022 Total			154.00		0.	.10		0.02		0.1	5	
iKGSA Unmapped Fields	GKGSA		154.00		0.	.10		0.02		0.1	5	
grouped Fields 2022 Total			69.42		5	6.76		29.23		0.5	2	
Wall East Cell -010-027 Fellow - 0 Irrigated Acres Enrolled	MKGSA		69.42		50	6.76		29.23		0.5	2	
		Viewing in Un					n Units of AF	/Ac. Ac.Ft.	Expe	ort Data		
		Crop 🗸	-	Filter Fields					Search Cle	ar All Filters		
	2022 Total Year-to-Date Evapotranspiration (ET) in AF/Ac.											
		0.6 0.5 P P P 4 0.4 0.3 0.2 0.1 0 Oct	Nov	Dec	Jan	Feb	Mar Apr M	ley Jun	l	Aug	Sep	
		ou										
			VTD-11/		ETa is i	s are calcula estimated b	ated using parcel acres ny field (acre-feet per fie	eld acre).		105/0-1		
	Y	ear Oct	YTD Wa	*Groundwa ater Use (AF/) Dec	ETa is i	s are calcula estimated b Feb	ated using parcel acres y field (acre-feet per fie	eld acre).	hly Water Use (Aug	Sep

The Kaweah Subbasin GSAs is implementing demand management policies <u>now</u>.

- Tiered pricing structures incentivize and enforce water conservation
- Increased interest and engagement with land repurposing opportunities
- Developed and currently testing a water market (DAC and SMC Protections imbedded)
- Early Results
 - Average annual fallowing of 5,000 acres in EKGSA
 - 13% reduction in consumptive use from 2021 to 2022 in MKGSA

The Kaweah Subbasin GSAs do not take demand reduction policy decisions lightly, recognizing the ripple effects across multiple beneficial users.

PROS

Demand management achieves...

1. Sustainability

- 2. Long-term water security
- 3. Climate resiliency

CONS

- & negatively affects our communities'
- 1. Economic potential
- 2. Funding for public health, safety, and education (loss in tax revenue)
- 3. Culture & heritage conservation
- 4. Presence of small family farms

PROJECTS

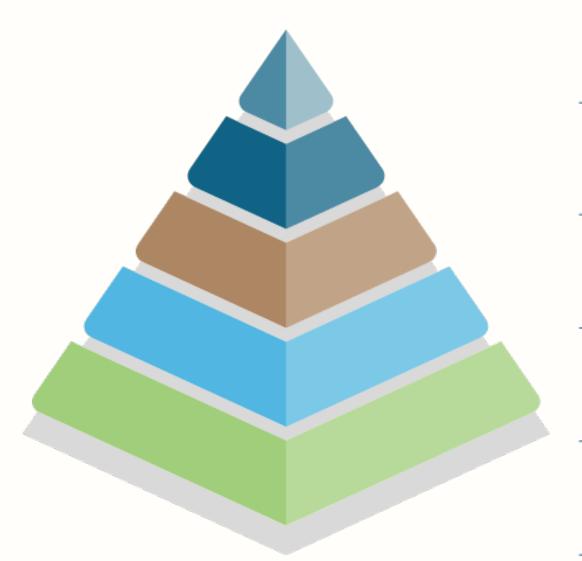
Groundwater recharge, banking, surface water supply, and water-use efficiency investments

The Kaweah Subbasin has implemented numerous projects to achieve sustainability.

Kaweah Subbasin Projects	Implemented as of June 2024
Lakeland Canal Deliveries	Cordeniz Recharge Basin
Recharge Basin Improvement	Okieville Recharge Basin
Paregien Expansion Flood	KDWCD/Visalia/Tulare ID
Control Project	Packwood Creek
	Linear Recharge Project
Greater Fallowing Program	City of Visalia/TID Exchange
Greater Failowing Frogram	Program
Lower Lewis Creek	Sun World International / TID
Recharge	Exchange
Lindsay Recharge Basin	TID/Friant Leveraged Exchange
Linusay Necharye Dasin	Program
Lindmore Irrigation District	Visalia Eastside Regional
Recharge Basins	Park/Groundwater
Necharye Dasins	Recharge Project

The Kaweah Subbasin has implemented numerous other activities to increase groundwater supply.

- On-Farm Recharge
- Private Recharge Basins (100+)
- TID Existing Recharge Capacity Evaluation
- Existing Conveyance Facilities Rehabilitation or Expansion
- Efficiency Improvements
- DWR LandFLEX Fallowing


The Kaweah Subbasin Mitigation Program is being implemented <u>now</u>.

More information on this program is expanded on later in the presentation. The Kaweah Subbasin is proactively implementing its plan <u>now</u> in order to be sustainable by 2040.

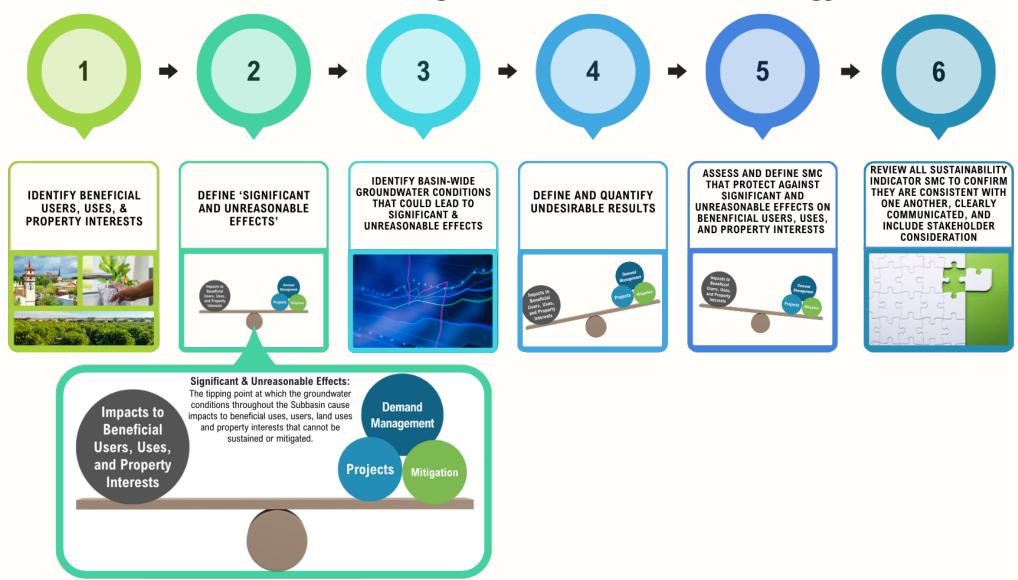
THE REVISED GSPs ADDRESS ALL DWR DEFICIENCIES

