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LECTURE 1

Preliminaries

Synopsis. This first lecture is just a bit of Linear Algebra backstory:
As an introduction to the course, I thought to play with the structure of
Euclidean space and linear algebra just to establish notation and begin the
conversation. I also used a bit of Mathematica for visualization.

Helpful Documents. Mathematica: IntersectingPlanes.

1.1. Real Euclidean Space Rn.

Figure 1. The plane R2.

1.1.1. The plane. The real plane is
often described as the set of all ordered
pairs of real numbers. We can write this
as

R2 = R ×R = {(x, y) ∣ x, y ∈ R} .
The way the plane R2 is built out of two
copies of the real line R is an example of a
Cartesian product, a way of building a new
set (called a product set) out of two sets,
whose elements are pairs of elements of the
two component sets, called factors, both R in this case. The set R2 is
useful when studying functional relationships between sets because we can
study the pairing given by the function as a subset “living inside” R2; We
assigning the values of the input variable x to the function f(x) to the first
slot of the ordered pair, and then we assign the values of the output variable
y = f(x) to the other slot of the ordered pair (See Figure 1). This gives us
a visual depiction of the functional relationship between x and y as the set
of solutions of the equation y = f(x) in the plane. Having this visual (read:
geometric) depiction of the function facilitates the study of its properties,
which is a central focus of what we call the calculus of functions of a single
variable, in this case.

We can construct the operation of addition in the product set R2 by
using the notion of addition in each factor R of R2 and forming an addition
in R2 component-wise:

(a, b) + (c, d) = (a + c, b + d).
With this addition (and the identity element (0,0) and an inverse (−a,−b)
for every set element (a, b)), we can turn R2 into a group. Here we would

1



2 1. PRELIMINARIES

call R2 = R ×R the direct product of the two groups R. (A direct product is
a Cartesian product on the underlying sets with whatever added structure
the individual sets have and give to the product.) We can also multiply
elements of R2 by real numbers (scalars multiplication), where

c ⋅ (a, b) = (ca, cb), for a, b, c ∈ R,
and these two notions behave well together (meaning that they satisfy cer-
tain conditions that facilitate additional structure and study on R2).

1.1.2. Linear algebra. Now R is also a field, but R2 is not: One cannot
construct a good notion of multiplication in R2 that satisfies all of the field
axioms. However, with the notion of addition of ordered pairs, along with
scalar multiplication, we can give R2 the structure of a vector space over R.

Definition 1.1 (Intuitive). A linear or vector space over a field is a set
V of objects together with two operations which can be added together and
multiplied by field elements in a “compatible” way.

It is common, in a linear space, to call the individual set elements “vec-
tors”. We also say that R2 is a vector space over R. But it will be a good
idea to make a very important distinction:

Using Figure 2 as a guide, we will distinguish between points in R2,
given by all 2-tuples of numbers written as

R2 = {p = (x, y) ∣ x, y ∈ R} ,
and vectors in R2, denoted as the set of all possible 2 × 1-matrices, or 2-
vectors

R2 = {p = [ x
y

] ∣ x, y ∈ R} .

Figure 2. Points versus vectors, as elements of R2.

Some notes:

● Technically speaking, these two descriptions of the plane are quite
different, even as there are “equivalent”. Note that I am using
quotes here because we have not yet defined this (mathematical)
term. But intuitively we do see these two descriptions of the plane
as the same. For now we will leave it as is.
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● In time, we will need to be able to define vectors based at arbitrary
points in R2. Noticing a difference between points and vectors
(with the same entries) as descriptions of the elements of the plane
will help greatly in this course when, for example, we define and
understand vector fields.

● We can add still more structure to the vector space R2. There is a
multiplication of vectors in R2 where the product is not a vector,
but a real number (a scalar): a scalar product, sometimes called a
dot product or an inner product on vectors (equivalently points):

[ a
b

] ● [ c
d

] = ac + bd ∈ R.

With this new structure, the plane becomes an example of an inner
product space. This is very useful for vector spaces, since with this
new structure, we can define notions of a distance between vectors,
a vector’s size, the angle between vectors, etc. And with these
notions of measurement, the plane R2, as an inner product space,
becomes a place where we can do Euclidean geometry. Hence,
with this additional structure, we call the plane an example of a
Euclidean Space.

1.1.3. The vector space Rn. All of this still works if we generalize
properly to ordered n-tuples of numbers: Define, for n ∈ N,

Rn = R ×R × . . . ×R
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n-terms

= {x = (x1, x2, . . . , xn) ∣ xi ∈ R, for i = 1, . . . , n}

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

⋮
xn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

RRRRRRRRRRRRRRRRRR

xi ∈ R, for i = 1, . . . , n

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

.

Now, a set of k n-vectors v1,v2, . . . ,vk ∈ Rn are called linearly indepen-
dent if for real scalars ci, i = 1, . . . , k,

(1.1.1) c1v1 + c2v2 + . . . + ckvk = 0

is only solved by c1 = c2 = . . . = ck = 0. If this is true, then none of the vectors
can be written as a linear combination of the others.

Example 1.1. v1 =
⎡⎢⎢⎢⎢⎢⎣

1
0
1

⎤⎥⎥⎥⎥⎥⎦
, v2 =

⎡⎢⎢⎢⎢⎢⎣

2
1
1

⎤⎥⎥⎥⎥⎥⎦
, and v3 =

⎡⎢⎢⎢⎢⎢⎣

1
−1

2

⎤⎥⎥⎥⎥⎥⎦
are linearly

dependent since 3v1 − v2 − v3 = 0. Thus, for instance, one can write v3 as a
linear combination of the others;

3v1 − v2 = v3.
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If one can find n vectors that are linearly independent in Rn, then this set
of n vectors can act as a basis, in that any vector in Rn can then be written
uniquely as a linear combination of these basis vectors. So if v1,v2, . . . ,vn ∈
Rn are linearly independent (that is, if they form a basis), then any vector
in Rn can be uniquely determined by the coefficient ci’s:

Rn = span{v1,v2, . . . ,vn}

=
⎧⎪⎪⎪⎨⎪⎪⎪⎩
x =

⎡⎢⎢⎢⎢⎢⎣

c1

⋮
cn

⎤⎥⎥⎥⎥⎥⎦

RRRRRRRRRRRRRR
x = c1v1 + . . . + cnvn, ci ∈ R

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

Here, the term span{⋅} is just the set of all linear combinations of the ele-
ments given. Note that we typically call the ci’s the coordinates, or compo-
nents of the vector x. And when we specify a vector in Rn without choosing
explicit values for the components, we usually declare variables for the com-
ponents as placeholders for calculation. Using the variables x1, . . . , xn for
the components of x ∈ Rn, or, say, x, y, z, for x ∈ R3, we can then study the
structure of Rn and functions involving x via these variables. We will return
to this idea very late in this course.

Here is an interesting side note from linear algebra: Using v1,v2, . . . ,vn ∈
Rn as a basis for Rn, the lines through the origin formed by taking the set
of all multiples of each vector vi can serve as axes for a coordinate system
on Rn. Indeed, if each vi serves as a unit of measurement (a measuring
stick) on the line that it determines, then the ci’s in any linear combination
of basis vectors are the coordinates in that coordinate system, and different
from what would be considered the standard basis of Rn:

Example 1.2. Construct the vectors

e1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
⋮
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, e2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0
⋮
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, . . . , en =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
⋮
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

These vectors form a basis of Rn, since Rn = span{e1,e2, . . . ,en}. This is
called the standard basis for Rn. See Figure 3 below.

Note that this standard basis can be used to define the equivalence
between the notion of Rn defined as points and the notion of Rn defined as
n-vectors.

1.2. Linear spaces inside Rn

Given any set of vectors in Rn, their span may or may not be all of Rn
(if the number of vectors is less than n, they will definitely not). But they
will generate a vector space. And in the case where that vector space is not
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Figure 3. The standard bases in R2 and R3.

all of Rn, how it sits inside Rn will be important. We call a vector space
generated by a subset of vectors in a vector space a vector subspace:

Definition 1.2. A linear or vector subspace W of a vector space V is a
subset of the elements of V that satisfy

(1) 0 ∈W ⊂ V ,
(2) If w1,w2 ∈W , then w1 +w2 ∈W , and
(3) if w ∈W , then for all c ∈ R, cw ∈W .

Figure 4. The xy-plane in R3.

It is good to note here that ALL vector
subspaces pass through the origin (contain
the zero-vector).

And going back to Equation 1.1.1, note
that for any k ∈ N, the set of n-vectors
span{v1,v2, . . . ,vk} is ALWAYS a linear
subspace of Rn. How big it is as a subspace

depends on the number of vis that are linearly independent.

Example 1.3. The set span

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
0
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

0
2
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

2
3
0

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
is commonly referred

to as the xy-plane in R3, thinking of the standard coordinates in R3. The
span of these three vectors only makes a plane in three space since the third
vector is simply twice the first plus 3/2 times the second. A basis for the
span of these three 3-vectors can readily be the first two vectors in the
standard basis of R3. Note that one can also call this linear subspace the
(z = 0)-plane. In this way, the xy-plane is a version of R2 sitting inside R3

as a subspace of all 3-vectors with 0 in the last component. See Figure 4.

Example 1.4. span

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
2
3

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

2
4
6

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

3
6
9

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
is a line passing through the

origin in R3.
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Example 1.5. Let V = span

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a =

⎡⎢⎢⎢⎢⎢⎣

1
2
3

⎤⎥⎥⎥⎥⎥⎦
, b =

⎡⎢⎢⎢⎢⎢⎣

2
−2

3

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
. Then V ⊂ R3

is a 2-dimensional subspace, since a and b are linearly independent (recall
that the dimension of a (finite-dimensional) vector space is the number of
elements in any basis), and V ⊂ R3 will look like a plane passing through
the origin (See Figure 5, with a and b in red). The two 3-vectors

c =
⎡⎢⎢⎢⎢⎢⎣

1
−4

0

⎤⎥⎥⎥⎥⎥⎦
, d =

⎡⎢⎢⎢⎢⎢⎣

3
1
2

⎤⎥⎥⎥⎥⎥⎦
differ in that c ∈ V (shown in blue in Figure 5, while d /∈ V (shown in green
in the figure). Indeed, c = −a + b, but there are not constants ca, cb ∈ R,
where caa + cbb = d. We would say that d is linearly independent from V .

Figure 5. V = span{a,b}.

Further, by Example 1.5, we can view the lines
passing through a and b as coordinate axes for V .
And on each axis, we can use the length of the con-
tained vector as the unit length along that axis,
marking, for example, 0 at the origin and 1 at the
head of a. This provides a coordinate system di-
rectly on V , using the ordered pair (ca, cb) as the
coordinates in V . Thus the vector c ∈ V ⊂ R3 cor-

responds to the vector

⎡⎢⎢⎢⎢⎢⎣

1
−4

0

⎤⎥⎥⎥⎥⎥⎦
∈ R3 (or the point

(1,−4,0) ∈ R3), but in the coordinates defined di-

rectly on V by the basis {a,b}, c = [ −1
1

] ∈ V (or the point (−1,1) ∈ V )

in the parameterization of V given by the basis. The idea of placing coordi-
nates directly on a subspace instead of using the ambient coordinates of the
larger space is an important one. We will spend much time on this.

Figure 6. A line in R3

as the intersection of 2

planes.

1.2.1. Planes and Lines in R3. One way to de-
scribe a subspace like V ∈ R3 is through another form
of multiplication of vectors, this one where the product
of two 3-vectors is again a 3-vector. (Note that this is
extremely rare and for now is limited to R3.) The cross
product of two vectors a×b = n is a vector normal (as
in zero dot product) to both a and b. Hence, for any
vector n, the set of all vectors normal to n is a two
dimensional subspace V ∈ R3. And, if n is given as the
cross product of two linearly independent vectors a and
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b, then a and b serve as a basis for V . Indeed, endow
R3 with the coordinates x, y, and z. Then the equation

n ●

⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

n1

n2

n3

⎤⎥⎥⎥⎥⎥⎦
●

⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
= 0 = n1x + n2y + n3z,

defines a plane passing through the origin in R3. In Example 1.5, we have

n =
⎡⎢⎢⎢⎢⎢⎣

n1

n2

n3

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

1
2
3

⎤⎥⎥⎥⎥⎥⎦
×
⎡⎢⎢⎢⎢⎢⎣

2
−2

3

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

2(3) − 3(2)
−(1)3 + 3(2)
1(−2) − 2(2)

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

12
3
−6

⎤⎥⎥⎥⎥⎥⎦
.

Thus the vector (sub)space V is defined

V =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
∈ R3

RRRRRRRRRRRRRR
12x + 3y − 6z = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

Check for yourself that, for the vectors Example 1.5, a,b,c ∈ V , but d /∈ V .
But this automatically suggests a good generalization to the equation for

planes that do not pass through the origin. Recall from linear algebra that
one can describe a vector that is based not at the origin via the difference
between two vectors based at the origin; a vector va based at a = (a1, a2, a3) ∈
R3, with head at b = (x, y, z) can be written as va = b−a, with a,b the vector
equivalents of the points a, b, respectively. This follows from the geometric
interpretation that one can envision the sum of two vectors by translating
the base of one summand to the head of the other, as in Figure 7.

Figure 7. The geometric interpretation of vector addition and subtraction.

In a certain sense, however, the vector va is not an element of R3, since
it is not based at the origin. But using the coordinates of R3, we can still
describe vectors like va via vector addition (subtraction) and using actual
origin-based vectors (elements of R3). And this is where we can talk about
planes and lines that do not pass through the origin. Indeed, any non-trivial
vector based at a with head at b will generate a line in R3 via its span (as
the set of all vectors, based at a, that are multiples of va). It can then be
written as a vector solution to

b =
⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
, where va = b − a =

⎡⎢⎢⎢⎢⎢⎣

x − a1

y − a2

z − a3

⎤⎥⎥⎥⎥⎥⎦
.
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In this fashion, we can now describe any plane in R3: Given any vector na,
based at a, one can describe a plane in R3 passing through a and normal to
na via the equation

na ● va =
⎡⎢⎢⎢⎢⎢⎣

nx
ny
nz

⎤⎥⎥⎥⎥⎥⎦
●

⎡⎢⎢⎢⎢⎢⎣

x − a1

y − a2

z − a3

⎤⎥⎥⎥⎥⎥⎦
= 0 = nx(x − a1) + ny(y − a2) + nz(z − a3).

Note that this plane is not a linear subspace of R3 as a vector space (the
vector x = y = z = 0 is not in the plane, for example, when any of the
three ai’s are nonzero). But it is a vector space, has a basis, and will play
a very important role in understanding how functions involving more than
one independent variable behave, as we will see.

One conclusion that can be drawn from this is that one can define a
plane in R3 via a single equation. But then, what is the equation of a line
in R3? Here is an example:

Example 1.6. Consider the solution set for the set of equations:

x + 2y + 3z = 4 (eq1)
2x − 2y + 3z = 1 (eq2)

} 2 equations in 3 unknowns.

So what does this solution set in R3 look like? To see, solve as best as one
can:

(eq1) + (eq2) ∶ 3x + 6z = 5
2(eq1) − (eq2) ∶ 6y + 3z = 7

.

Then

x = 5 − 6z

3
, y = 7 − 3z

6
, z is free.

Better yet, we can place a single parameter t directly on this set by setting
z = t, so that x = 5−6t

3 and y = 7−3t
6 , along with z = t makes a parameterized

curve (a line) in R3. One could also write this as a function (using vector
notation):

c ∶ R→ R3, c(t) =

⎡⎢⎢⎢⎢⎢⎢⎣

5−6t
3

7−3t
6

t

⎤⎥⎥⎥⎥⎥⎥⎦

.

Note that, in this parameterization, we still have 3 equations in 4 unknowns.
Do you notice a pattern between the number of equations, the number of
unknowns and the “size” of the space of solutions?

1.3. Linear functions.

So, roughly speaking, a space V is called linear if any linear combination
of two elements in V is still in V . So what, then, is a linear function?



1.3. LINEAR FUNCTIONS. 9

Definition 1.3. A function f ∶ R→ R is called linear if

f(c1x1 + c2x2) = c1f(x1) + c2f(x2), ∀x1, x2 ∈ R, c1, c2 ∈ R
Notes:

(1) With appropriate changes, this works equally well for f ∶ Rn → Rm.
(2) Using this definition, then, the function f(x) = 3x is linear, but the

function g(x) = 3x + 1 is NOT! To see this,

g(2 + 3) = g(5) = 3(5) + 1 = 16

/= g(2) + g(3) = (3(2) + 1) + (3(3) + 1) = 17.

The issue here is that for a function to be linear, the origin of
the domain (the input space) must be mapped to the origin of the
output space, so that f(0) = 0. But here g(0) = 1. And thus, g(x)
is not linear. It is an example of an affine function, one that can
be seen as a composition of a linear function and a translation.

(3) Let f ∶ Rn → Rm be linear. Then, given a basis {v1, . . . ,vn} for the
domain Rn, we can write any x ∈ Rn as

x = c1v1 + . . . + cnvn.
Then, since f is linear, we have

f(x) = f(c1v1 + . . . + cnvn) = c1f(v1) + . . . + cnf(vn)

= m

⎧⎪⎪⎨⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

∣ ∣
f(v1) . . . f(vn)

∣ ∣

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

⎡⎢⎢⎢⎢⎢⎣

c1

⋮
cn

⎤⎥⎥⎥⎥⎥⎦
= Am×nx.

Hence, any linear map between vector spaces can always be repre-
sented by a matrix.





LECTURE 2

Functions of Several Variables.

Synopsis. Today we begin the course in earnest in Chapter 2, although,
again like in Lecture 1, we will be covering the material mostly for notation
and viewpoint. Pay close attention to why and how we visualize functions,
through parameterizations, graphs, slices and sections. These will expose
the visual clues to how we analyze functions.

Helpful Documents.

● Mathematica: CurvesInSpace,
● Mathematica: ParameterizedSurfaces,
● Mathematica: VisualizingFunctions, and
● PDF: LevelSets.

2.1. Properties of Functions.

A function f ∶ X → Y from a set X to another set Y is defined in a
manner equal to what you have already studied in single variable calculus
(and pre-calculus):

● f assigns to each x ∈ X a single element y ∈ Y , and every element
of X has an element of Y assigned to it.

● The set X is called the domain of the function, and Y is called the
codomain.

● f(X) ⊂ Y (as a set) is called the range of f , and more precisely
called the image of X in Y under f . It is defined explicitly as

f(X) = {y ∈ Y ∣ y = f(x) for some x ∈X} .
● For a subset Z ⊂ Y , the set

f−1(Z) = {x ∈X ∣ f(x) ∈ Z}
is called the inverse image of Z in X under f , or the preimage of
Z in X (under f). Note that if y /∈ f(X), then f−1(y) = ∅ is still
well-defined. Note also that the notation does not imply that the
function f has an inverse function. The set f−1(Z) ⊂ X is only a
set.

● f is called one-to-one, or injective, if

#{x ∈X ∣ f(x) = y} ≤ 1, ∀y ∈ Y.
● f is called onto or surjective if ∀y ∈ Y , y = f(x) for at least one
x ∈X.

11
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● f is called bijective if f is both injective and surjective.

Note that, for this class, X and Y will be subsets of Euclidean space,
although often not the same space nor the same dimension.

Here is some additional nomenclature and notation:

● Let X ⊂ Rn and Y ⊂ Rm. If m = 1, we call f ∶ X → Y a real-
valued or scalar-valued function on X, or on n-variables (restricted
to X). If m > 1, we say f is vector-valued. As we will see, vector-
valued functions consist of expressions that are real-valued on each
coordinate of Rm.

● Where important to the discussion, we will denote scalars as x ∈ R,
and vectors as x ∈ Rn, n > 1. We will also denote a real-valued
function as f , and a vector-valued function as f . In lecture, we
will employ the vector notation x⃗ and f⃗ , since boldface is difficult
in chalk. Note that when it is not important to the discussion, or
for general situations, it is the case that we will use boldface for
variables, and possibly write f ∶ X → Y , and f(x) = y, even if
X ∈ Rn, n > 1, and y ∈ Y ⊂ Rm, m > 1. This is common in analysis
and should be clear in context.

● a function f ∶ X → Y is often called a map (or a mapping) from X
to Y . In some contexts, a function and a map are not the same
thing, but often they are used interchangeably.

Definition 2.1. A map p ∶ X → X is called a projection if
p(p(x)) = p(x), ∀x ∈X.

– Here, the set comprising the image p(X) ⊂ X is called the
projection of X onto p(X). When X is a linear space and
p a linear projection, then p(X) is a linear subspace. See
Example 2.1 below.

– A projection p, restricted to its image, is the identity map. We
can write this as p∣

p(X) = Idp(X).
– For X = Rn, the map pi ∶ Rn → Rn, defined by

pi ((x1, . . . , xi−1, xi, xi+1, . . . , xn)) = (0, . . . ,0, xi,0, . . . ,0)

is called the ith projection. Sometimes, one may write pi(x) =
xi, but this is not quite correct.

– There are many extensions and generalizations of the idea of
projection in various areas of mathematics, including some
that do not seem to fit the definition above. (See, for instance,
the separate document StereographicProjection.) For now,
here are a couple of examples.
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Example 2.1. A common projection onto a linear subspace of Rn is to
zero out one or more coordinates: In R3, the map

(x, y, z)z→ (x, y,0)
is a projection of 3-space onto the xy-plane (See the left side of Figure 8.

Figure 8. Projections in R3 onto the xy-plane (at left), and the unit sphere

S2 (at right).

Example 2.2. The map r ∶ R3 − {0}→ S2, r(x) = x
∣∣x∣∣ is the map which

normalizes every non-zero vector in R3. Here

S2 = {x ∈ R3 ∣ ∣∣x∣∣ = 1}
is called the unit sphere in R3, seen on the right of Figure 8. Do you see
why 0 ∈ R3 cannot be in the domain of r?

2.2. Visualization of functions.

Visualizing functions either defined on subsets of Rn and/or to Rn, when
n > 1 can be tricky. Some tools that are useful include:

2.2.1. Graphs. In its most basic form, a relation is defined as any
subset of the Cartesian product of two (or more) sets. And then a graph
of a relation is just any visual depiction of that relation. When the two
sets are subsets of real space X ∈ Rn and Y ⊂ Rm, then the relation is a
subset of Rn×Rm = Rn+m. Often, relations among real variables are given by
equations, and in this case, the graph is the set of solutions to the equations
“living” inside the direct product of copies of R, one for each of the variables.
And sometimes these relations are functional in one or more of the variables.
In this case, solving the equation for one of the variables creates a function
whose output is that solved-for variable and whose input(s) are the other
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variables. In this case, the graph of that function takes on a particular look;
that of a“height over a floor” schematic:

Definition 2.2. For f ∶X ⊂ Rn → R, the graph of f is the set

graph(f) = {(x, f(x)) ∈ Rn ×R = Rn+1 ∣ xn+1 = f(x)} .

Note that this is quite useful for n = 2 (so that the graph “lives” in
R3, but not so useful for n > 2. Also, this is the proper generalization
for the way graphs of functions were constructed in pre-calculus and single
variable calculus. And, generally speaking, the “size” of f(X) ∈ R3 will be
the same as that of X. It should be easy to see that it is always the case
that graph(f) ⊂ Rn+1 always projects to (a copy of) X ⊂ Rn ×R as

(x1, x2, . . . , xn, f(x))z→ (x1, . . . , xn,0).
See Figure 9. More generally, we have:

Definition 2.3. For f ∶X ⊂ Rn → Rm, m ≥ 1, where f(x) = y, the graph
of f is the set

graph(f) = {(x, f(x)) ∈ Rn ×Rm = Rn+m ∣ y = f(x)} .

Figure 9. For f ∶ X ⊂ Rn → R,

graph(f) ⊂ Rn+1.

Consider the vector-valued function g ∶
X ⊂ R2 → R2, defined by g(x) =

g([ x
y

]) = [ g1(x, y)
g2(x, y) ] . Here, for i = 1,2,

each gi ∶ X → R is a real-valued function,
called a component function or a coordinate
function. But the graph of g ⊂ R4 is the set

graph(g) = {(x, y, z, u) ∈ R4 ∣ z = g1(x, y)
u = g2(x, y) } .

It is already hard to visualize!
An easier example to visualize is the

function h ∶ R→ R2, h(t) = (cos t, sin t). Its graph lives in R3 as a curve

graph(h) = {(t, x, y) ∈ R3 ∣ x = cos t, y = sin t} .
As one can see in Figure 10, this curve can be visualized and studied, but
is still a bit tricky to analyze.

2.2.2. Parameterizations. Generalized coordinates can be placed di-
rectly on a subset of Rn through continuous functions so that points on
the subset are distinguishable via parameter values instead of ambient co-
ordinates. (One does this on a sphere when one speaks of the latitude and
longitude of a point on our Earth.) A parameterization allows one to de-
scribe a subset of Rn by a smaller number of variables; one can generally
talk of a subset having a dimension equal to the number of variables it takes
to distinguish points on the subset, although the notion of dimension for a
space is not always very well defined.
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Figure 10. Projections in R3 onto the xy-plane (at left), and the unit sphere

S2 (at right).

Return to the function h ∶ R→ R2, h(t) = (cos t, sin t) ∈ R2, and consider
only the image of h ⊂ R2. Here, we say that h parameterizes the unit circle
in the plane. In this case, t is a coordinate, defined directly (and only)
on the circle of radius 1 in R2, and is a 1-dimensional parameterization.
Note here that, broadly speaking, parameterizations should be one-to-one
as functions, so that points are distinguished adequately. However, this is
not true in general, and this example is telling. Here, we would say that this
parameterization is locally-injective. We caution, though, that even this is
not true in general.

Figure 11. Parameterization of S1 ⊂ R2 via h ∶ R→ R2, h(t) = (cos t, sin t).

Example 2.3. Let D ⊂ R2 be the rectangle

D = {(θ,ψ) ∈ R2 ∣ θ ∈ [0,2π], ψ ∈ [0, π]}
as a subset of R2. Then the function Φ ∶ D → R3, Φ(θ,ψ) =
(sin θ sinψ, cos θ sinψ, cosψ) provides coordinates directly on the unit sphere
in three space that correspond to the azimuth angle θ and polar angle ψ of
the standard spherical coordinate system in R3.

Note here two things:
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Figure 12. Parameterization of S2 ⊂ R3 via Φ ∶ D → R3.

(1) The function Φ in Example 2.3 is injective, but only on the interior
of D, and maps the bottom and top edges of D to the north and
south poles, respectively, and maps both the left and right edges of
D on top of each other and to one of the half-great circles stretching
from the north pole to the south. Can you draw this seam on the
sphere in Figure 12.

(2) The parameterized objects in these examples are not graphs of
functions. They are visual depictions, yes, but they do not satisfy
Definition 2.3. They are actually the image of the function defining
the parameterization. Hence we would call the unit circle S1 =
image(h) in Figure 11, and the two-sphere S2 = image(Φ) in
Example 2.3. However, it is more common to write S1 = h(R),
and S2 = Φ(D) to denote a functions’s full image. We will use this
notation going forward.

Figure 13. A surface which is not the

graph of a function defined on the xy-
plane in R3.

Now the domain of the graph of a func-
tion f ∶ X ⊂ Rn → R always parameterizes
graph(f) ⊂ Rn+1. See Figure 9. Can you
see why? However, as seen with the sphere
in Figure 12, it can also parameterize sub-
sets of Rn that are not the graphs of func-
tions. For example, in Figure 13, the planar
rectangle R = [−2,2]×[−1.5,1.5], has image
F (R) ⊂ R3 via the function F ∶ D → R3, de-

fined by F (u, v) = (u, 3(v3−v)
4 , 2v

5 ) .

2.2.3. Slices and sections of graphs of functions. Understanding
the features of graphs of functions of more than one variable can sometimes
be facilitated by slicing through the graph, thus fixing the value of one or
more variables, either parallel to the domain (a section), or perpendicular
to the domain (a slice). First, some definitions:

Definition 2.4. Let f ∶X ⊂ Rn → R be a real-valued function on X.

(a) A c-level set of f is {x ∈X ∣ f(x) = c}.
(b) A (horizontal) section of f at c is the set

{(x, c) ∈ graph(f) ⊂ Rn+1 ∣ c = f(x)} .
Note that this is just the graph of a c-level set, and is sometimes called
a c-contour set.
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It is important to note here that a c-level set of a function f ∶X ⊂ Rn → R
is a subset of the domain X, while a horizontal section is a subset of the
graph of X under f .

Example 2.4. Let f ∶ R2 → R be defined by f(x, y) = x2 + y2. This
function is called a parabolic bowl due to the shape of the graph, as in
Figure 14, at left.

Figure 14. The z = 8-section and c = 8-level set of z = f(x, y) = x2 + y2.

Some notes:

● All c-level sets in Example!2.4 are circles in the plane, centered at
the origin and of radius

√
c . They satisfy the equation c = x2 + y2.

● One can view c-level sets as the projections of a horizontal section
back down into the domain, viewed as part of Rn+1 representing
the floor z = 0.

● One can also write a c-level set as the inverse image (as a set) of
an output value c ∈ R. Here f−1(c) ⊂X. Note that in Example 14,
f−1(c) = ∅, for c < 0. But still, f−1(c) is well-defined in these cases
and f−1(−3) ⊂X, even as it is empty.

In contrast, a vertical section (or slice) of graph(f) is the intersection
of graph(f) with a vertical subspace of Rn+1 formed by setting one of the
domain variables to a constant. So for

graph(f) = {(x1, x2, . . . , xn, z) ∈ Rn+1 ∣ z = f(x)} ,
the xi-slice at xi = c is the set

{(x, z) ∈ Rn+1 ∣ z = f(x1, . . . , xi−1, c, xi+1, . . . , xn)} .
Back to f ∶ R2 → R, f(x, y) = x2 + y2 in Example 2.4, the y = 2-slice is

shown in Figure 16, and given by the equation z = x2 + 4 in the xz-plane
defined at y = 2. The y = 2-slice is a curve in R3 parameterized by x, and is
the set

{(x,2, x2 + 4) ∈ R3} .
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Figure 15. The 2 coordinate slices through graph(f), for f ∶ X ⊂ R2 → R.

Figure 16. The y-slice at y = 2 of the function z = f(x, y) = x2 + y2.



LECTURE 3

Limits.

Synopsis. Today, we define and investigate the notion of a limit in more
than one dimension. This is much more subtle than in the Calculus I case,
and much harder to fully investigate using the definition alone. Fortunately,
all of the “nice” functions from Calculus I are still “nice” in their multivari-
able generalization. Also, all of the properties of limits developed in single
variable calculus are still valid. We will not go deep in this section, but
just survey some ideas which we will explore in more detail in the context of
more advanced material. The accompanying Mathematica document details
some of the more basic pathological functions, where limits do not exist even
as intuition indicates they should.

Helpful Documents.

● Mathematica: PlottingSurfaces, and
● PDF: ProductRule.

3.1. Definition.

Recall from Calculus I the definition of a limit of a function at a point:

Definition 3.1. Let I ⊂ R be open and f ∶ I → R a real-valued function
on I. Then f has a limit L at x = c ∈ I, denoted

lim
x→c

f(x) = L,

if for every ε > 0, there is a δ > 0 such that if 0 < ∣x − c∣ < δ, then ∣f(x) −L∣ < ε.

Figure 17. On the left, f(x) has the limit L at x = c. On the right, x can
only approach c in R form two directions.

Some notes:

19



20 3. LIMITS.

● Defining a limit at c gives us a notion of what happens to the values
of the function near the input point c. There is no stipulation or
requirement that c be in the domain of the function. But if we are
to study what happens to the values of a function near a point,
then the domain either includes that point, or abuts to it (so that
one can get arbitrarily close to it). In a certain sense, This is the
essence of what calculus is really all about!

● If, anytime one can define a small (ε-)interval around L, one can
find a small (δ-)interval of inputs (around c, but not necessarily at
c) all of whose function values stay in the function-value interval
(see the left side of Figure 17), then near c, all function values stay
near L, and the limit will exist.

● Of course, limits can exist even when function values at c are dif-
ferent or nonexistent. In Figure 18, the limit is the same at x = c
for all three graphs.

● In R, the idea of x approaching c involves only 2 possible directions,
as shown on the right of Figure 17. These correspond to the one-
sided limits

lim
x→c−

f(x), and lim
x→c+

f(x).

And only when these two “side” limits both exist and are equal,
does the actual limit exist.