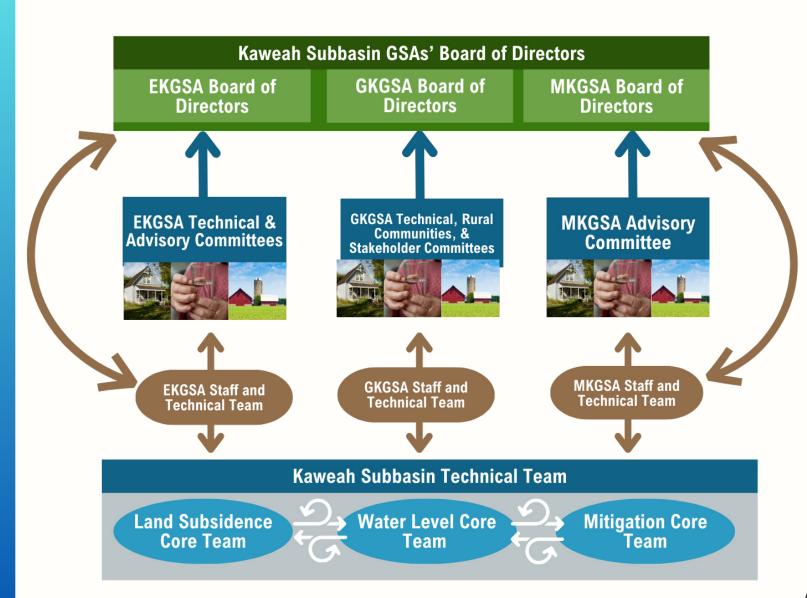
Sustainable Management Criteria Priorities

Public Review Draft: 2nd Amended GSPs

Address all DWR deficiencies

02 Use of best available data and analytical tools

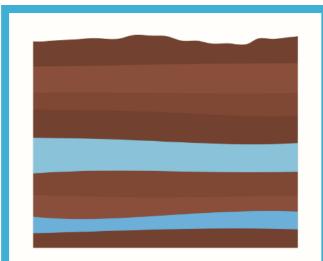

Revise to be even more protective of all beneficial users, uses, and property interests.


Stakeholder Support

05 Subbasin-wide Consistency

03

Sustainable Management Criteria Methodology

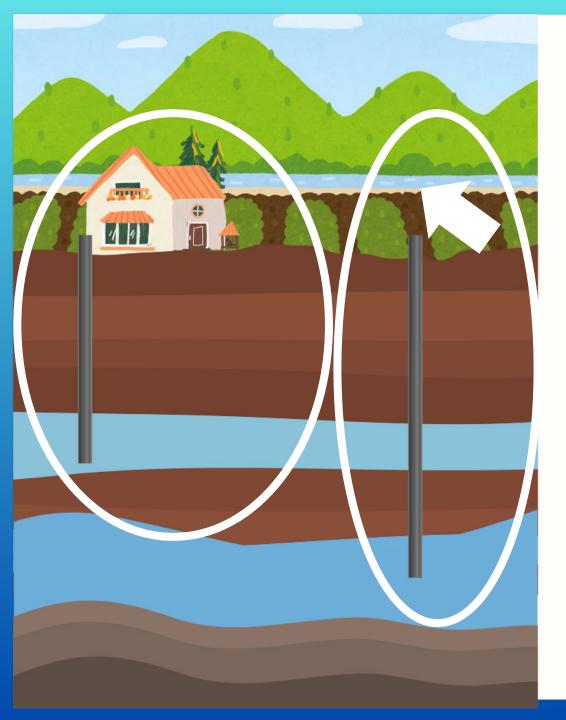

The Kaweah Subbasin GSAs have hosted

108 Public Engagement Meetings since May 2023

Regular attendees include representation from: City of Exeter, City of Farmersville, City of Lindsay, City of Tulare, City of Visalia, Community Water Center, Delta-View Water Association (groundwater dependent growers), Growers, Kaweah Delta Water Conservation District, Leadership Council for Accountability & Justice, Milk Producers Council, produce packing industry, Self-Help Enterprises, Sequoia Riverlands Trust, Tulare County, and interested members of the public.


DWR Deficiencies

1st Amended GSPs (2022)



The Plan does not set minimum thresholds to avoid undesirable results and significant and unreasonable impacts on beneficial use The Plan does not have sufficient clarity in Mitigation Framework and Plans

The Plan does not set subsidence sustainable management criteria that would avoid substantial interference with land surface use and critical infrastructure

The Plan does not consider how minimum thresholds for one sustainability indicator affect minimum thresholds for another

Upper Aquifer vs. Lower Aquifer Different Approaches and Sustainable Management Criteria

Upper Aquifer

Domestic wells are generally the shallowest and most vulnerable beneficial user in the upper aquifer.