Figure 18. In all three cases here, lim
x→c

f(x) = L.

Figure 19. What possible choice for L
could work as a limit for f(x) at x = c?

In Figure 19, lim
x→c−

f(x) /= lim
x→c+

f(x). Hence

limx→c f(x) does not exist. To see this,
make a choice for what the limit L could
possibly be. Then choose an ε > 0 which
is small enough to not include both ends
of f(x) near x = c. Then there will al-
ways be points x arbitrarily close to c where
f(x) /∈ (L − ε,L + ε).

In the case of a vector-valued function
of more than one variable, f ∶X ∈ Rn → Rm
with x ∈ Rn, and f(x) ∈ Rm, we need gener-
alize Definition 3.1 only slightly. However,
the ramifications of this generalization are
quite complex.
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Definition 3.2. A function f ∶ X ⊂ Rn → Rm has a limit L at x = c,
denoted

lim
x→c

f(x) = L

if, for every ε > 0, there is a δ > 0 such that if 0 < ∣∣x − c∣∣ < δ, then
∣∣f(x) −L∣∣ < ε.

Here, ∣∣⋅∣∣ is the Euclidean norm in real space, defined by

∣∣x − y∣∣ =
¿
ÁÁÀ

n

∑
i=1

(xi − yi)2 .

Figure 20. Approaching a domain

point c in two dimensions.

Notice all of the similarities, and one big
difference: The number of ways to approach
c in the domain makes things a lot more
complicated! See Figure 20

To understand this, we need to intro-
duce some topology: The Euclidean met-
ric on Rn allows for a nice definition of an
“open” set, much like an open interval in R.

3.2. Topology in Rn.

Definition 3.3. An open ball of radius
ε > 0, centered at c ∈ Rn is

Bε(c) = {x ∈ Rn ∣ ∣∣x − c∣∣ < ε} .

Some notes:

● In R3, this is the usual ball you played with as a kid (see Figure 21),
but without the skin!

● In R2, it is the disk of radius ε without the circle edge. And in R?
How about R17?

● One can think of this ball as the set of all vectors of length less
than ε based at c (and not at 0.

Definition 3.4. A closed ball of radius ε > 0, centered at c ∈ Rn is

Bε(c) = {x ∈ Rn ∣ ∣∣x − c∣∣ ≤ ε} .

Figure 21. An r-ball about c ∈ R, c ∈ R2 and c ∈ R3.
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Here, the “skin” of the ball (technically, its boundary), is the set

{x ∈ Rn ∣ ∣∣x − c∣∣ = ε} .

What does this skin look like in R5, for example? In R? Does this thing
have a name? It winds up being the boundary of both Bε(c) and Bε(c).

Definition 3.5. A set X ∈ Rn is called open if ∀x ∈X, ∃ε > 0 such that
Bε(x) ⊂X.

Definition 3.6. A point x ∈ Rn is a boundary point of X ⊂ Rn if ∀ε > 0,
Bε(x) contains points in X and points not in X. See Figure 22.

Definition 3.7. A set X ∈ Rn is called closed if it contains all of its
boundary points.

Example 3.1. Given ε > 0, the set

D = {x ∈ R3 ∣ ∣∣x∣∣ < ε and z ≥ 0}
is neither open nor closed in R3. It contains some but not all of its boundary
points.

Definition 3.8. Given X ∈ Rn, A point x ∈X is an interior point of X
if ∃ε > 0 such that Bε(x) ⊂X.

Figure 22. A boundary point x ∈ Rn
of X.

We note here that, given X ⊂ Rn and
an interior point x ∈ X, we call X a neigh-
borhood of x. A neighborhood X is open
when, of course X is open in R3. We will
often refer to open neighborhoods of a point
x without regard to which one we choose.

Here is a better way to “see” a limit
without a graph? Separate the domain
and codomain spaces. Given a function
f ∶X ⊂ Rn → Rm, f has a limit L at x = c if,
given any ε-ball Bε(L), one can find a δ-ball
Bδ(c) so the image f (Bδ(c)) lies entirely inside Bε(L) (except possibly at
c).

In practice,

(1) Limits are hard to calculate using the definition, as pathological
functions create a diverse array of issues.

(2) Limits follow all of the typical rules found in Calculus I (See page
106.

(3) Most functions in vector calculus are “nice”: They behave well on
their full domain:
● vector-valued functions are scalar-valued on each component.
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● Scalar-valued functions involving trig, exponential, logarith-
mic, rational and polynomial functions are nice even if their
arguments involve many variables.

Example 3.2. The function f ∶ R2 → R, f(x, y) = cos(x + y)
will still have limits everywhere for the same reasons the cosine
function did in single variable calculus.

3.3. Techniques for study.

3.3.1. Directional approach. One technique to study whether a limit
exists or not is to reduce the approach of x to c to one direction, and use
all of the techniques one learns from Calculus I. While this can often be
useful for establishing a limit may not exist (coming in from two different
direction yields to different values), it is dangerous to use to establish a limit
(See accompanying Mathematica files for examples).

Example 3.3. Let f ∶ R2 → R be defined by f(x, y) = xy
x2+y2 . This

function is not defined at the origin in R2. But does the limit exist there?
Let’s explore by looking only at certain directions. To start, suppose we
approach the origin (0,0), along the linen y = 0 in the plane. Then

lim
(x,y)→(0,0)

f(x, y) = lim
(x,0)→(0,0)

x ⋅ 0
x2 + 02

= lim
x→0

0 = 0.

This result will be the same if we approached the origin along the line x− 0
(check this!). But nowm, let’s approach the origin in R2 along the line y = x.
Here

lim
(x,y)→(0,0)

f(x, y) = lim
(x,x)→(0,0)

x ⋅ x
x2 + x2

= lim
x→0

x2

2x2
= 1

2
.

If approaching from different directions yields different values for a limit,
then can a limit possibly exist?

Example 3.4. Let f ∶ R2 → R be defined by g(x, y) = x4y4

(x2+y4)3 . This

function is again not defined only at the origin in R2. Does the limit exist
at the origin? Let’s explore by again looking at certain directions. Suppose
we approach the origin (0,0), along the linen y = cx in the plane. This
should help to determine almost every direction of approach depending on
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the value of c ∈ R. (which directions are missed?) Then

lim
(x,y)→(0,0)

g(x, y) = lim
(x,cx)→(0,0)

x4(cx)4

(x2 + (cx)4)3
= lim
x→0

c4x8

(x6 + 3c4x8 + 3c8x10 + c12x12)

= lim
x→0

c4x2

(1 + 3c4x2 + 3c8x4 + c12x6) = 0.

So it would seem here that the limit odes actually exist and is equal to 0
in this case. However, let’s approach the origin along the parabola x = y2.
Then we have

lim
(x,y)→(0,0)

g(x, y) = lim
(y2,y)→(0,0)

(y2)4
y4

((y2)2 + y4)3
= lim
y→0

y12

8y12
= 1

8
.

It turns out that approaching from all directions is more complicated than
simply coming in linearly from each direction.

3.3.2. Polar coordinates. Switch to polar coordinates and use the
fact that Bε(x) = Bρ(x) where ρ is the “distance” variable in the spherical
coordinate system on Rn.

Example 3.5. Back to f ∶ R2 → R, f(x, y) = xy
x2+y2 , we convert the

coordinate system in the plane to polar coordinates through the equations
x = ρ cos θ, and y = ρ sin θ. Then

f(x, y) = f(ρ cos θ, ρ sin θ) = (ρ cos θ)(ρ sin θ)
(ρ cos θ)2 + (ρ sin θ)2

= cos θ sin θ = f(ρ, θ).

But approaching from different linear directions to the origin means ap-
proaching along lines of fixed θ. As f will take different values for different
fixed values of θ, the limit at the origin does not exist.

3.4. Continuity.

Continuity of functions in vector calculus is pretty much the same as for
Calculus I, with a bit of extra structure:

Definition 3.9. A function f ∶ X ⊂ Rn → Rm is said to be continuous
at a if either a is an isolated point of X or if

lim
x→a

f(x) = f(a).

And we say that f is a continuous function on X if it is continuous at a
for every a ∈X.

Some notes:
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● In the case of continuity, graphs do not have tears, holes, cliffs, or
break in it (this is not a mathematical description).

● Like in Calculus I, sums and scalar multiples of continuous func-
tions are continuous.

● Also, products of continuous functions are continuous, and also
quotients where they make sense.

● Compositions of continuous functions are also continuous where
they make sense. In this case, we have, if f ∶ X ⊂ Rn → Rm and
g ∶ Y ⊂ Rm → Rp are continuous, and f(X) ⊂ Y , the

(g ○ f) ∶X ⊂ Rn → Rp

is continuous.
● the vector-valued function f ∶ X ⊂ Rn → Rm is continuous at a

iff each component function fi ∶ X ⊂ Rn → R, i = 1,2, . . . ,m is
continuous at a.





LECTURE 4

The Derivative.

Synopsis. Today, we finish our discussion on limits and pass through the
concept of continuity. Really, there is little to add to the mix since the only
new idea is that the limit of a function not only exists but equals the function
value at a point of continuity. But there are a few rules and extensions that
we talk about here. Then on to differentiability, where things start to diverge
from single variable calculus. Here we define what differentiability is for a
vector-valued function on more than one variable, both from an analytical
as well as geometric perspective, and start the discussion on its properties.
The accompanying Mathematica notebook gives some geometric meaning to
the derivative of a real-valued function on two variables and how the tangent
plane to its graph in three space is defined and constructed.

Helpful Documents. Mathematica: PartialDerivatives.

The Derivative. A partial derivative of a real-valued function f ∶ X ⊂
Rn → R taken at a point is really a single variable calculus concept, where
one studies how a function is changing in a particular direction:

Definition 4.1. Let a ∈ X be an interior point, and f ∶ X ⊂ Rn → R a
real-valued function on X. Then the partial derivative of f , with respect to
the coordinate xi at the point x = a is the real number

∂f

∂xi
(a) = lim

h→0

f(a1, . . . , ai−1, ai + h, ai+1, . . . , an) − f(a)
h

.

The partial derivative of f with respect to xi is the real-valued function

∂f

∂xi
(x) = lim

h→0

f(x1, . . . , xi−1, xi + h,xi+1, . . . , xn) − f(x)
h

.

.

Notes:

● It is simply the ordinary (read: Calculus I) derivative of f with
respect to xi, found by fixing all coordinates xj , for j /= i, and
varying only xi.

● Alternate notation: Dxif(x), or fxi(x).

● Geometrically, given f(x, y) and x = [ x
y

], the y-slice through

graph(f) at y = b is a 1-dimensional curve inside the xz-plane

27
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at y = b. Then ∂f
∂x(a, b) is the slope of this curve inside the slice,

evaluated at (a, b):
∂f

∂x
(a, b) = lim

h→0

f(a + h, b) − f(a, b)
h

.

In this case, a varies, but b is held constant. In this case,, we
say that the partial derivative of f with respect to x, evaluated at
(x, y) = (a, b) is the slope of the line tangent to that portion of the
graph(f) that intersects the xz-plane at y = b. item In turn,

∂f

∂y
(a, b) = lim

h→0

f(a, b + h) − f(a, b)
h

is the slope of the line tangent to that portion of the graph(f)
that intersects the xy-plane at x = a. These partial derivatives,
as regular single variable calculus derivatives in a single direction,
satisfy all of the rules that one developed in Calculus I.

Now, for a point (a, b) in the domain where these two quantities exist, the
two tangent lines sitting in R3, cross at the point (a, b, f(a, b)) ∈ R3 and
are perpendicular (form a right angle). They will determine a plane in R3:
choose a non-zero vector inside each line, based at the corssing point. The
plane determined by these two crossing lines is then the set of all linear
combinations (in R3) of these two vectors.

Example 4.1. In higher, dimensions, this setup generalizes well: For
f ∶X ⊂ Rn → R, with

graph(f) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1

⋮
xn
z

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rn+1 ∣ z = f(x1, . . . , xn)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

,

fix a point a =
⎡⎢⎢⎢⎢⎢⎣

a1

⋮
an

⎤⎥⎥⎥⎥⎥⎦
∈ X. Now allow the ith coordinte to vary. Then the

slice formed by fixing

x1 = a1, . . . , xi−1 = ai−1, xi+1 = ai+1, . . . , xn = an
(note that this set of equations comprise n − 1 equations in Rn+1, where
the graph of f lives), forms a two-dimensional space in Rn+1 parameterized
by the variable x1 and z, which we will call the xiz-plane at a. Here, the
intersection

graph(f) ∩ {xiz-plane at x = a}
is a 1-dimensional curve. If ∂f

∂xi
(a) exists, then its value represents the slope

of the line tangent to this curve in the xiz-plane at a. As a line in Rn+1,
it passes through (a, f(a) ∈ Rn+1. Now if tangent lines exist for each of the
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variables xi, for i = 1, . . . , n, they will form an n-dimensional space inside
Rn+1 passing through the point (a, f(a) ∈ Rn+1. This space will be of vital
importance to us.

Back to our two dimensional case, the plane formed by the two tangent
lines to the slices of f(x, y) at the point (a, b) is called the tangent plane to
the graph of f at (a, b). So what is the equation defining this 2-dimensional
plane in R3, what is its equation?

● It will consist of one linear equation in the three variables x, y, and
z.

● One choice of vector in the tangent line to the curve in the xz-plane
corresponding to y = b will be based at (a, b) and have components

[ 1
fx(a, b) ]. (Why is this?) So, as a vector in R3, this vector will

have components

⎡⎢⎢⎢⎢⎢⎣

1
0

fx(a, b)

⎤⎥⎥⎥⎥⎥⎦
, and be based at the point (x, y, z) =

(a, b, f(a, b)).
● The other vector in the tangent line to the intersection of the
yz-plane at x = a with the graph of f , will have components
⎡⎢⎢⎢⎢⎢⎣

0
1

fy(a, b)

⎤⎥⎥⎥⎥⎥⎦
, again based at (a, b, f(a, b)).

● The tangent plane is then the set of all linear combinations of vec-
tors, based at (a, b, f(a, b0) that have components

c1

⎡⎢⎢⎢⎢⎢⎣

1
0

fx(a, b)

⎤⎥⎥⎥⎥⎥⎦
+ c2

⎡⎢⎢⎢⎢⎢⎣

0
1

fy(a, b)

⎤⎥⎥⎥⎥⎥⎦
.

A little cumbersome, but well-defined.

There is a better way to describe the tangent plane: The vector

n =
⎡⎢⎢⎢⎢⎢⎣

1
0

fx(a, b)

⎤⎥⎥⎥⎥⎥⎦
×
⎡⎢⎢⎢⎢⎢⎣

0
1

fy(a, b)

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

−fx(a, b)
−fy(a, b)

1

⎤⎥⎥⎥⎥⎥⎦

is normal to both of the tangent vectors. Thus it is also normal to every
linear combination of these tangent vectors. In fact, then, one can define the
tangent space defined by these two tangent vectors as the space of vectors
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normal to n, so with the dot product, we have

⎡⎢⎢⎢⎢⎢⎣

x − a
y − b

z − f(a, b)

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

generic vector at (a,b,f(a,b))

●
⎡⎢⎢⎢⎢⎢⎣

−fx(a, b)
−fy(a, b)

1

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

normal vector to all

= 0.

This works out to

−fx(a, b)(x − a) − fy(a, b)(y − b) + z − f(a, b) = 0,

or, with a bit of rearranging of terms

z = f(a, b) + fx(a, b)(x − a) + fy(a, b)(y − b).
Now, call the right hand side of this last equation h(x, y), so that

z = h(x, y) = f(a, b) + fx(a, b)(x − a) + fy(a, b)(y − b)
is a linear function h ∶ R2 → R. It’s graph z = h(x, y) is then a linear
equation representing a plane in R3 that passes through (a, b, f(a, b)), and
has precisely the partials hx(a, b) = fx(a, b) and hy(a, b) = fy(a, b), when it
is defined, that is. When it is defined, the graph of this function becomes
the best linear approximation to graph(f) at the point (a, b) ∈X. So what
does “best” actually mean in this context? It means:

(1) z = h(x, y) is a linear function in the variables x, y, and z, and
(2) at (a, b), all of the following are true:

● The functions are equal, so h(a, b) = f(a, b);
● the derivatives are equal, so ∂h

∂x(a, b) = hx(a, b) = fx(a, b) =
∂f
∂x(a, b), and ∂h

∂y (a, b) = hy(a, b) = fy(a, b) =
∂f
∂y (a, b).