Lower Aquifer

Critical infrastructure is the most vulnerable beneficial user/property interest affected by declining lower aquifer groundwater levels.

Undesirable Result Upper Aquifer Water Levels

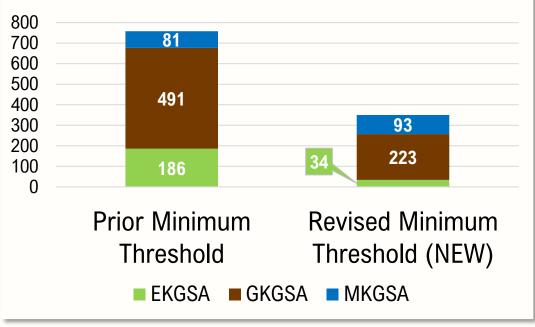
1. If more than 17 upper aquifer RMS wells in the Kaweah Subbasin exceed their minimum threshold in any given water year;

AND

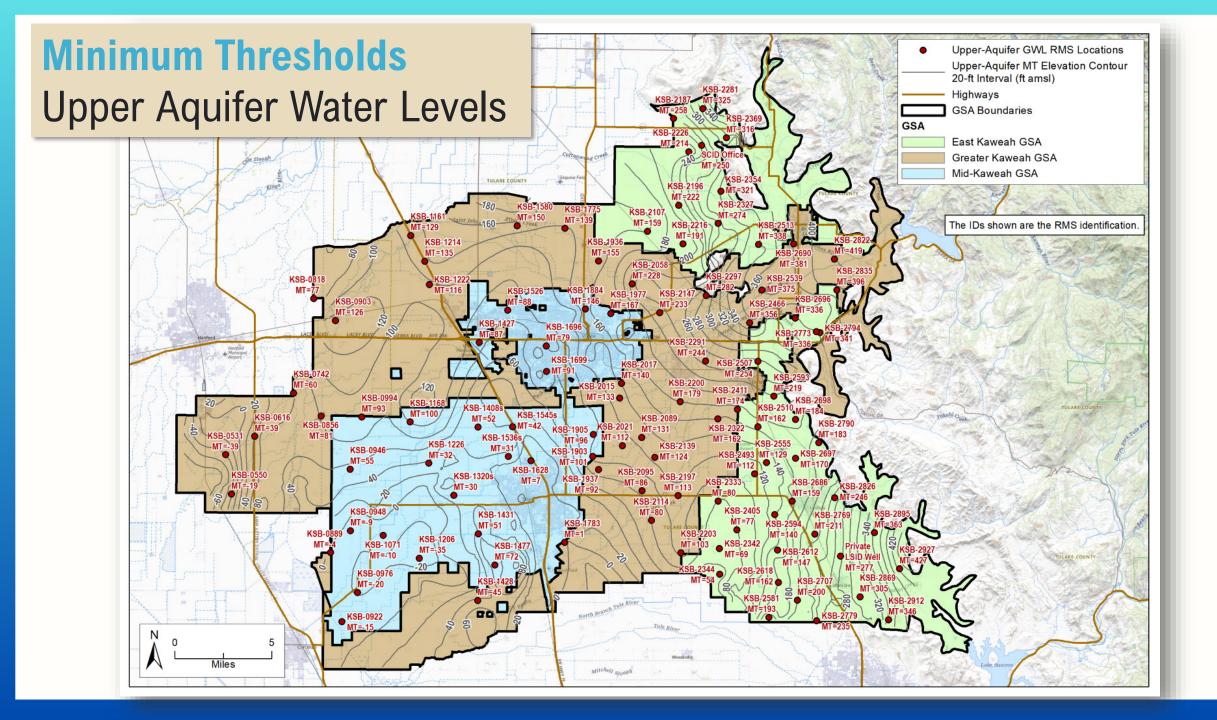
2. More than 30 domestic wells in the Kaweah Subbasin are impacted due to overdraft and require mitigation in any given water year. If 30 wells require mitigation for multiple years, no more than 350 wells shall be impacted cumulatively by 2040; 350 wells equat