Example 4.2. Let f(x, y) = x2 + y2, and choose (a, b) = (1,2). We can
go directly to Definition 4.1 here and compute

∂f

∂x
(1,2) = lim

h→0

f(1 + h,2) − f(1,2)
h

= lim
h→0

((1 + h)2 + 22) − (12 + 22)
h

= lim
h→0

(1 + 2h + h2 + 4 − (1 + 4))
h

= lim
h→0

2h + h2

h
= lim
h→0

2 + h = 2.

Similarly, ∂f
∂y (1,2) = 4. Then

z = h(x, y) = f(a, b) + fx(a, b)(x − a) + fy(a, b)(y − b)
= 5 + 2(x − 1) + 4(y − 2)

is the equation in x, y, and z, whose solutions comprise the tangent plane
to the graph of f(x, y) in R3. Of course, as mentioned in the first note after
Definition 4.1, one can think directly that partial derivative are really single
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variable derivatives, as far as calculation goes. What this means is that we
can sidestep the definition, and simply write

∂f

∂x
(1,2) = ∂f

∂x
(x, y)∣

(x,y)=(1,2)
= ∂

∂x
[x2 + y2] ∣

(x,y)=(1,2)
= (2x+0)∣

(x,y)=(1,2)
= 2.

There is a major caveat that we need to mention here: Just because the

individual limits ∂f
∂x(a, b) and ∂f

∂y (a, b) may both exist, it does not automat-

ically mean that f is differentiable at (a, b)! Example 4, on page 121 of the
text is a great example of why the existence of these limits is not enough. I
call this the rooftop function:

Example 4.3. Let g(x, y) = ∣∣x∣ − ∣y∣∣ − ∣x∣ − ∣y∣. Here,

∂g

∂x
(0,0) = lim

h→0

g(0 + h,0) − g(0,0)
h

= lim
h→0

∣∣h∣ − ∣0∣∣ − ∣h∣ − ∣0∣ − 0

h
= 0.

Similarly, ∂g
∂y (0,0) = 0. However, step off of the axes, and one can see the

sharp edges of the graph. In fact, if one sliced the graph of g along the x = y
line (diagonally, with respect to the two axes), then the limits would not
exist! Indeed, slice graph(g) along the line y = x. Call the plane forming
this slice

Px = {(x, y, z) ∈ R3 ∣ y = x} .
Then the piece of the graph of g inside Px can be written as

z = g(x,x) = g(x) = ∣∣x∣ − ∣x∣∣ − ∣x∣ − ∣x∣ = −2∣x∣.

But, as already known from Calculus I, This function has no derivative at
x = 0, since

g′(0) = lim
x→0

g(x) − g(0)
x − 0

= −2∣x∣
x

.

This limit does not exist, and one can see the corner at the origin of the
graph of g(x). Note: This idea of slicing a graph of a function along a line
that is different from an axis in the domain will be an important tool in
studying the properties of functions of more than one variable. This is the
idea of a directional derivative, which we will explore soon.

The existence of a proper tangent space to the graph of a function relies
on its ability to well-approximate the function from ALL directions. The
best way to construct this is, again, to use the limit!
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Let f ∶ R→ R, and notice how we can rewrite

f ′(a) = lim
x→a

f(x) − f(a)
x − a , as lim

x→a

f(x) − (f(a) + f ′(a)(x − a))
x − a = 0

when (and only when) the limit actually exists.

Exercise 1. Show that this is true.

But this means that, for h(x) = f(a)+f ′(a)(x−a), we can say that f is
differentiable at x = a precisely when the tangent line y = h(x) to y = f(x)
at x = a exists, so precisely when

lim
x→a

f(x) − h(x)
x − a .

This is important, and establishes an alternate way to define differentiability
for a function; A function f(x) is differentiable

Example 4.4. In 2-dimensions, this setup generalizes well: For X ⊂ R2

open, with f ∶X → R, f is differentiable at (a, b) ∈X if

● Both ∂f
∂x(a, b) and ∂f

∂y (a, b) exist, and

● if h(x, y) = f(a, b) + fx(a, b)(x − a) + fy(a, b)(y − b) satisfies

lim
(x,y)→(a,b)

f(x, y) − h(x, y)
∣∣(x, y) − (a, b)∣∣ = 0.

Note that, again, when h(x, y) exists and satisfies the limit above, then
z = h(x, y) is the tangent plane to graph(f) at (a, b, f(a, b)) ∈ graph(f) ⊂
R3.

More notes:

● An alternate, but equivalent, notion of differentiability: For X ⊂ R2

open, and f ∶ X → R, f is differentiable at (a, b) if fx(x, y) and
fy(x, y) are continuous in a neighborhood of (a, b) in X.

● Like in Calculus I, differentiability always implies continuity.
● Also true in n-dimensions: Given X ⊂ Rn open, and f ∶ X → R, f

is differentiable at a ∈X if

– Each of ∂f
∂xi

(a) exist for i = 1, . . . , n, and

– if

h(x) = f(a) +
n

∑
i=1

∂f

∂xi
(a)(xi − ai) satisfies lim

x→a

f(x) − h(x)
∣∣x − a∣∣ = 0.

There is an easier way to write this:

Definition 4.2. For f ∶X ⊂ Rn → R differentiable at a ∈X, the deriva-
tive of f at a is the 1 × n matrix

Df(a) = [ fx1(a) fx2(a) . . . fxn(a) ] .
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And the derivative function is the 1 × n matrix of functions

Df(x) = [ fx1(x) fx2(x) . . . fxn(x) ] .
Knowing this, the tangent linear function, using the above notation and

definition, can be written

h(x) = f(a) +
n

∑
i=1

fxi(a)(xi − ai)

= f(a) + [ fx1(a) . . . fxn(a) ]

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1 − a1

x2 − a2

⋮
xn − an

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= f(a) +Df(a) (x − a)

where Df(a) is a n × 1 (row) matrix, and (x − a) is an 1 × n matrix (an
n-vector). The result is a number, as it should. Hence the limit, in the
definition becomes

lim
x→a

f(x) − f(a)
∣∣x − a∣∣ = lim

x→a

f(x) − (f(a) −Df(a)(x − a))
∣∣x − a∣∣ = lim

x→a

f(x) − h(x)
∣∣x − a∣∣ .

Now what about f ∶ X ⊂ Rn → Rm? Here, for x ∈ X, we have f(x) −
⎡⎢⎢⎢⎢⎢⎣

f1(x)
⋮

fn(x)

⎤⎥⎥⎥⎥⎥⎦
. with n input variables and m output variables. If the derivative

is to exist, then each component real-valued function fi ∶ X → R must have
a derivative (including all of the partials). We have

Df(a) =
⎡⎢⎢⎢⎢⎢⎣

Df1(a)
⋮

Dfn(a)

⎤⎥⎥⎥⎥⎥⎦
,

where each element in this matrix is, itself, a 1 × n matrix. Hence

Df(a) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f1
∂x1

(a) ∂f1
∂x2

(a) ⋯ ∂f1
∂xn

(a)
∂f2
∂x1

(a) ∂f2
∂x2

(a) ⋯ ∂f2
∂xn

(a)
⋮ ⋮ ⋱ ⋮

∂fn
∂x1

(a) ∂fn
∂x2

(a) ⋯ ∂fn
∂xn

(a)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

an m × n matrix with ∂fi
∂xj

(a) as the ijth entry.

So our most general definition is:

Definition 4.3. Let f ∶ X ⊂ Rn → Rm be a vector-valued function on
an open X, and let a ∈X. f is differentiable at x = a if

(1) ∂fi
∂xj

(a) all exist, for i = 1, . . . , n and j = 1, . . . , n, and

(2) the linear map h(x) = f(a) +Df(a)(x − a) satisfies

lim
x→a

∣∣f(x) − h(x)∣∣
∣∣x − a∣∣ .



34 4. THE DERIVATIVE.

Some final notes:

● In Definition 4.3, the term ∣∣f(x) − h(x)∣∣ measures the distance
between f(x) and h(x) near a, as vector-valued functions.

● Df(a), as a matrix of numbers, represents a linear transformation
from Rn to Rm. It’s entries vary as a varies, but it represents the
best linear map approximating f(x) near x = a.

● Df(a)(x−a) ∈ Rm is an m-vector for each value of x and represents
a catalog of ways that moving around near a affects functions values
in the codomain.

● h(x) = f(a) +Df(a)(x − a) defines an affine map h ∶ Rn → Rm (a
linear map with a translation). Recall that for m = 1, z = h(x) has a
graph in Rn+1 which is tangent to graph(f) at the point (a, f(a)).
It is the same for m > 1, once one understands the nature of a graph
with more than one output, but geometrically, it is far less easy to
“see”.



LECTURE 5

The Rules of Differentiation

Synopsis. Here, we bring back the rules for differentiation (used to
derive new functions constructed using various combinations of other func-
tions) from Calculus I and use them in our new context. The basic frame for
this discussion is, ”the rules are the same, but only precisely when they ac-
tually make sense.” What this means is the focus of this class. Also, we will
look at higher derivatives and the notion of a function being differentiable
more than once. This involves defining the kth partial of a real-valued (and
vector-valued) function and what it means for mixed partials to be equal.
The differentiable class of a function is discussed, along with just what kind
of object the kth derivative of a real-valued function on n variables is and
how it encompasses its nk partials.

5.0.1. The Rules of Differentiation. The nice thing about calculat-
ing derivatives in multivariable calculus is that, in many ways, they follow
the same rules as they did in single variable calculus, suitably generalized,
of course.

5.0.1.1. The Constant Multiple Rule. Multiplying a function f ∶ X ⊂
Rn → Rm by a real constant c ∈ R affects only the functions values, as
in Calculus I functions. The new function (cf) ∶ X ⊂ Rn → Rm has a
vector output, and a constant times a vector means simply multiplying each
component by that constant. Indeed,

(cf)(x) = c ⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎣

f1(x)
f2(x)
⋮

fm(x)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(cf1)(x)
(cf2)(x)

⋮
(cfm)(x)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

The partial derivatives of each fi are single variable derivatives, where the
Constant Multiple Rule held, so

∂(cfi)
∂xj

(x) = lim
h→0

(cfi)(x1, . . . , xj−1, xj + h,xj+1, . . . , xn) − (cf)(x)
h

= lim
h→0

c (fi(x1, . . . , xj−1, xj + h,xj+1, . . . , xn) − f(x))
h

= c ⋅ (lim
h→0

fi(x1, . . . , xj−1, xj + h,xj+1, . . . , xn) − f(x)
h

) = c ⋅ ( ∂fi
∂xj

(x)) .

35
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The effect is that the entire derivative matrix is multiplied by c, just as in
matrix multiplication by a scalar, so that

D(cf)(x) = c ⋅Df(x).
5.0.1.2. The Sum/Difference Rule. The Sum Rule (and hence the Dif-

ference Rule when one of the functions is multiplied by −1), is also precisely
the same as that for single variable calculus, except that the two functions in
the sum must have the same domain and codomain. Only then will the two
derivative matrices have the same dimensions, allowing us to actually sum
the derivative matrices. So consider f ,g ∶ X ⊂ Rn → Rm to m-vector-valued
functions on X ⊂ Rn, and let h = f + g. Then

Dh(x) =D (f + g) (x) =Df(x) +Dg(x).
5.0.1.3. The Product Rule. The Product Rule, in multivariable calculus,

can be a bit trickier, given that the product of two vectors may or may not
be a vector of the same size: It is for the cross product in R3). But the
dot product of two vectors in Rn is a scalar. And sometimes, the output
of a product of vectors may not even be a vector of any size (look up outer
product, for example). The tricky part is to ensure that, if two vector-
valued functions are differentiable, then so should be the product of those
two functions, however, that is defined. And further, to find a rule to write
the derivative of the product using the derivatives of the factors. The nice
part of all this is that the Product Rule will always hold, as long as the
parts and the product make sense.

Indeed, let f ∶ X ⊂ Rn → Rm and g ∶ X ⊂ Rn → Rp be two vector-
valued functions, possibly of different sizes, but definitely defined on the
same domain (why is this necessary?) The define h(x) = f(x)⋅g(x). However
that product is defined, it does need to make sense. But when it does, it
means that the m× 1-matrix of outputs f and the p× 1-matrix of outputs of
g are multiplied together in a well-defined way. But then the Product Rule
is

Dh(x) =D (f ⋅ g) (x) =Df(x) ⋅ g(x) + f(x) ⋅Dg(x).
Following the dimensions, at least, we would get that, if one could multiply
an m-vector and a p-vector, then one can also multiple a m × n-matrix to a
p-vector, and add to that the product of an m-vector with a p × n-matrix.
Write this out to verify, but the genral idea is that an m × n matrix is just
a collection of n m-vectors. Here are some examples:

Example 5.1. Let p = 1. Then g(x) is a scalar function, and Dg(x) is a
1 × n-matrix. Then h = f ⋅ g makes sense, as the output is the product of an
m-vector f(x) with a scalar g(x) at every input. We get h ∶ X ⊂ Rn → Rm,
h(x) = f(x)g(x), and

Dh(x)
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
m×n

=Df(x)
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
m×n

g(x)
±
scalar

+ f(x)
±
m×1

Dg(x)
´¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

1×n

.
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Here is a concrete example: Suppose that we wanted to create a function

that was the product of f(x, y, z) = [ xy + y2z
x4z

], and g(x, y, z) = ln(yz).
Then we can certainly define

h(x, y, z) = f(x, y, z)g(x, y, z) = [ (xy + y2z) ln(yz)
(x4z) ln(yz) ] ,

but we have to carefully choose our domain so that h makes sense. f is
defined on all of R3, but the largest domain of g is the set

X = {(x, y, z) ∈ R3 ∣ yz > 0} .
Then h ∶ X ⊂ R3 → R2 is defined as above. And on this open domain X, h
will be differentiable (in fact, it is the product of differentiable functions).
So we calculate the derivative in two ways: Directly, and via the Product
Rule. Directly,

Dh(x) =
⎡⎢⎢⎢⎢⎣

∂h1
∂x (x) ∂h1

∂y (x) ∂h1
∂z (x)

∂h2
∂x (x) ∂h2

∂y (x) ∂h2
∂z (x)

⎤⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎣

y ln(yz) (x + 2yz) ln(yz) + x + yz y2 ln(yz) + xy
z + y2

4x3z x4z
y x4 ln(yz) + x4

⎤⎥⎥⎥⎥⎦
.

Via the Product Rule, we have

Dh(x) =Df(x) ⋅ g(x) + f(x) ⋅Dg(x)

=
⎡⎢⎢⎢⎢⎣

∂f1
∂x (x) ∂f1

∂y (x) ∂f1
∂z (x)

∂f2
∂x (x) ∂f2

∂y (x) ∂f2
∂z (x)

⎤⎥⎥⎥⎥⎦
⋅ g(x) + [ f1(x)

f2(x) ] ⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂g
∂x(x)
∂g
∂y (x)
∂g
∂z (x)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= [ y x + 2yz y2

4x3z 0 x4 ] ln(yz) + [ xy + y2z
x4z

] ⋅ [ 0 1
y

1
z ] .

I will leave it to the reader to see that these two matrices of functions are
the same.

Example 5.2. Now let p =m > 1, with the Dot Product on vectors. Note
that, for ease of calculation here, we let n = 1. Then, for f ,g ∶X ⊂ R→ Rm,
the dot-product function is h ∶ X ⊂ R → R, where h(x) = f(x) ⋅ g(x). Note
that the product function h here is scalar-valued, but still has n inputs.
Then

Dh(x) = [ Dx1h(x) ⋯ Dxnh(x) ] ,
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with

Dxih(x) =
∂

∂xi
h(x) = ∂

∂xi

⎡⎢⎢⎢⎢⎣

m

∑
j=1

fj(x) ⋅ gj(x)
⎤⎥⎥⎥⎥⎦

=
n

∑
j=1

∂

∂xi
[fj(x)gj(x)] (Sum Rule)

=
m

∑
j=1

∂fj

∂xi
(x)gj(x) + fj(x)

∂gj

∂xi
(x) (Calc I Product Rule)

=
m

∑
j=1

∂fj

∂xi
(x)gj(x) +

m

∑
j=1

fj(x)
∂gj

∂xi
(x) (Sum Rule)

=Df(x) ⋅ g(x) + f(x) ⋅Dg(x),
where each of the four pieces in this last sum of products is an m-vector.
Notice that in the middle of this last calculation, we were simply multiplying
together scalar-valued functions, so there was no ⋅ present.

Now, as a special note of caution: Be careful with vector products. The
two examples above are symmetric products, named because

f(x) ⋅ g(x) = g(x) ⋅ f(x)

If the product is not symmetric, then the order of the factors matters. But
the Product Rule will still work correctly. One jsut needs to pay attention to
the order of the factors inside the product rule. For example, for a,b ∈ R4,
the cross product is called antisymmetric, since

a × b = −b × a.

Perhaps you already know this via a detailed calculation. However, we will
see why this is true geometrically in a while. Hence for f ,g ∶ X ⊂ R → R3,
and h(x) = f(x) × g(x), we have

Dh(x) =D (f × g) (x) =Df(x) × g(x) + f(x) ×Dg(x).

And lastly, on this note, the Quotient Rule also hold, but only where it
makes sense. One thing to keep in mind for the Quotient Rule is that the
denonimator function myust be scalar-valued for even a quotient of func-
tions to make sense. (Why?) At that point, the square of the denominator
function in the Quotient Rule will also make sense.

A Note on Partial Derivatives. Given a differentiable real-valued
function f ∶X ⊂ R3 → R, say, we know that all of

∂f

∂x
,
∂f

∂y
,
∂f

∂z
∶X → R
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are all continuous in a neighborhood of x =
⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
. In this case, where all

partials of a function are continuous on a domain, we say that the function
is a C1-function, or write f ∈ C1.

Definition 5.1. A second partial derivative of f with respect to a vari-
able (x, say) is any one of

∂
∂x (∂f∂x) ∶X → R,
∂
∂x (∂f∂y ) ∶X → R,
∂
∂x (∂f∂z ) ∶X → R.

We also write
∂
∂x (∂f∂x) =

∂2f
∂x2

= fxx
∂
∂x (∂f∂y ) =

∂2f
∂x∂y = fyx,

∂
∂x (∂f∂z ) =

∂2f
∂x∂z = fzx.

Pay attention to the order of the variables, and hence the derivatives
here. Indeed, the order of differentiation is written differently in the two
notations, fractional and subscript-wise. Be careful here. Now If all 9 of
these second partial derivative of f exist and are continuous on the domain
X, then we say that f ∈ C2.

Generalizing, let f ∶X ⊂ Rn → R. For i1, i2, . . . , ik ∈ {1,2, . . . , n}, the kth
partial derivative of f with respect to xi1 , . . . , xik , is

∂kf

∂xik⋯∂xi1
(x) = ∂

∂xik
(⋯( ∂f

∂xi1
)⋯) = fxi1⋯xik .

Example 5.3. Let f ∶ R3 → R be defined by f(x, y, z) = z cos(2xy). It
should be readily apparent, and can be rigorously shown, that polynomials
in many variables are continuous everywhere, and differentiable everywhere.
The same it true for the cosine function. And since f is a product of a
polynomial and a composition of the cosine function and a polynomial, f ∈
C1, and we can calculate

fx(x, y, z) = −z sin(2xy)2y = −2yz sin(2xy),
fy(x, y, z) = −z sin(2xy)2x = −2xz sin(2xy), and

fz(x, y, z) = cos(2xy).

But all three of these partial derivatives of f are also sums, products
and compositions of differentiable functions, so that f ∈ C2 also. Thus, we
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find

fxy(x, y, z) =
∂2f

∂y∂x
= ∂

∂y
(∂f
∂x

) = −2z sin(2xy) − 4xyz cos(2xy), and

fyx(x, y, z) =
∂2f

∂x∂y
= ∂

∂x
(∂f
∂y

) = −2z sin(2xy) − 4xyz cos(2xy).

Notice immediately that these two functions are the same. It turns out that
this is true always when f ∈ C2:

Theorem 5.2. Suppose f ∶X ⊂ Rn → R is C2 on an open X. Then, for
any choice of i1, i2 ∈ {1,2, . . . , n},

∂2f

∂xi1∂xi2
= ∂2f

∂xi2∂xi1
.

The proof is constructive and in the book. We will not do it in class.

Definition 5.3. A function f ∶ X ⊂ Rn → R is of class Ck, k ∈ N if it
has continuous partial derivative up to and including order k. A function
g ∶ X ⊂ Rn → Rm is of class Ck if each component function gi ∶ X → R is of
class Ck.

And finally, a function like the above is of class C∞ if it is smooth. This
means that it has continuous partial derivatives of all orders. Some notes:

● This should be an obvious fact, but worth stating explicitly: If
f ∈ Ck, then f ∈ C` for all ` < k.

● A continuous function is said to be of class C0.

So here is a thought experiment: Suppose f ∶ X ⊂ Rn → R is of class
C∞, so it is a smooth function. Then we know the following:

(1) f has n first partial derivatives, and
(2) f has n2 second partials, since each of the n first partials has n

second partials.
(3) Thus f has nk kth partials, for each k ∈ N.

Now Df(x) is a row matrix with n entries, each entry a real-valued function
on n variables. Each of these entries is also differentiable. Plug in a value
to evaluate the derivative of f at a point, and one gets a matrix of numbers.
But without evaluation, Df(x) is a (row)-matrix of functions. Just for
a moment, view this row matrix as a column matrix. Then, in a way,
Df ∶ X ⊂ Rn → Rn. And then D (Df) = D2f(x) will be an n × n matrix

of functions, with each entry, ∂2f
∂xi∂xj

a real-valued function on n variables.

If we, for the moment think of D2f as a function on X, then what is its
codomain?

And, since f is smooth, the object D (D2f) =D3f exists! What kind of
object is this?

And in general, what kind of object is Dkf(x), for k ∈ N?
These objects will play a role in the multivariable Taylor expansion of a

function like f , since Taylor series’ of functions exist in multivariable calculus
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and will (must) account for all of the derivatives of a function. Think about
this....





LECTURE 6

The Chain Rule

Synopsis. Here, we define and discuss the Chain Rule in the differential
calculus of vector-valued functions of more than one independent variable.
One can use the Calculus I version to define the multivariable calculus ver-
sion, which works in the same fashion. However, care must be taken for
two reasons: (1) the derivatives of functions here are not the same kinds of
functions as the original functions, and (2) composition is tricky when the
domains and codomains can be of different sizes. We discuss this at length
here.

The Chain Rule.
6.0.0.1. The Chain Rule in single variable calculus. Recall from Calculus

I: For f, g ∶ R→ R, where f, g ∈ C1,

d

dx
(f ○ g) (x) = f ′ (g(x)) ⋅ g′(x).

In essence, the derivative of a composition of functions is the product of the
derivatives..., (but with a definite twist! - The derivative of the “outside”
function is evaluated at the image of x under the “inside” function. This
leads to the immediate question of just how the domain of a composition
depends on the domains of the constituent pieces in the composition. To see
this, let f ∶ J ⊂ R→ R and g ∶ I ⊂ R→ R be defined, but only on the subsets
of the real line. Then

domain (f ○ g) = {x ∈ I ∣ g(x) ∈ J} = g−1(J) ⊂ I.

Be careful here, though, as g−1(J) is the set inverse of g, which makes sense
even if g does not have an inverse as a function.

Example 6.1. Let f(x) = √
x and g(x) = 2 − x2. Of course, without

specifying a domain, the domain of each of these is automatically the largest
set on which the function makes sense. In these cases, adn using the notation
of the above discussion, f ∶ J → R, with J = [0,∞), and g ∶ I → R, where
I = R. So what is the domain of (f ○ g)? One way to see this is to simply
construct the function:

(f ○ g) (x) = f(g(x)) = f(2 − x2) =
√

2 − x2 .

43
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With this, the domain can only include points that satisfy 2 − x2 ≥ 0, so
x ∈ [−

√
2 ,

√
2 ]. And thinking of this in terms of sets alone, we can calculate

domain (f ○ g) (x) = g−1(J) = g−1 ([0,∞)) = {x ∈ I ∣ g(x) ∈ J}

= {x ∈ R ∣ 2 − x2 ∈ [0,∞)} = [−
√

2 ,
√

2 ] .

But here is an issue: What is the domain of (g ○ f)? Calculating the
function, we get

(g ○ f) (x) = g(f(x)) = g(
√
x ) = 2 − (

√
x )2 = 2 − x.

Without paying attention, one may wrongly assume that the domain is all
of R, since (g ○ f) (x) = 2−x is a degree-1 polynomial. However, the “inside”
function has as its domain only the non-negative reals [0,∞). Hence so does
(g ○ f)!

To use the set notation, note that J and I are switched here, and

domain (g ○ f) (x) = f−1(I) = f−1 (R) = {x ∈ J ∣ f(x) ∈ I}
= {x ∈ [0,∞) ∣

√
x ∈ R} = [0,∞) .

Note: In Leibniz notation, let z = g(y), and y = f(x), so that z =
(g ○ f) (x) = g(f(x)). Then z is considered a function of x, and the Chain
Rule looks like

dz

dx
= dz
dy

⋅ dy
dx
.

One can directly and easily again see this notion that the derivative of a
product of functions is, in fact, the product of the derivatives. However,
when evaluated the derivative of a composition at a point, the “twist” in
the product again becomes clear, and

dz

dx
∣
x=a

= dz
dy

∣
y=g(a)

⋅ dy
dx

∣
x=a

.

Example 6.2. Back to the previous example and translating into Leibniz
notation, we have y = f(x) = √

x , and z = g(y) = 2 − y2. Then

z = (g ○ f) (x) = g(f(x)) = g(
√
x ) = 2 − (

√
x )2 = 2 − x, on [0,∞).

Its derivative, defined on (0,∞), should be dz
dx = −1 everywhere. Here

dz

dx
= dz
dy

∣
y=f(x)

⋅ dy
dx

= −2y∣
y=
√
x

⋅ ( 1

2
√
x

) = (−2
√
x )( 1

2
√
x

) = −1.

6.0.1. The Chain Rule in multivariable calculus. In vector calcu-
lus, the Chain Rule still holds:
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Theorem (Theorem 2.5.3 in text). Suppose X ⊂ Rn and Y ⊂ Rm are
open, and f ∶ Y → Rp and g ∶ X → Rm are defined so that g(X) ⊂ Y . Then,
if g is differentiable at x0 ∈ X, and f is differentiable at y0 = g(x0) ∈ Y ,
then (f ○ g) is differentiable at x0, with

D (f ○ g) (x0) =Df (g(x0))Dg(x0).

Example 6.3. Let f ∶ R2 → R3, f(x, y) = (x2y,1, exy), and g ∶ R3 → R,
with g(x, y, z) = xyz. We calculate D (g ○ f) (x, y) in two ways:

(1) Composition before derivative. Here, (g ○ f) ∶ R2 → R, and

(g ○ f) (x, y) = g (f(x, y)) = g(x2,1, exy) = x2yexy.

Then

D (g ○ f) (x, y) = [ ∂(g○f)
∂x (x, y) ∂(g○f)

∂y (x, y) ]

= [ 2xyexy + x2y2exy x2exy + x3yexy ] .
(2) Via the Chain Rule. The derivatives of the constituent functions

are

Df(x, y) =
⎡⎢⎢⎢⎢⎢⎣

2xy x2

0 0
yexy xexy

⎤⎥⎥⎥⎥⎥⎦
and Dg(x, y, z) = [ yz xz xy ] .

So Dg (f(x, y)) = Dg(x2y,1, exy) = [ exy x2yexy x2y ]. With
the Chain Rule, we get

D (g ○ f) (x, y) =Dg (f(x, y)) ⋅Df(x, y)

= [ exy x2yexy x2y ]
⎡⎢⎢⎢⎢⎢⎣

2xy x2

0 0
yexy xexy

⎤⎥⎥⎥⎥⎥⎦
= [ 2xyexy + x2y2exy x2exy + x3yexy ]

as before.

Now you may be thinking that the variables can be confusing here, with
x and y included in the two domains, R2 for f , and R3 for g. In a very
important way, they are not the same, and should not be considered so!
One way to correct this error of notation, and also to make things much
more clear, is to switch the names of the variables, using different variables
for each domain. Indeed, Let us denote the function f as before, but noticing
explicitly that it has three component functions

f(x, y) = (f1(x, y), f2(x, y), f3(x, y)) = (x2y,1, exy),
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and now define g(u, v,w) = uvw, the same function as before, but with new
variable names. Then the two derivatives are, as before, but look like

Dg(u, v,w) = [ ∂g
∂u

∂g
∂v

∂g
∂w

] , and Df(x, y) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

∂f3
∂x

∂f3
∂y

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Now, within the composition, we know that

u = f1(x, y) = x2y

v = f2(x, y) = 1

w = f3(x, y) = exy.

Hence the derivative of the composition, which is

Dg (f(x, y)) ⋅Df(x, y) = [ ∂(g○f)
∂x (x, y) ∂(g○f)

∂y (x, y) ] ,

where by direct matrix multiplication

∂ (g ○ f)
∂x

(x, y) = ∂g
∂u

⋅ ∂f1

∂x
+ ∂g
∂v

⋅ ∂f2

∂x
+ ∂g

∂w
⋅ ∂f3

∂x

= ∂g
∂u

⋅ ∂u
∂x

+ ∂g
∂v

⋅ ∂v
∂x

+ ∂g

∂w
⋅ ∂w
∂x

= vw∣
v = 1
w = exy

⋅ (2xy) + uw∣
u = x2y
w = exy

⋅ (0) + uv∣
u = x2y
v = 1

⋅ (yexy)

= 2xyexy + x2y2exy.

Here, the products of the partials in these derivative of compositions are
always understood to have the “twist”, as mentioned earlier, so that

∂g

∂u
⋅ ∂u
∂x

= ∂g
∂u

∣
u=f(x)

⋅ ∂u
∂x

∣
x

, where u =
⎡⎢⎢⎢⎢⎢⎣

u
v
w

⎤⎥⎥⎥⎥⎥⎦
, and x = [ x

y
] .

Here is one more example:

Example 6.4. Let c ∶ R→ R3 be a C1-curve in three-space, and f ∶ R3 →
R be a C1-scalar-valued function on R3. Then the composition g = f ○ c ∶
R→ R is just f evaluated along the curve, and looks like a function from R
to R. One often writes

g = f ∣
c
.

In this sense, g′(t) = df
dt(t) along c. We calculate this quantity via the Chain

Rule:
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Here c(t) =
⎡⎢⎢⎢⎢⎢⎣

x(t)
y(t)
z(t)

⎤⎥⎥⎥⎥⎥⎦
is C1, and

dc

dt
(t) = c′(t) =

⎡⎢⎢⎢⎢⎢⎣

x′(t)
y′(t)
z′(t)

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

dx
dt

dy
dt

dz
dt

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

while Df(x, y, z) = [ ∂f
∂x

∂f
∂y

∂f
∂z ].

Hence

g′(t) =D (f ○ c) (t) =
df ∣

c

dt
=Df (c(t)) ⋅Dc(t)

= [ ∂f
∂x

∂f
∂y

∂f
∂z ]

⎡⎢⎢⎢⎢⎢⎢⎢⎣

dx
dt

dy
dt

dz
dt

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= ∂f
∂x

⋅ dx
dt

+ ∂f
∂y

⋅ dy
dt

+ ∂f
∂z

⋅ dz
dt

= ∂f
∂x

∣
c(t)

⋅ x′(t) + ∂f
∂y

∣
c(t)

⋅ y′(t) + ∂f
∂z

∣
c(t)

⋅ z′(t).





LECTURE 7

Directional Derivatives

Synopsis. Today, we move into directional derivatives, a generalization
of a partial derivative where we look for how a function is changing at a
point in any single direction in the domain. This gives a powerful tool,
both conceptually as well as technically, to discuss the role the derivative
of a function plays in exposing the properties of both functions on and sets
within Euclidean space. We define the gradient of a real-valued function
(finally) and its interpretations and usefulness, and move toward one of
the most powerful theorems of multivariable calculus, the Implicit Function
Theorem.

The Directional Derivative.
7.0.0.1. Vector form of a partial derivative. Recall the definition of a

partial derivative evaluated at a point: Let f ∶ X ⊂ R2 → R, x open, and
(a, b) ∈ X. Then the partial derivative of f with respect to the first coordi-
nate x, evaluated at (a, b) is

∂f

∂x
(a, b) = lim

h→0

f(a + h, b) − f(a, b)
h

.