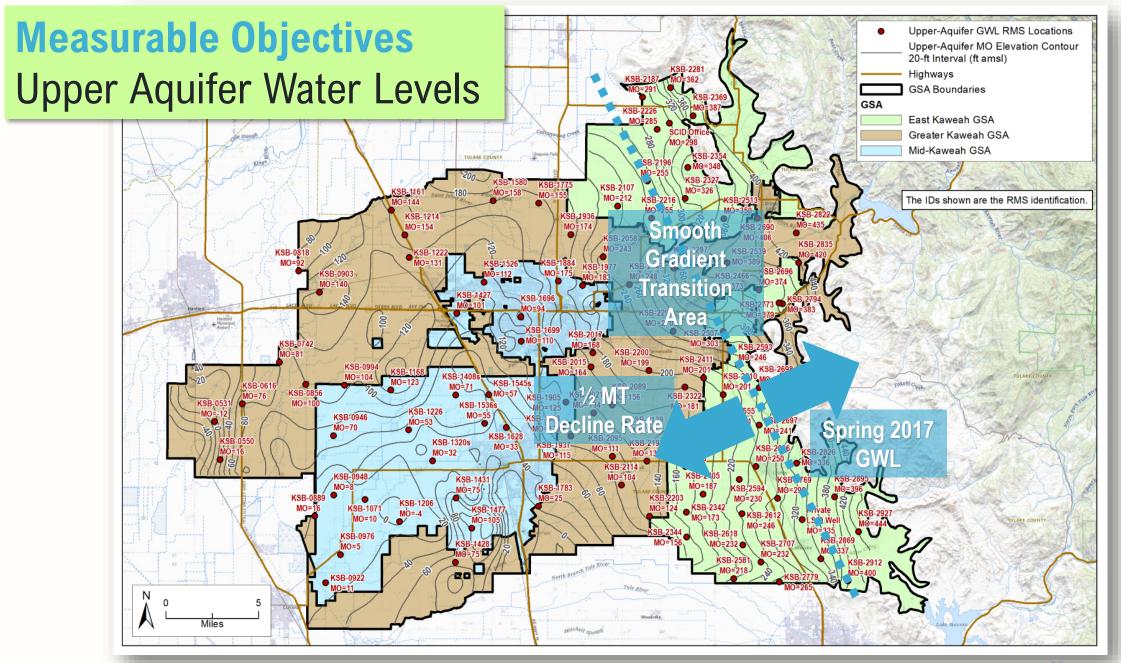
OR

350 wells equates to 10% of total drinking water wells

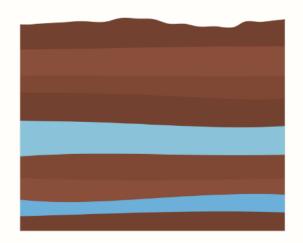

3. If a GSA is unable to meet mitigation needs.

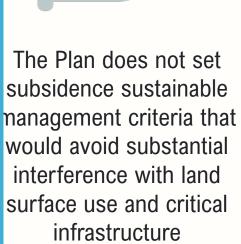
Minimum Thresholds Upper Aquifer Water Levels


- 1. Informed by a Dry Well Susceptibility Analysis, with the most vulnerable beneficial user (domestic wells) being the determining factor.
- 2. Revised minimum thresholds are more protective of all beneficial users, uses, and property interests.
- 3. Kaweah Subbasin Technical Team engaged in a coordinated methodology, analyses, and decision process.
- 4. Dry Well Susceptibility Analysis results informed the GSAs' mitigation budgets.


Number of Domestic Wells Susceptible to Impacts within 2023-2040

Under Worst Case Scenario Conditions

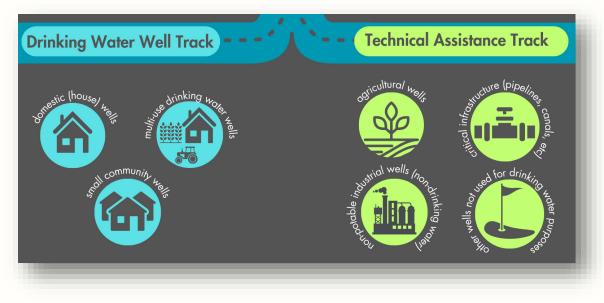

Impacts between the period of 2015-2022 were also included in the analysis which informed both the groundwater level SMC and the mitigation cost estimates (budgets). The period of 2023-2040 is presented to show a current/forward-looking estimate of potential mitigation needs.



DWR Deficiencies

1st Amended GSPs (2022)

The Plan does not set minimum thresholds to avoid undesirable results and significant and unreasonable impacts on beneficial use The Plan does not have sufficient clarity in Mitigation Framework and Plans





The Plan does not consider how minimum thresholds for one sustainability indicator affect minimum thresholds for another

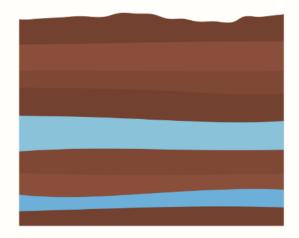
Mitigation services and technical assistance for those impacted by groundwater overdraft conditions funded by the GSAs.

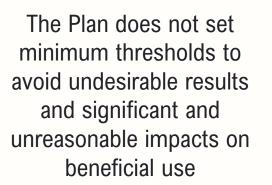
Important Note:

Mitigation is a temporary measure to bridge the gap until we achieve sustainability by 2040. Impacts may occur as groundwater levels have potential to decline below historic lows. The need for mitigation related to overdraft/groundwater management is not expected to be necessary beyond the implementation period.

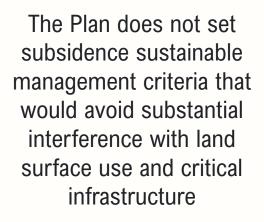
Self-Help Enterprises

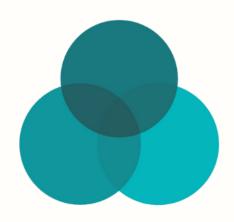
Partnered with Self-Help Enterprises to administer domestic well mitigation

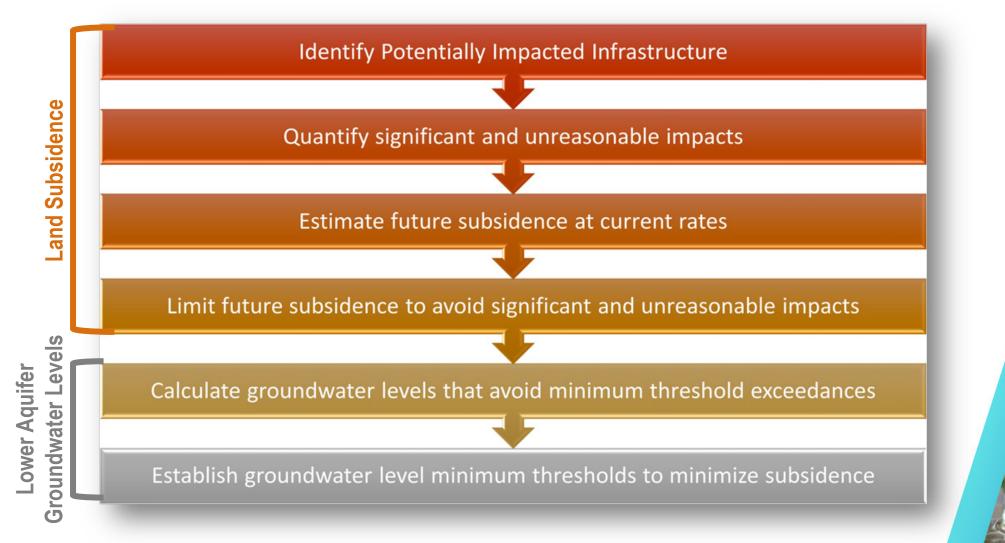

- 24-hour turnaround for emergency supplies
- 72-hour turnaround interim supplies
- Long-term mitigation solutions (including groundwater quality testing and treatment)


New Management Actions Associated with the Mitigation Program:

- 1. Small Community Proactive & Protective Action Plan
- 2. Well Registration Program
- 3. Domestic Well Permit Application Review

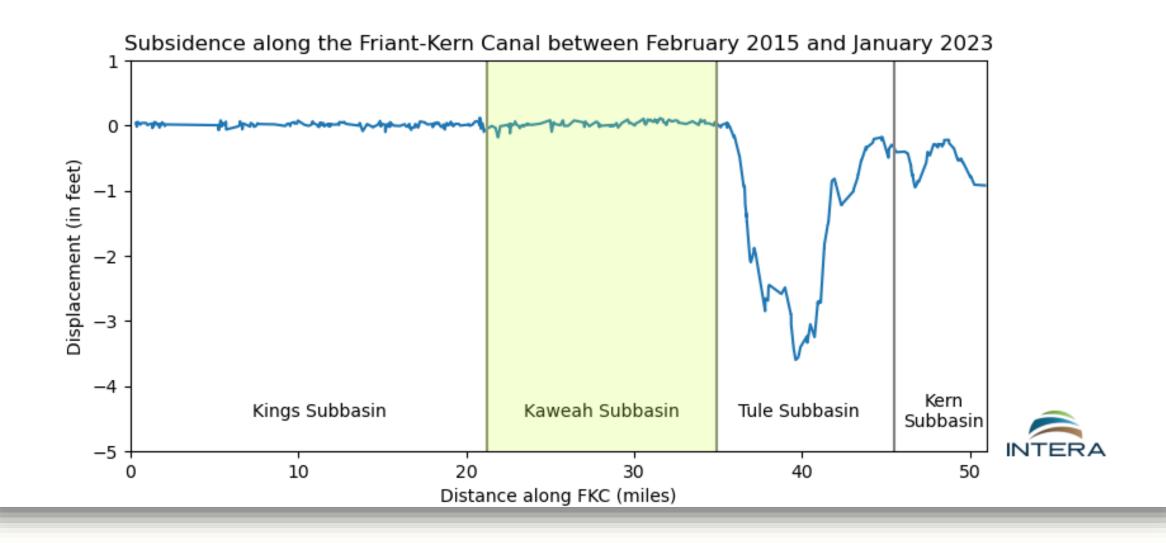

DWR Deficiencies


1st Amended GSPs (2022)


The Plan does not have sufficient clarity in Mitigation Framework and Plans

The Plan does not consider how minimum thresholds for one sustainability indicator affect minimum thresholds for another

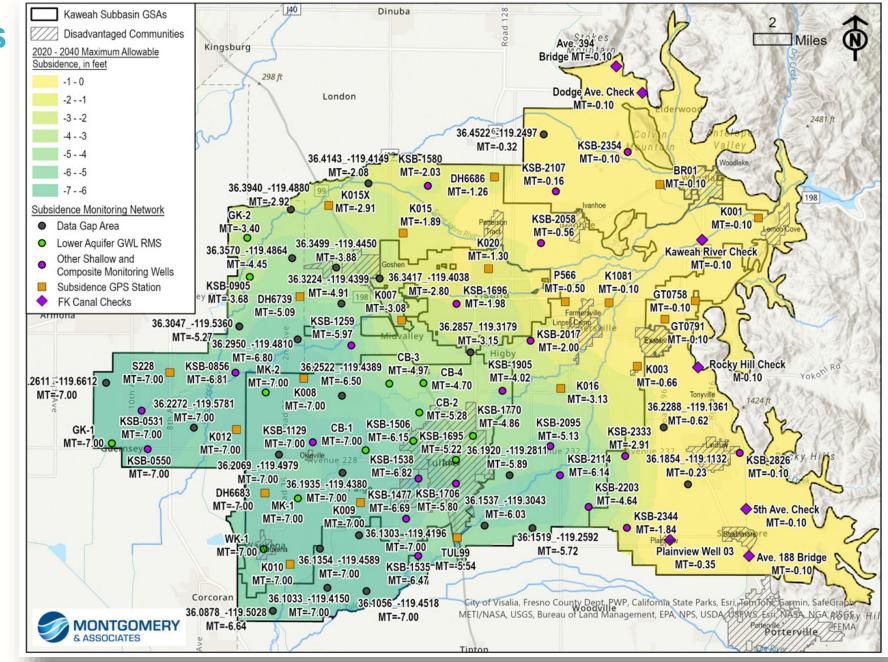
Approach for Coupling Subsidence and Lower Aquifer Groundwater Level SMC