Here, we vary only the first coordinate, leaving the y coordinate value b
fixed, and write (a + h, b) = (a, b) + (h,0). In vector notation, this is like

taking the vector a = [ a
b

], and adding to it a small amount h, but only

in the x-direction. Indeed, this means adding to a the vector h [ 1
0

] = hi,

where here we use the standard convention for unit vectors in R2 and R3,
namely i = e1, j = e2, etc. We get

a + hi = [ a
b

] + h [ 1
0

] = [ a
b

] + [ h
0

] = [ a + h
b

] .

Figure 23. A directional deriva-
tive in the x-direction is the par-
tial.

Then the definition of a partial derivative be-
comes

∂f

∂x
(a) = lim

h→0

f(a + hi) − f(a)
h

.
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However, one can take a derivative of f at a

point (a, b), or the point a = [ a
b

] in any di-

rection in the domain: Let v ∈X. Then

lim
h→0

f(a + hv) − f(a)
h

is perfectly well defined as long as the quantity a+hv remains in X, which,
since X is open, will be the case for small enough h. This is the derivative
of f at (a, b) in the direction of v, also known as the directional derivative
of f at (a, b) with respect to v:

Dvf(a) = lim
h→0

f(a + hv) − f(a)
h

.

Figure 24. A directional deriva-

tive in the direction of v ∈ X.

How does this work? For f differentiable at
a, compose f with the affine function g ∶ R →
R2, where

g(t) = a + tv = [ a
b

] + t [ v1

v2
] .

Here, g parameterizes a line in R2 where at t =
0, g(0) = a, and at t = 1, g(0) = a + v. g is also
C1, and g′(t) = v. In particular, g′(0) = v.

Now let F (t) = f (g(t)) = (f ○ g) (t) =
f(a + tv), like in our definition of directional derivative. Here, F , as the
composition of two differentiable function, will also be differentiable, and

F ′(0) = lim
t→0

F (t) − F (0)
t − 0

= lim
t→0

f(a + tv) − f(a)
t

.

But, using the Chain Rule, we can write

F ′(0) =Dvf(a) =
d

dt
∣
t=0

f(a + tv) =Df (g(0))g′(0) =Df(a)v.

Definition 7.1. Let f ∶X ⊂ Rn → R be C1. Then the gradient function
of f is the function

∇f ∶X ⊂ Rn → Rn, ∇f(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

fx1(x)
fx2(x)

⋮
fxn(x)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

The gradient vector of f at a ∈X is a vector in Rn based at a:

∇f(a) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

fx1(a)
fx2(a)

⋮
fxn(a)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Notes:
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● The gradient function carries the same information as the derivative
matrix of f , but is a vector of functions so that

Df(x) = (∇f)T , where T = transpose.

● The gradient is only defined for scalar-valued functions.

Using this gradient function, we can write

Dvf(a) = Df(a)v
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

matrix mult.

= ∇f(a) ⋅ v
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
dot product

.

Warning! The choice of v is really a choice of direction only! Thus, it is
vitally important that ∣∣v∣∣ = 1 for this choice.

Exercise 2. Show that for k ∈ R and w = kv, that Dwf(a) = kDvf(a).

The directional derivative specifies how f is changing in the direction of
v ∈ X. But what does this mean? Imagine standing in X ∈ Rn at a point
a where a real-valued f is defined and differentiable. How is f changing in
the particular direction that you are facing at the moment? For any v ∈ Rn,
where ∣∣v∣∣ = 1, Dvf(a) = ∇f(a) ⋅ v. So recall that

x ⋅ y = ∣∣x∣∣ ∣∣y∣∣ cos θ,

where θ is the angle between x and y. Remember that, for any n > 1,
any two non-collinear (what does this mean?) vectors in Rn span a plane.
Within that plane, there is a well-defined angle between them. So

Dvf(a) = ∇f(a) ⋅ v = ∣∣∇f(a)∣∣ cos θ,

since ∣∣v∣∣ = 1.
But notice then that

− ∣∣∇f(a)∣∣ ≤Dv(a) ≤ ∣∣∇f(a)∣∣ .

Thus the directional derivative of f at a will achieve its maximum when
θ = 0, and its minimum when θ = π. And, of course, the directional de-
rivative will be 0 precisely when θ = ±π2 . All of this comes from the Dot
Product of the gradient vector and the chosen unit-length directional vector
v. Geometrically, what does this mean? Here is a beautiful and important
interpretation:

Theorem 7.2. Let X ∈ Rn be open and f ∶ X → R a C1-function. For
x0 ∈X, let

Sx0 = {x ∈X ∣ f(x) = f (x0) = c} .
The ∇f(x0) ⊥ Sx0.

Another way to say this is that any vector v tangent to Sx0 will be
perpendicular to ∇f(x0) (See Figure 25. The proof of this is constructive
and very informative.
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Figure 25. Geometrically, the gradient vector is always perpendicular to the

level sets of a function.

Proof. Let I = (a, b), an open interval in R, and c ∶ I → Rn be a

C1-parameterized curve, with c(t) =
⎡⎢⎢⎢⎢⎢⎣

x1(t)
⋮

xn(t)

⎤⎥⎥⎥⎥⎥⎦
such that

(1) c(t0) = x0, for some t0 ∈ I, and
(2) c(I) ⊂ Sx0 .

Then the composition (f ○ c) ∶ I → R is C1 on I since both f and the curve
are, and

f (c(t)) = f(x1(t), . . . , xn(t)) = c.
Differentiate this last equation inplicitly with respect to t. we get

d

dt
[f(x1(t), . . . , xn(t))] =

d

dt
[c] = 0

Df (c(t))c′(t) = 0.

Now, at t = t0, c(t0) = x0, and Df (x0)v = 0, where v = c′(t0), a vector
tangent to the curve and hence tangent to Sx0 . Hence the result follows. �

Definition 7.3. For any (n−1)-dimensional hypersurface in Rn defined
as the c-level set of a C1 function f ∶X ⊂ Rn → R,

S = {x ∈X ∣ f(x) = c} ,
the tangent space to S at a ∈ S is the space of all vectors perpendicular to
∇f(a); it is defined by h(x) = ∇f(a) ⋅ (x − a) = 0, or

h(x) =
n

∑
i=1

∂f

∂xi
(a)(xi − ai) = 0.

Note: Compare this to the tangent space of graph(f) ⊂ R3, where f ∶
R2 → R and graph(f) is defined by the equation in R3 given by z = f(x, y).



LECTURE 8

Implicit and Inverse Function Theorems

Synopsis. Here, give a treatment of both the Implicit Function Theorem
(for real-valued functions), and the Inverse Function Theorem. These are
very powerful theorems that expose some of the hidden structure of real-
valued and vector-valued functions of more than one variable. We will study
the ideas in class, and here is a proof of the Implicit Function Theorem for a
function on (a subset of) three space. And here is a Mathematica Notebook
for this class.

Helpful Documents.

● Mathematica: ImplicitFunctionTheoremExample.
● PDF: IFTproof

8.1. The Implicit Function Theorem.

Figure 26. The unit

2-sphere S1 ∈ R3.

8.1.1. In three variables. Recall the defini-
tion of a c-level set of a function F ∶X ⊂ Rn → R:

Sc = {x ∈ Rn ∣ f(x) = c} .

For this discussion, let F ∈ C1, and n = 3. We
are using an upper case F here for a reason, which
should be clear in the following discussion. Here is
an example for motivation:

Example 8.1. Define F ∶ R3 → R by F (x, y, z) = x2 + y2 + z2, and let
a ∈ S1. Geometrically, here, S1 ∈ R3 is the unit sphere, the sphere of radius-1
in three space. It is depicted in Figure 26.

Some questions:

Question 1. Is it possible to view S1 as the graph of a function where we
think of one variable as a dependent variable and all of the others
still independent. Thus, in this case, can we write S1 as the graph
of z = f(x, y) (this would be a different function than F )? The
answer here is no! But, specifically, why not?

53
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Question 2. Is it possible to write S1 as z = f(x, y) “locally”, near a ∈ S1?
The answer here is “depends...”. But specifically, depends on what?
Where a is located. Specifically whether the point in question is
along the equator or not.

Question 3. So what information about F can be used to determine whether
we can locally think of a level set of a function as the graph of (a
different) function, with one variable a dependent variable and the
other independent?

Figure 27. ∇F helps deter-

mine where level sets locally
look like graphs of functions.

A central tool for this study will be the gra-

dient of F : ∇F (a) =
⎡⎢⎢⎢⎢⎢⎣

Fx(a)
Fy(a)
Fz(a)

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

2x
2y
2z

⎤⎥⎥⎥⎥⎥⎦
. For

F (x, y, z) = x2 + y2 + z2, then, what property does
∇F have for points along the equator that is differ-
ent from other points on S1? Namely, for points like
b along the equator in Figure 27, Fz(b) = 0. Off of
the equator, like point a in Figure 27, F (a) /= 0. So
for b ∈ S1 along the equator, take any small open
set inside S1 containing b (This is the dotted oval
sitting on the surface, where it bends around the
sphere a bit). If we try to write these points in a

form z = f(x, y), we would wind up with some values for x and y with two

points for z, following the function z = ±
√

1 − x2 − y2 . Here, Fz(b) = 0
means that the gradient vector has no component in the z direction. It
means that the gradient vector is “horizontal” (read: perpendicular to the
z-direction). This means that the tangent plane to S1 at the point b would
look “vertical” here (all vector with only a z-component would be inside the
tangent plane).

Figure 28. Near a, S1 looks

like the graph of z = f(x, y) =√
1 − x2 − y2 .

Hence the condition that Fz(a) /= 0 is a
sufficient condition for being able to locally
write F (x, y, z) = c near a as z = f(x, y) for
some function f . This works equally well in
n-dimensions:

Theorem 8.1 (Theorem 2.6.5). Let F ∶X ⊂
Rn → R be C1 and a = (a1, . . . , an−1) ∈ Sc, where

Sc = {x ∈X ∣ F (x) = c} .

If Fxn(a) /= 0, then there exists a neighborhood
U of (a1, . . . , an−1) ∈ Rn−1, a neighborhood V of
an ∈ R, and a C1-function f ∶ U ⊂ Rn−1 → V ,
such that when (x1, . . . , xn−1) ∈ U , and xn ∈ V ,
then xn = f(x1, . . . , xn).
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Go back to our example of the 1-level set S1 of the function F (x, y, z) =
x2 + y2 + z2. If we choose a strictly inside the northern hemisphere of S1, as
in Figure 28, then for these points, we can “solve” for z as a function of x
and y:

z = f(x, y) =
√

1 − x2 − y2 .

But to do this on a neighborhood of U(a), we need to make sure that U
includes no points from the equator. So choose a ⊂ S1 from the northern
hemisphere. Now since a = (a1, a2, a3) satisfies a2

1 + a2
2 + a2

3 = 1, and a3 > 0,
it follows that a2

1 +a2
2 < 1, so that (a1, a2), in the xy-plane, is inside the unit

circle there. The distance between (a1, a2) and the unit circle in the xy-plane
is 1 − (a2

1 + a2
2) > 0, so choose δ = 1

2
(1 − (a2

1 + a2
2)). Then the neighborhood

U(a1, a2) = Bδ(a1, a2) lies completely inside the unit circle in the xy-plane
(See Figure 28). Take V ∈ S1, where V = f(U), and the theorem holds.

Example 8.2. Let G(x, y, z) = 2xy2 + xyz − 2z2, and a = (2,−3,3). Can
we write z = f(x, y) near a? In essense, this is a question of when it is
possible to “solve” for z in terms of x and y. In practice, this theorem and
idea provides the ability to solve for one variable in terms for the others
even in the case where algebraically, it is extremely difficult or not possible.

For G, we can answer this question quickly: Since

G(a) = Gz(2,−3,3) = (xy − 4z) ∣
(2,−3,3)

= (2)(−3) − 4(3) = −18 /= 0,

the answer is yes!. Basically, since the z-component of the gradient is not
0 at a, it will remain not 0 at all points near a. Thus the gradient vector
will not be horizontal near a and the tangent planes to the level-sets of G
containing the nearby points will still not be vertical.

To continue with this example, at the point b = (0,4,0), we have

∇G(b) =
⎡⎢⎢⎢⎢⎢⎣

Gx(b)
Gy(b)
Gz(b)

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

2y2 + yz
4xy + xz
xy − 4z

⎤⎥⎥⎥⎥⎥⎦

RRRRRRRRRRRRRR(0,4,0)
=
⎡⎢⎢⎢⎢⎢⎣

32
0
0

⎤⎥⎥⎥⎥⎥⎦
.

Due to this, we cannot write z as a function of x and y, near b. We also
cannot write y as a function of x and z there. However, we can find a
function (at least in theory) so that x = g(y, z), near b.

We can directly calculate the tangent plane to the level set of G near
the points a and a, again using the gradient, in any case that the gradient
has at least one component that is not 0. Here,

∇G(a) =
⎡⎢⎢⎢⎢⎢⎣

Gx(a)
Gy(a)
Gz(a)

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

2y2 + yz
4xy + xz
xy − 4z

⎤⎥⎥⎥⎥⎥⎦
∣
(2,−3,3)

=
⎡⎢⎢⎢⎢⎢⎣

9
−18
−18

⎤⎥⎥⎥⎥⎥⎦
.
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Then the equation of the tangent plane is

∇G(a) ⋅ (x − a) = 0

9(x − 2) − 18(y + 3) − 18(z − 3) = 0

z = −1 + 1

2
x − y.

Note that a is actually inside this tangent plane.

For b = (0,4,0), we have ∇G(b) =
⎡⎢⎢⎢⎢⎢⎣

32
0
0

⎤⎥⎥⎥⎥⎥⎦
, so

∇G(b) ⋅ (x − b) = 0 = 32(x − 0) + 0(y − 4) + 0(z − 0) = 32x.

But this is simply the plane defined by the equation x = 0, or the yz-plane
in R3. Again, note that b is inside the yz-plane.

Note: There is a general version of the Implicit Function Theorem for
vector-valued functions, but for now, we will move on to a related idea:

8.2. The Inverse Function Theorem.

Here is a question: Let y = f(x) = ex. Does f(x) have an inverse? This
question is really an existence question. One could answer it by actually
constructing an inverse function. One can also answer it by appealing to
the fact that ex is injective, and noting that injective functions do have
inverses. Specifically, the function here is f ∶ R→ R, y = f(x) = ex, but

image(f) = R+ = {x ∈ R ∣ x > 0} .

Hence only if we restrict the codomain of f to R+, can we actually construct
the inverse: For f ∶ R → R+, f(x) = ex, construct g ∶ R+ → R, g(x) = lnx.
Then one can show that (f ○ g)(x) = x on R+ and (g ○ f)(x) = x on R.

In practice, at times, one would show that an inverse exists by simply
taking y = f(x), and attempting to “solve for x”. Or one could graph the
function and look to see that it satisfies the “horizontal line test”, a graphical
tool for establishing injectivity, since if a function satisfies the horizontal line
test, then its inverse will satisfy the vertical line test, thus verifying that the
inverse is actually a function. Without these tools, sometimes it is necessary
to know if a function has an inverse even if the expression is not necessary.
For example, does y = x2 + 5 cosx− ex have an inverse? Does it have one on
[0,1]? Without other aids, graph this function to see.

In vector calculus, these questions become much more complicated (try
graphing a non-linear function from three space to three space), even as
the ideas behind them are precisely the same. Suppose f ∶ X ⊂ Rn → Rn,
a ∈ X ⊂ Rn open, and f ∈ C1. If detDf(a) /= 0, then ∃U ⊂ X, and open
neighborhood, where (1) f ∣

U
is 1-1, (2) f(U) = V is open in Rn, and (3) a
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uniquely defined inverse function g ∶ V → U , g ∈ C1, where

(g ○ f) (x) = x and (f ○ g) (x) = x.

We say f and g are inverses of each other, and write f−1 = g and g−1 = f .
Notes:

● Given f ∶ X ⊂ Rn → Rn, then f(x) =
⎡⎢⎢⎢⎢⎢⎣

f1(x1, . . . , xn)
⋮

fn(x1, . . . , xn)

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

y1

⋮
yn

⎤⎥⎥⎥⎥⎥⎦
=

y is a system of n (nonlinear) equations, each writing a dependent
variable yi as a function of the n independent variables x1, . . . , xn.
Can we solve this system for the x-variables, writing each of them
as a function of the variable y1, . . . , yn? In essence, can we rewrite
the system as

x = g(y),
thereby finding the inverse function, where g = f−1, at least lo-
cally to a point a? The answer to this question is yes, but only if
detDf(a) /= 0.