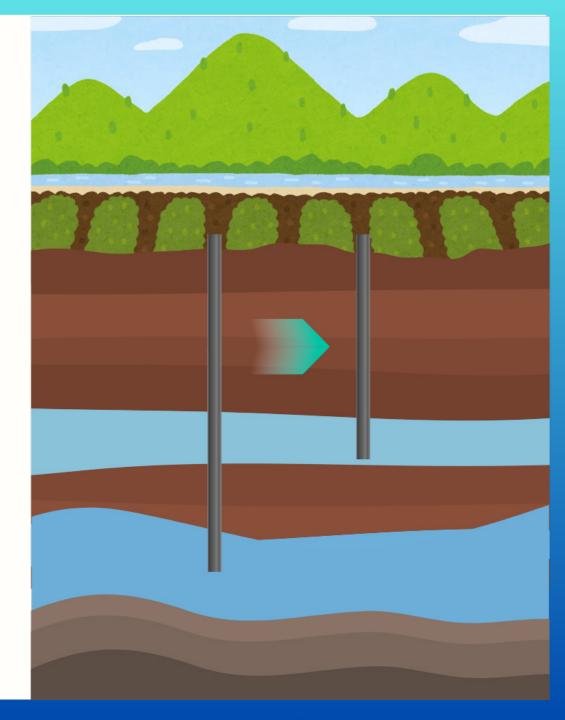
Identify Potential Impacted Infrastructure

Infrastructure / Beneficial Use	Significant & Unreasonable Impact	Agency or Group Contacted Regarding Historical Subsidence Impacts
Flood Control	Capacity loss in stream channels from reduced land slope leading to increased risk of flooding	Tulare County Flood Control District Kaweah Delta WCD Tule Subbasin GSAs Tulare Lake Subbasin GSAs
Friant-Kern Canal	Capacity loss from reduced canal slope and cracks	Friant Water Authority
Local Canals	Capacity loss from reduced canal slope and cracks	Tulare Irrigation District Kaweah Delta WCD Other local ditch companies
Gravity Pipelines	Capacity loss from reduced pipeline slope or failure from overpressure	Lindmore Irrigation District
Supply Wells	Collapse of deep wells that prevents use and requires repair or replacement	Self Help Enterprise Local Drillers Local landowners with wells
Other Infrastructure	Uneven settlement that requires repairs or replacement	Tulare County Resources Management Agency – Road Dept. California High Speed Rail

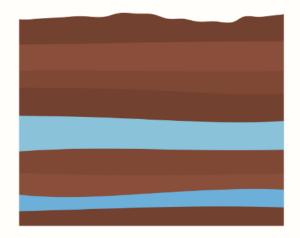
The Friant Kern Canal has <u>not</u> been impacted by land subsidence in the Kaweah Subbasin.

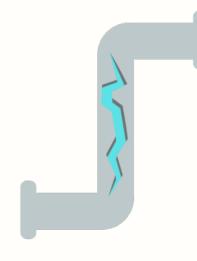

Undesirable Result Land Subsidence

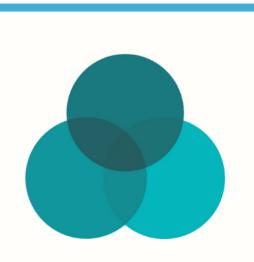
When the cumulative subsidence minimum threshold is exceeded at <u>any single</u> Representative Monitoring Site


Minimum Thresholds Land Subsidence

- 1. <u>No new subsidence</u>
- 2. Coordinated across the Kaweah Subbasin (& with neighbors)
- 3. Revised minimum thresholds are more protective of all beneficial users, uses, and property interests
- 4. Minimized residual subsidence (average 3.1 ft subsidence across subbasin from 2020)
- 5. Coupled land subsidence and lower aquifer groundwater level sustainable management criteria

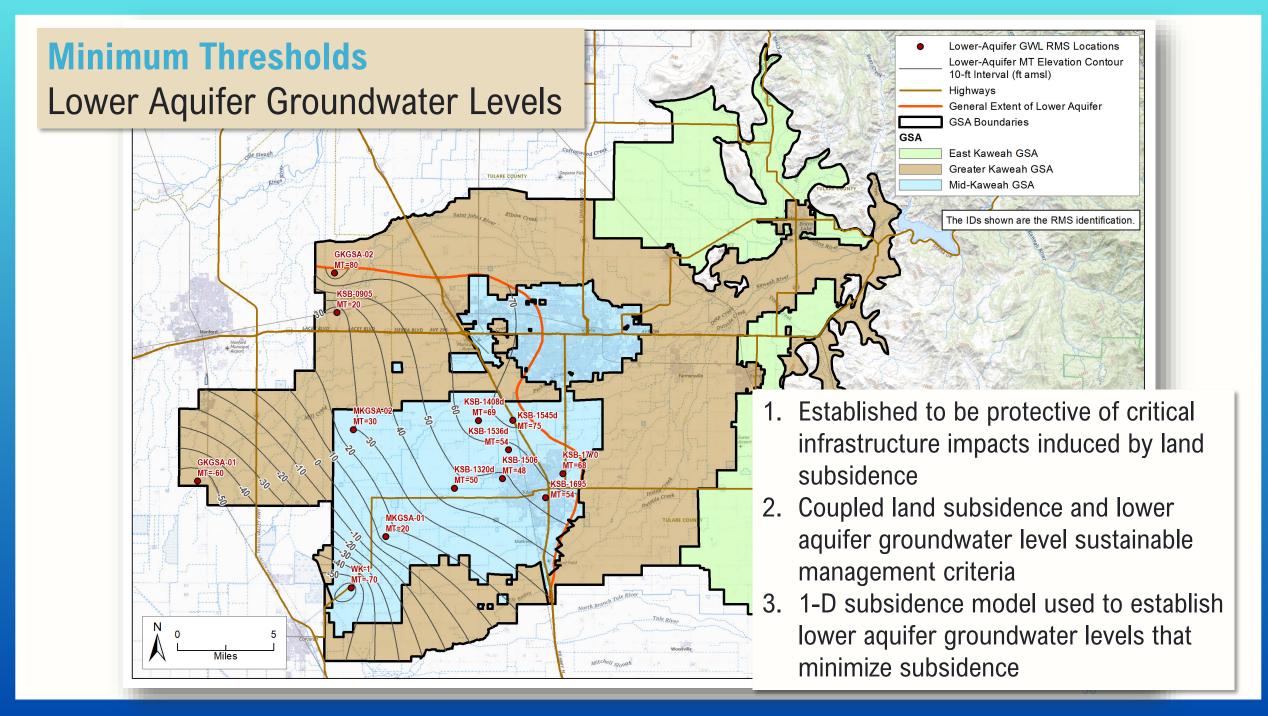

Measurable Objective Land Subsidence

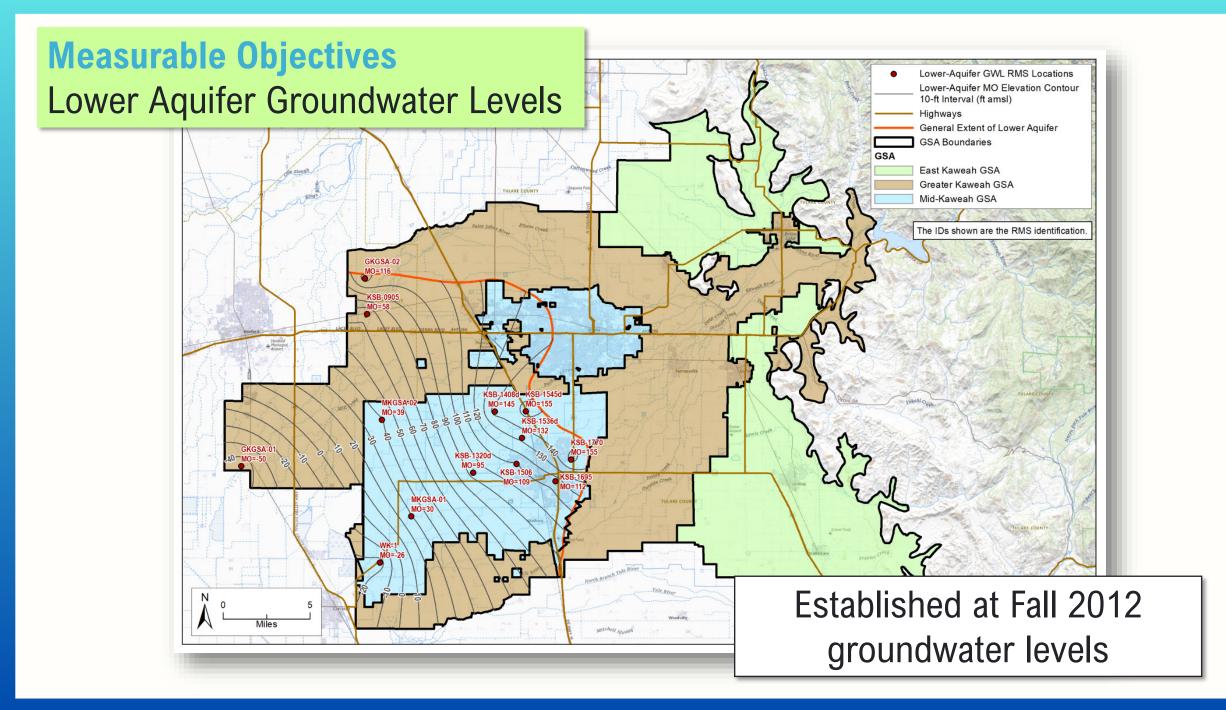

- 1. <u>No subsidence</u>
- 2. Requires the challenge of transitioning of groundwater pumping from the lower aquifer to the upper aquifer


DWR Deficiencies

1st Amended GSPs (2022)

The Plan does not set minimum thresholds to avoid undesirable results and significant and unreasonable impacts on beneficial use The Plan does not have sufficient clarity in Mitigation Framework and Plans The Plan does not set subsidence sustainable management criteria that would avoid substantial interference with land surface use and critical infrastructure


The Plan does not consider how minimum thresholds for one sustainability indicator affect minimum thresholds for another


Undesirable Result Lower Aquifer Groundwater Levels

A lower aquifer groundwater level minimum threshold is exceeded at any single Representative Monitoring Site **AND**

The corresponding subsidence minimum threshold (cumulative OR rate) is exceeded at any Representative Monitoring Site

All deficiencies listed are in reference to the 2022 1st Amended GSP.

The Kaweah Subbasin has since made substantial improvements, as indicated by the status update.

DWR Deficiencies Released in March 2023	Status
1.A Groundwater Level SMC	Addressed
1.B SMC Relationships	Addressed
1.C Mitigation	Addressed
2. Land Subsidence SMC	Addressed

SMC = Sustainable Management Criteria UR = Undesirable Result MO = Measurable Objective MT = Minimum Threshold

SWRCB Draft Staff Report Deficiencies Released in May 2024	Status
(GL)-1 Groundwater Level UR	Addressed
(GL)-2 Groundwater Level MT	Addressed
(GL)-3 SMC Relationships	Addressed
(GL)-4 Mitigation	Addressed
(LS-1) Land Subsidence SMC/Identification of Beneficial Users and Property Interests	Addressed
(LS-2) SMC Relationships	Addressed
(LS-3) Land Subsidence URs and Risk of Impacts	Addressed
(GWQ)-1 Groundwater Quality UR	In-process
(GWQ)-2A-C Groundwater Quality SMC	In-process
(GWQ)-3A-3B Groundwater Quality Monitoring	In-process
(GWQ)-4A-B Groundwater Quality Management Actions	Addressed
(ISW)-1 Interconnected Surface Water Impacts	In-process
(ISW)-2 Interconnected Surface Water MT	In-process
(ISW)-3 Interconnected Surface Water Monitoring	In-process

CONTINUING OUR PATH TO SUSTAINABILITY

2040 SUSTAINABILITY ACHIEVED

······

SEPTEMBER 2024 2ND AMENDED GSP SUBMITTAL with swrcb new deficiencies addressed

1.....