● If f ∶ Rn → Rn is linear, then f(x) = An×nx = y, for some square
matrix A. The question is: Is it possible to find a new matrix A−1

so that x = A−1y? Again, the answer is yes, but only if detA /= 0.

The Inverse Function Theorem is simply the nonlinear (local) version of
this!

Example 8.3. Is it possible to solve u = xy, v = x − y for x and y as
functions of u and v near the point a = (1,1) in the plane? How about near
the point b = (−1,1)? Answer these questions, and where one can invert the
system, do so.

To set up this problem, let f ∶ R2 → R2, where f(x, y) = (xy, x − y). The
strategy here will be to calculate the derivative of f , evaluated at a and
b, and see if its determinant is non-zero. Where it is non-zero, invert the
system.

Here,

Df(x) = [ y x
1 −1

] , so Df(a) = [ 1 1
1 −1

] and Df(b) = [ 1 −1
1 −1

] .

It is easy to see that detDf(a) = −1 /= 0, while detDf(b) = 0. Hence the
system is invertible near a but not near b.

To invert the system, write v = x − y as x = v + y, and then

u = xy = (v + y)y = vy + y2.

Solving this for y, we get y = −v±
√
v2+4u
2 . But without knowing which

sign to choose, this is not yet a function. We then note here that when
(x, y) = (1,1), then (u, v) = (1,0). Hence the plus sign in the y expression is
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the one that is compatible to this, since when u = 1 and v = 0, y must equal
1. Hence we get the system

x = v + −v +
√
v2 + 4u

2
= v +

√
v2 + 4u

2

y = −v +
√
v2 + 4u

2
.

Finally, note that at b, x = −1 and y = 1. This makes u = −1 and v = −2.
Now, can you see why x and y cannot be functions of u and v near b?



LECTURE 9

Curves in Euclidean Space

Synopsis. Today we begin the study of Chapter 3 on vector-valued
functions. For the most part, there are only two topics of discussion here:
paths or curves and vector fields, respectively defined as functions from the
real line into n-space, or functions from n-space into itself. The reason for
an entire chapter on these two items is that they play a huge role in a
solid general understanding of all of the calculus of vector-valued functions
of more than one variable. They also introduce the idea of a geometric
object begin completely defined by a function, allowing us to fold geometry
into the analysis of functions in a fundamental way. This is one of the core
principles of higher mathematics. Today, curves in n-space and some of their
properties. One defining characteristic of a curve in n-space is that its length
should be independent of its parameterization, even though we calculate the
length using the parameterization. This extra document details why this is
so:

Helpful Documents. PDF: ParameterizationIndependence.

Curves in Rn. We start with a definition:

Definition 9.1. A curve or path in Rn is a continuous function x ∶ I ⊂

R→ Rn, where x(t) =
⎡⎢⎢⎢⎢⎢⎣

x1(t)
⋮

xn(t)

⎤⎥⎥⎥⎥⎥⎦
, defined on an interval I.

Note that the image of x(t) is an n-vector for each value of t ∈ I. If x is
differentiable as a function, then its derivative is also an n-vector, and

d

dt
x(t) = x′(t) =

⎡⎢⎢⎢⎢⎢⎣

dx1
dt (t)
⋮

dxn
dt (t)

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

x′1(t)
⋮

x′n(t)

⎤⎥⎥⎥⎥⎥⎦
.

We sometimes call the derivative vector the velocity, and denote it v(t) =
x′(t).

At a point t0 ∈ I, v(t0) is represented by a vector in Rn, although not
one based at the origin, as usual. Rather, the vector v(t0) is based at x(t0)
and tangent to the curve image(x). See Figure 29 below left. Here, we
simply denote the entire curve as x. Now, as long as v(t0) /= 0, this vector
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defines a unique tangent line to x at t = t0, parameterized as

`(s) = x(t0) + sv(t0), or

`(s) = x(t0) + (t − t0)v(t0), for s = t − t0.

Note that the line, shown in Figure 29 at right, ` = span{v(t0)}.

Figure 29. A parameterized curve in R3 and its tangent line.

Here, the speed of x(t) at t = t0 is simply the size of the velocity vector
at t0, so ∣∣v(t0)∣∣. The interpretation is of a bead moving along a piece of
wire that is the curve. The bead is at x(t0) at time t = t0 and moving
with (instantaneous) speed ∣∣v(t0)∣∣ then. All of this is a topic of a standard
single variable calculus course, since all of the derivatives here are calculated
according to the component functions xi ∶ I → R, each of which is a real-
valued on I ⊂ R.

Indeed, let x = f(t) and y = g(t), for t ∈ I ⊂ R, define a parametric curve

in R2. If f, g ∈ C1, then dx
dt = f

′(t) and dy
dt = g

′(t), and when defined,

dy

dx
=

dy
dt
dx
dt

defines the tangent line in R2 to the curve at (x0, y0):

y =
⎛
⎝
dy

dx
∣
(x0,y0)

⎞
⎠
(x − x0) + y0, x0 = f(t0), and y0 = g(t0).

This construction was useful for studying curves that are defined only
implicitly and not representable as functions y(x) or x(y): If a curve is

defined as F (x, y) = 0, then we can calculate dy
dx in two ways: (1) implicitly,

or (2) via a parameterization like above. But we can use the language of
vector calculus, now, to revisit these methods:

Implicit differentiation. Assume that y = y(x) is an implicit function of
x. The the equation F (x, y) = 0 looks like F (x, y(x)) = 0, and is only a
function of x. Thus we can differentiate with respect to x and get

d

dx
F (x, y(x)) = ∂

∂x
F (x, y) + ∂

∂y
F (x, y)dy

dx
= 0.
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Thus, we get

dy

dx
= −Fx(x, y)

Fy(x, y)
.

Via parameterization. Both x = x(t) and y = y(t) are functions of t, so
F (x, y) = F (x(t), y(t)) = 0, adn F is only a function of t. Thus

d

dt
F (x(t), y(t)) = Fx(x, y)

dx

dt
+ Fy(x, y)

dy

dt
= 0.

This implies again the SAME result:

dy

dx
=

dy
dt
dx
dt

= −Fx(x, y)
Fy(x, y)

.

Thinking of a curve as a function affords us all of the tools of calculus
to study the geometry of curves:

(1) We can attribute higher derivatives to geometric features like ac-
celeration,

a(t) = d

dt
v(t) = d2

dt2
x(t),

and jerk, etc.
(2) We can recover quantities like distance via integrating velocity, so

that

x(t) =
ˆ t

t0

v(s) ds.

Do keep in mind, though, that integrating a vector means inte-
grating each component, noting that the constant of integration is,
again, a vector.

(3) Derivative rules, again, behave well with respect to curves. For
example, the Product Rule and the Dot Product:

d

dt
[x ⋅ y(t)] = dx

dt
⋅ y(t) + x(t) ⋅ dy

dt
.

(4) Facilitates geometric study:

Example 9.1. If x(t) ⊂ Rn is a C1-curve, with ∣∣x(t)∣∣ = c > 0,
for all t ∈ I, then x′(t) ⋅ x(t) = 0, for every t ∈ I.

Exercise 3. Prove this result.

Recall from Calculua II, for f ∶ [α,β]→ R, the length of graph(f) ⊂ R2

on [α,β] is

L =
ˆ β

α

√
1 + (f(x))2 dx,
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or if the curve is a parametric curve,

L =
ˆ β

α

¿
ÁÁÀ(dx

dt
)

2

+ (dy
dt

)
2

dt.

Exercise 4. Show that these two quantities are the same.

This last formula is tailor-made for us: Let x ∶ [a, b] → R2, x(t) =

[ x(t)
y(t) ]. Here, given a partition on the interval [a, b],

a = t0 < t1 < . . . < tn−1 < tn = b,
one looks for the approximate length of the curve on the subinterval [ti−1, ti],
and then adds up the approximations on each subinterval to get an approx-
imation of the length of the curve. For each subinterval [ti−1, ti], calculate
∆ti. Now approximate the length of the curve on a subinterval by using
Euclidean distance between x(ti−1 and x(ti). The approximate length of
the curve in the ith subinterval is

∣∣x(ti) − x(ti−1)∣∣ =
√

(x(ti) − x(ti−1))2 + (y(ti) − y(ti−1))2 .

But we can write

x(ti) − x(ti−1) = ∆xi = x′(t∗i )∆ti
y(ti) − y(ti−1) = ∆yi = y′(t∗∗i )∆ti

by the Mean Value Theorem for some t∗i and t∗∗i in [ti−1, ti]. So the approx-
imate length of the curve, given the partition, is

approx L =
n

∑
i=1

√
(x′(t∗i ))

2 + (y′(t∗∗i ))2
∆ti.

And the actual length is found by taking the limit as the largest ∆ti → 0:

L = lim
maxi∆ti→0

n

∑
i=1

√
(x′(t∗i ))

2 + (y′(t∗∗i ))2
∆ti

=
ˆ b

a

√
(x′(t))2 + (y′(t))2 dt

=
ˆ b

a

∣∣x′(t)∣∣ dt,

where the quantity ∣∣x′(t)∣∣ is the size of the velocity vector at time t, other-
wise known as the speed of the curve at t. All of this works in Rn, n ∈ N.

Definition 9.2. The length of x ∶ [a, b]→ Rn, a C1-parameterized curve
in Rn is

L(x) =
ˆ b

a

∣∣x′(t)∣∣ dt.

Some notes:

● One integrates speed to recover distance (length traveled)!
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● Even if the curve is only piecewise C1 (so maybe it has corners),
this still works, as integrals are additive.

● This formula seems to critically depend on the parameterization.
But it does not! (See the Helpful document for a proof.) TO
verify, reparameterize and reintegrate. or better yet, parameterize
intrinsically, using length itself as the parameter on the curve.

Let x ∶ [a, b]→ Rn be a path with non-zero velocity everywhere (so that
v(t) /= 0, ∀t ∈ [a, b]). Denote by p0 = x(a), and p = x(s), where

s(t) =
ˆ t

a

∣∣x′(τ)∣∣ dτ.

(Note that the use of τ is simply a dummy variable in a definite integral,
and never actually appears on the curve.) Some things to think about:

● Since x′(t) /= 0, the length is always positive, and s(t) is a strictly
increasing function. As such, it is invertible, and we can reparam-
eterize x(t) to

x(s) = x (t(s))
as a function of s.

● In practice, t(s) may be difficult of near impossible to find, but the
total length of the curve is

s(b) =
ˆ t

a

∣∣x′(τ)∣∣ dτ =
ˆ t

a

∣∣x′(t)∣∣ dt,

which is just the length of the curve in the t parameter. Hence
reparameterization does not change length.

● s(t) is c1 when x is, and

s′(t) = ds
dt

= d

dt
[
ˆ t

a

∣∣x′(τ)∣∣ dτ] = ∣∣x′(t)∣∣ .

So under this reparameterization, the derivative is just the spread
of the curve at the old value of t.

So we can use this to calculate the tangent vector in the new parameter:
Write x(t) = x(s(t)). The differentiate, using the Chain Rule:

x′(t) = d

dt
x(s(t)) = x′(s) ⋅ s′(t) = x(s) ∣∣x′(t)∣∣ , so x′(s) = x′(t)

∣∣x′(t)∣∣ .

Conclusions?

(1) In the new parameter, the arclength traverses the curve at unit
speed always.

(2) x′(s) is just the normalization of the tangent vector at the same
point as x(t).

Definition 9.3. For a C1-path x ∶ [a, b] → Rn, the unit tangent vector
to x at t = t0 is

T(t0) =
x′(t0)

∣∣x′(t0)∣∣
,
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and is just the normalized velocity.

This concept of a normalized velocity vector will be very important later
on in the course.



LECTURE 10

Vector Fields

Synopsis. Vector fields, as geometric objects and/or functions, provide
a backbone in which all of physics and engineering, really mathematical
modeling is structured on. From force fields in physics to slope fields in
differential equations and modeling, the notion of a vector field allows us
to recover measureable quantities from models defined only by equations of
motion. Here, we begin the study of their basic structure and properties.

Vector Fields. We start with a definition:

Definition 10.1. A vector field on Rn is a map F ∶ X ⊂ Rn → Rn, as
assignment of a vector F(x) to every point x ∈X.

Examples of vector fields include

● Force fields in physics,
● slope fields in differential equations, and
● fluid (air) flow in climate models.

A vector field is of class Cn precisely when F is Cn. This means that
vectors vary in both size and direction in a continuous (C0), or differentiable
(Cn, n ≥ 1), etc.

Definition 10.2. A vector field is called a gradient field on Rn if F is
the gradient of a real-valued function f ∶X ⊂ Rn → R.

Let f ∶ X ⊂ Rn → R be C1. Then ∇f ∶ X ⊂ Rn → Rn. Here, we interpret
this as a vector field on X, a gradient field on X.

● Here, f is called a potential function for the gradient field F(x) =
∇f(x).

● Recall for f ∶ R2 → R, the level sets of f are generically curves in
the domain of f , which is the plane. For f a potential function of
a gradient field,
(1) the level curves are equipotential sets, sets of equal potential,

and
(2) the gradient field along these sets always is orthogonal to (the

tangent lines of) these sets.
(3) The gradient field always points in the direction of the most

rapid increase of f at each point.
(4) In contrast to a vector field, a real-valued function is sometimes

called a scalar field. The gradient takes a potential (scalar)
field to a vector field.
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Example 10.1. Given a scalar field f ∶X ⊂ Rn → R, finding its gradient
field is straightforward: Take derivatives adn form the vector. But, given
a gradient field, can one find a potential for it? In Example 5 on page,

231, the author tells you that the gradient field F(x, y, z) =
⎡⎢⎢⎢⎢⎢⎣

3x2 + y2

2xy
x3 − 2z

⎤⎥⎥⎥⎥⎥⎦
has

potential f(x, y, z) = x3z + xy2 − z2, and “leave[s] it to you to verify...”. But
without a candidate for a potential, how does one calculate one? The idea
is to un-differentiate!

Pretend that f ∶ Rn → R is unspecified. But since we know F(x, y, z) =
∇f(x, y, z), then we know the following:

(1)
∂f

∂y
= 2xy. Hence f(x, y, z) = xy2 + h(x, z). (Why is this? Be-

cause, the partial derivative of f with respect to why would see
every function of only x and z as a constant. Hence, when un-
differentiating, one has to account for this fact by specifying the
constant lost to differentiating (with respect to y) as something
which is a function of possibly everything except for y. Got it?
So we already know something about f . Namely, f is of the form
f(x, y, z) = xy2 + h(x, z).

(2) Then
∂f

∂x
= ∂

∂x
[xy2 + h(x, z)] = y2 + ∂h

∂x
(x, z) = 3x2z + y2. This is

bacause the last expression is the x-component of the gradient field
F(x, y, z). Hence h(x, z) = x3z + g(z), where g is some unknown
function of only z. Now we know even more about f . We know
f(x, y, z) = xy2 + x3z + g(z).

(3) And lastly,
∂f

∂z
= ∂

∂z
[xy2 + x3z + g(z)] = x3 + g′(z) = x3 − 2z. But

this means that g′(z) = −2z, so that g(z) = −z2.

Hence we have f(x, y, z) = xy2 + x3z − z2.

Definition 10.3. A flow line, or a trajectory of a vector field F ∶ X ⊂
Rn → Rn is a differentiable curve x ∶ I ⊂ R→ Rn that satisfies

(10.0.1) x′(t) = F (x(t)) , ∀t ∈ I.

Here, the velocity vector of the curve at every point in the domain of the
curve equals to vector field at that point. Finding such a path, given a vector
field, is precisely the subject of a field of mathematics called differential
equations! But simply verifying that a given path is a flow line of a vector
field is a matter of just verifying Equation 10.0.1.
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Example 10.2. Is the path x(t) = [ e−t + 2e2t

−e−t + e2t ] in the plane a flow line

for the vector field F(x) = [ x + 2y
x

] on R2?

The answer is yes, since

x′(t) = [ −e−t + 4e2t

e−t + 2e2t ] = [ (e−t + 2e2t) + 2 (−e−t + e2t)
(e−t + e2t) ] = [ x(t) + 2y(t)

x(t) ] = F (x(t)) .