JUNE 2024 RELEASE OF DRAFT 2ND AMENDED GSP FOR PUBLIC REVIEW WITH DWR DEFICIENCIES ADDRESSED

2020 INITIAL GSP SUBMITTAL

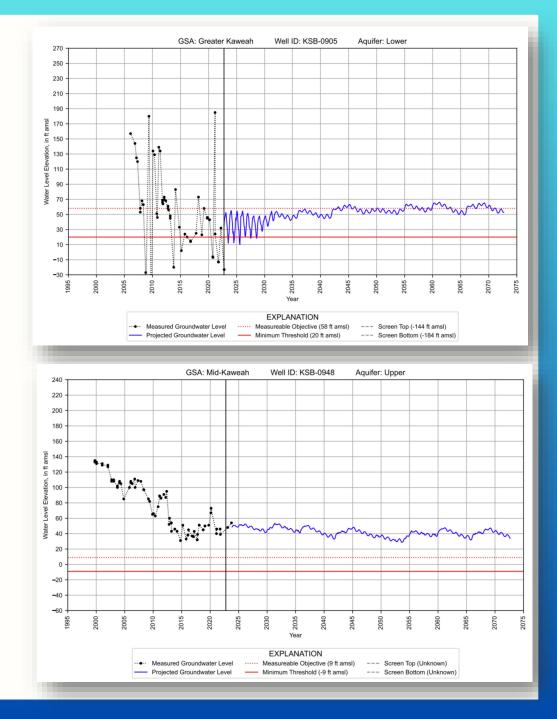
IMPLEMENTATION COMMENCES

2022 1ST AMENDED GSP SUBMITTAL

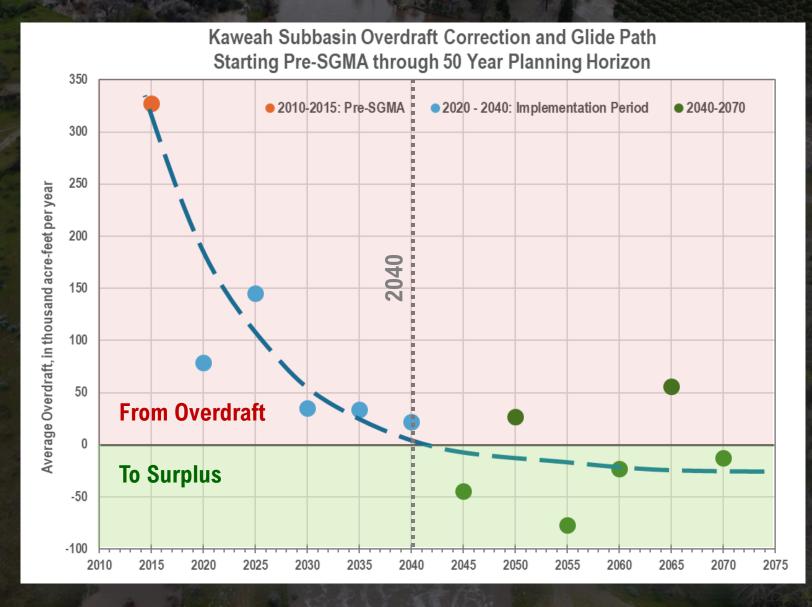
2016 GSA FORMATION

•••••••
2015
SGMA ENACTED

The Kaweah Subbasin has projects being implemented <u>now</u> and more projects actively in the queue.


Projects Implemented as of June 2024		Projects In-Progress (Planni	Upcoming			
Lakeland Canal Deliveries	Cordeniz Recharge Basin	Upper Lewis Creek Recharge	Hannah Ranch Flood Control Project	Wutchumna Ditch Recharge		
Recharge Basin Improvement	Okieville Recharge Basin	Cottonwood Creek Recharge	Cross Creek Layoff Basin	Stone Corral Surface Storage		
	enternie Reenarge Baenn	Yokohl Creek Recharge	New Recharge Basins	Ketchum Flood Control and Recharge Project		
Paregien Expansion Flood Control Project	KDWCD/Visalia/Tulare ID Packwood Creek Linear Recharge Project			Delta View Canal		
			Kings River Surplus Water	Kings River Floodwater Arrangement		
Greater Fallowing Program	City of Visalia/TID Exchange Program	Lindmore/Exeter Dry Wells	Greater Fallowing Program	Tulare ID/City of Tulare Catron Basin		
	Sun World International / TID			Vadose Zone Well Battery Project		
Lower Lewis Creek Recharge	Exchange	Flying Dragon Recharge Basin	On-Farm Recharge	Kaweah Subbasin Multi-Benefit		
	TID/Friant Leveraged Exchange	Lindmore Irrigation District	Visalia/Tulare ID Cameron	Recharge Facility		
Lindsay Recharge Basin	Program	Recharge Basins	Creek Linear Recharge Project	TID/GSA Multi-Benefit Land Repurposing Recharge Basin		
Lindmore Irrigation District Recharge Basins	Visalia Eastside Regional Park/Groundwater Recharge Project	Sentinel Butte Flood Capture	MKGSA Groundwater Banking Operations	Seaborn Reservoir		
			McKay Point Reservoir			

Predictive modeling can tell us if the Kaweah Subbasin's strategy will achieve the sustainability goal by 2040 and if the strategy is feasible.


Predictive Modeling Considers:

- Demand management policies (and timeline to implement)
- Implementation of Reliable Projects (and timeline to operation)
- Climate Change
- Transition of pumping from the lower aquifer to the upper aquifer

Kaweah Subbasin Technical Team has performed 97 predictive model runs

The Kaweah Subbasin will be sustainable by 2040.

44