Definition 10.4. An linear operator is a mapping from one linear (vec-
tor) space to another.

From linear algebra, this means that any matrix determines a linear
operator from the domain to the codomain. This also means that any linear
transformation is also called a linear operator. However, one can define
linear spaces whose elements are functions, in the following way: Two real-
valued functions, defined on the same space, can be added together to create
another function from the same domain to the same codomain. Once can
also multiple any function by a real number to create a new function. Hence
any linear combination of real-valued functions from a domain to R is again
a function from the domain to R. And since there exists an additive identity
function (the 0-function), and an additive inverse function for every function,
the set of functions from a domain to R form a linear space (like a vector
space). However, these “function” spaces are not finite dimensional, and
hence there is not a finite basis, like for the standard vector spaces one sees
in linear algebra. But one can define linear maps between these function
spaces, and they behave much like the linear transformations you have seen
in linear algebra. So think of linear operators as maps taking functions to
functions. Note that the notion of an operator being linear is just the idea
that the image of a linear combination of inputs is just a linear combination
of the images of the inputs, or

f(c1x + c2y) = c1f(x) + c2f(y).
Keep this in mind.

Definition 10.5. The del operator ∇ is the linear operator that takes
a real-valued C1-function f ∶ X ⊂ Rn → R to its gradient vector field ∇f ∶
X → Rn.

Some Notation: ∇ = i ∂∂x + j ∂∂y + k ∂
∂z in R3, or

∇ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂
∂x1
∂
∂x2
⋮
∂
∂xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

= e1
∂

∂x1
+ e2

∂

∂x2
+ . . . + en

∂

∂xn
, in Rn.
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This notation may seem a bit odd, but it is common, and implies

∇ ( ) =
n

∑
i=1

ei
∂

∂xi
( ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂
∂x1
∂
∂x2
⋮
∂
∂xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

( )

is to be interpreted as

∇f = ∇(f) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂
∂x1
∂
∂x2
⋮
∂
∂xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(f) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f
∂x1
∂f
∂x2
⋮
∂f
∂xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Definition 10.6. For a C1-vector field F ∶X ⊂ Rn → Rn, the divergence
of F, denoted div F, or ∇ ⋅F, is the scalar function

div F = ∇ ⋅F =
n

∑
i=1

∂Fi
∂xi

= ∂F1

∂x1
+ ∂F2

∂x2
+ . . . + ∂Fn

∂xn
,

for x = (x1, . . . , xn) ∈X, and F(x) =
⎡⎢⎢⎢⎢⎢⎣

F1(x)
⋮

Fn(x)

⎤⎥⎥⎥⎥⎥⎦
.

Some notes:

● Here div F(x) = ∇⋅F(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂
∂x1
∂
∂x2
⋮
∂
∂xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎣

F1(x)
F2(x)
⋮

Fn(x)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

uses the Dot Prod-

uct, although the product on each component is meant to indicate
“apply the partial operator to the component function”.

● We will prove this later on in the course, but the divergence of a
vector field measures the infinitesimal volume change caused by the
vector field.

● A vector field F, where ∇ ⋅F = 0 is called incompressible.
● Viewed as an operator, ∇ can operate on functions in different ways:

(1) As the gradient of a scalar field ∇f , for f ∶X ⊂ Rn → R;
(2) As the divergence of a vector field ∇ ⋅F, for F ∶X ⊂ Rn → Rn;

And
(3) as the curl of a vector field ∇×F, but only in R3.
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Definition 10.7. For a C1-vector field F ∶ X ⊂ R3 → R3, the curl of F,
denoted curl F, or ∇×F, is

∇×F =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂
∂x

∂
∂y

∂
∂z

⎤⎥⎥⎥⎥⎥⎥⎥⎦

×
⎡⎢⎢⎢⎢⎢⎣

F1

F2

F3

⎤⎥⎥⎥⎥⎥⎦
=
RRRRRRRRRRRRRR

i j k
∂
∂x

∂
∂y

∂
∂z

F1 F2 F3

RRRRRRRRRRRRRR

= (∂F3

∂y
− ∂F2

∂z
) i − (∂F3

∂x
− ∂F1

∂z
) j + (∂F2

∂x
− ∂F1

∂y
)k.

More Notes:

● It is worth noticing that (1) the gradient of a scalar field is a vector
field, (2) the divergence of a vector field is a scalar field, and (3)
the curl of a vector field (in R3) is a vector field.

● We will again prove this later, but the curl of a vector field measures
the infinitesimal twist in the vector field along the vector field at
each point.

● If, for F ∶X ⊂ R3 → R3, we have ∇×F = 0 everywhere, we say F is
irrotational.

Example 10.3. The vector field F(x, y, z) =
⎡⎢⎢⎢⎢⎢⎣

y
−x

0

⎤⎥⎥⎥⎥⎥⎦
rotates each xy-

plane at z = c. Here

∇×F =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂
∂x

∂
∂y

∂
∂z

⎤⎥⎥⎥⎥⎥⎥⎥⎦

×
⎡⎢⎢⎢⎢⎢⎣

y
−x

0

⎤⎥⎥⎥⎥⎥⎦
=
RRRRRRRRRRRRRR

i j k
∂
∂x

∂
∂y

∂
∂z

y −x 0

RRRRRRRRRRRRRR

= ( ∂
∂y

(0) − ∂

∂z
(−x)) i − ( ∂

∂x
(0) − ∂

∂z
(y)) j + ( ∂

∂x
(−x) − ∂

∂y
(y))k = −2k.

Notice, by the definition and properties of the cross product, that, as a
vector field ∇×F must be orthogonal to F at every point.

Example 10.4. Explosions and Implosions in R3: For G(x, y, z) =

±c
⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
, for c ∈ R, we have ∇×G = 0. These vector fields are irrotational.

Exercise 5. Show all constant vector fields H(x, y, z) =
⎡⎢⎢⎢⎢⎢⎣

c1

c2

c3

⎤⎥⎥⎥⎥⎥⎦
are ir-

rotational.
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And here are some beautiful facts, whose calculations provide excellent
practice:

Exercise 6. Show that a gradient vector field in R3 is irrotational. That
is, for f ∶X ⊂ R3 → R a C2-function, show that ∇× (∇f) = 0.

Exercise 7. Show that the curl of a vector field in R3 is incompressible.
That is, for F ∶X ⊂ R3 → R3 a C2-vector field, show that ∇ ⋅ (∇×F) = 0.



LECTURE 11

Differentials and Taylor Series

Synopsis. Herein, we give a brief interpretation of the differential of a
function. There are many interpretations of a function’s differential, but we
only deal with one currently. Then we delve into an even briefer description
of the Taylor Series of a real-valued function on Rn. The details, for now,
are not important. But the relationship to the counterparts of both of these
concepts to single variable calculus is quite important.

Helpful Documents. Mathematica: TaylorPolynomials.

The differential of a function. Recall that for a variable x, a small
change in x is denoted ∆x = (x+h)−x = h, where h is a number near 0. As
the value of h tends to 0, ∆x also vanishes. But we can mark the vanishing
of ∆x via what is called an infinitesimal change in x, and denote it dx, so
that

∆x
h→0ÐÐÐ→ dx.

Really, this has meaning almost exclusively in the context of how other
quantities change that depend on x or when compared to x. The quantity
dx is called the differential of x.

Now let f ∶ X ⊂ R → R be a differentiable function, and a ∈ X. For the
graph y = f(x), the quantity

∆y = ∆f = f(x +∆x) − f(x)
represents a small change in y, as it depends on ∆x, the small change in
x. As h → 0, of course, ∆f also goes to 0. But measuring how ∆f goes
to zero is important in calculus. Hence we mark teh infinitesimal change
in y or f by its differential: df = dy. Studying just how the dependent
variable y is changing as one varies x is vitally important in the study of
functional relationships between entities, and is the motivation behind the

Liebniz notation in calculus dy
dx =

df
dx =

d
dxf(x) representing the derivative of

f(x) with respect to x:

f ′(x) = lim
h→0

f(x + h) − f(x)
h

= lim
∆x→0

f (x +∆x) − f(x)
∆x

= lim
∆x→0

∆f

∆x
= df

dx

since ∆x = (x + h) − x = h. To even be able to discuss ideas that involve
passing to a limit, one needs to be able to discuss quantities that are infinites-
imally close to 0 or close to each other. One can say that an infinitesimally
small positive number represents a positive number closer to 0 than any real
positive number.
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We note here that, as an alternate definition, one can call the quantities
dx, and dy actual new variables, whose relationship is tied to the relationship
between y and x, namely y = f(x). This alternate definition provides a much
more concrete foundation for which to use these quantities, but structurally
does not change their meaning. We will visit this more concrete notion of a
differential later when we discuss differential forms.

The quantity df (the differential of f), represents an infinitesimal change
in f given an infinitesimal change in its independent variable x: at x = a,
we have

df(a) = f ′(a)dx, or
df

dx
(a) = f ′(a)

to reflect the idea that this differential will change as we vary the point
x = a. More generally, df = f ′(x)dx.

Some notes:

● This will make more sense later, when we discuss differential forms,
but df , the differential of f , is an example of a differential 1-form.

● This concept embodies the Substitution Rule (the Anti-Chain Rule)
in single variable calculus:

ˆ b

a
f (g(x)) g′(x)dx u=g(x)ÐÐÐÐÐÐÐ→

du=g′(x)dx

ˆ g(b)

g(a)
f(u) du.

Indeed, let f be a function of u, with u = α a point in its
domainf , and F an antiderivative of f , so that F ′(u) = f(u). Then

dF (α) = F ′(α) du = f(α) du =
⎛
⎝
f(u)

RRRRRRRRRRRu=α

⎞
⎠
du.

If u = g(x) is a function of x, then du, the differential of u, is related
to dx, and du = g′(x)dx. But also, f and hence F are functions of
x, via composition: f(u) = f (g(x)) and F (u) = F (g(x)). Thus,
their differentials also vary with respect to x,

f(α) du = dF (α) = F ′(α) du = (F ′(u)∣
u=α

)du

=
⎛
⎝
F ′(u)∣

u=g(a)=α

⎞
⎠
(g′(x)∣

x=a
) dx

=
⎛
⎝
f(u)∣

u=g(a)

⎞
⎠
(g′(x)∣

x=a
) dx

= f ′ (g(a)) g′(a)dx.

Hence, we are left with, on their appropriate domains,

f(u) du = f ′ (g(x)) g′(x)dx.
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Finally, recall that integration is just a form of infinitesimal ad-
dition. Now does the form of the Substitution Rule make more
sense?

In many variables, let f ∶ X ⊂ Rn → R be a differentiable function, and
a ∈X. df is the sum of the partial differentials (differentials in the coordinate

directions), ∂f
∂xi

dxi, and

(11.0.1) df = ∂f

∂x1
dx1 + . . . +

∂f

∂xn
dxn =

n

∑
n=1

∂f

∂xi
dxi =Df(a)dx

represents the total differential of f . This quantity represents an infini-
tesimal change in f in terms of the infinitesimal changes in its coordinate

directions dxi. The use of the vector term dx =
⎡⎢⎢⎢⎢⎢⎣

dx1

⋮
dxn

⎤⎥⎥⎥⎥⎥⎦
will make more

sense later on in the course.
As a function, ∆f = f(a +∆x) − f(a) = f(a + h) − f(a), where ∆x = h

is a vector of small changes in each of the coordinate directions. Written
out, ∆f will contain many terms which are not linear in ∆x. As ∆x tends
to 0, any terms which contain products of the various small changes in the
coordinate directions will tend toward 0 much faster, so that only the linear
parts of these terms will contribute to the limit (the higher-degree terms
will die off quickly, leaving only the linear terms). One can then see directly
how the differential of a function operates:

Example 11.1. Let f ∶ R2 → R be given by f(x, y) = x2+xy−x−y+sinx.
Here ∆x = (∆x,∆y))T , and

∆f(π,0) = f ((π,0)T + (∆x,∆y)T ) − f(π,0)

= (π +∆x)2 + (π +∆x)(∆y) − (π +∆x) −∆y + sin (π +∆x) − π2 + π
= π2 + 2π∆x + (∆x)2 + π∆y +∆x∆y − π −∆x −∆y − sin(∆x) − π2 + π.

Notice here that all of the terms not containing a ∆x or a ∆y cancel out.
Recall also that for very small values of ∆x, the function sin(∆x) ≈ ∆x.
This is called a first-order approximation of the sine function near x = 0,
and reflects the idea that the sine function has a Taylor expansion at x = 0
containing a linear term with coefficient 1 (its first Taylor polynomial is
T1(x) = x). Likewise, for very small values of ∆x and ∆y, all of the other
higher-order terms vanish double fast, leaving only the linear terms:

∆f(π,0) = (2π − 1)∆x −∆x + (π − 1)∆y = (2π − 2)∆x + (π − 1)∆y.

Passing to the infinitesimals, we get ∆f Ð→ df , and ∆x Ð→ dx = [ dx
dy

],

and we get
df(π,0) = (2π − 2)dx + (π − 1) dy.
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Now compare this to the direct computation, using Equation 11.0.1 above.
Here

∂f

∂x
(π,0) = (2x − y − 1 + cosx)∣

x=π
y=0

= (2π − 2)

and
∂f

∂y
(π,0) = (x − 1)∣

x=π
y=0

= (π − 1)

so that

df(π,0) =Df(π,0) dx = [ 2π − 2 π − 1 ] [ dx
dy

] = (2π − 2)dx + (π − 1) dy.

The result is the same.

And finally, going back to the notion of dx and dy being actual coordi-
nates, tied together via y = f(x) so that dy = f ′(x)dx, we can extend this
notion to the multidimensional case. Here, we can view each of the dxi as
an actual coordinate on the local linearization of f at the point x = a. Thus,
the set {dx1, . . . , dxn} become a set of coordinates on each tangent space
to the domain X ⊂ Rn, and df(a) becomes a vector measuring just how f is
changing infinitesimally. Again,we will explore this notion in detail at the
end of the course.

The Taylor series. Recall that the Taylor series of a C∞-function
f ∶ I ⊂ R→ R at a point a ∈ I is

f(x) =
∞
∑
i=0

f (i)(a)
i !

(x − a)i,

and is defined on the largest interval where the series converges. Here, one
may also truncate this series to obtain the mth Taylor polynomial

Tm(x) =
m

∑
i=0

f (i)(a)
i !

(x − a)i.

The mth Taylor polynomial is considered the “best” mth-degree polynomial
that approximates f(x) near x = a, and we define the term “best” to mean
that all of the derivatives of f and Tm are the same up to and including the
mth derivative. So, for i = 0,1, . . . ,m,

di

dxi
Tm(a) = f (i)(a).

Now let g ∶X ⊂ Rn → R also be C∞. We may ask very similar questions,
like: What is the best mth degree polynomial (in the variables defining X)
that approximates g near x = a. Again, the criteria for “best” will be the
one that matches g at a for all (partial) derivatives up to and including the
order-m ones.
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Obviously, the best 0-degree polynomial to approximate g(x) at x = a
is the one whose function value is g(a), so

T0(x) = g(a).

And we have already calculated the best first-degree polynomial, where the
derivative matrix of g played a vital role:

T1(x) = g(a) +Dg(a)(x − a).

Perhaps a better way to write this is to appeal to the individual variables
explicitly, so

T1(x) = g(a) +Dg(a)(x − a)

= g(a) +
n

∑
i=1

∂g

∂xi
(a)(xi − ai)

= g(a) + gx1(a)(x1 − a1) + gx2(a)(x2 − a2) + . . . + gxn(a)(xn − an)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

all first partials

.

Now it should be straightforward to see that not only does T1(a) = g(a),
but

∂T1

∂xi
(a) = ∂g

∂xi
(a),

for all i = 1, . . . , n.
So follow the pattern. What would be the “best” degree-2 polynomial

to approximate g(x) at x = a? Of course, one such that T2(a) = g(a), and
for all i, j = 1, . . . , n, we have

∂T2

∂xi
(a) = ∂g

∂xi
(a), and

∂2T2

∂xj∂xi
(a) = ∂2g

∂xj∂xi
(a).

It is apparent by reverse engineering that the only degree-2 polynomial that
would work is

T2(x) = g(a) +
n

∑
i=1

∂g

∂xi
(a)(xi − ai) +

1

2

n

∑
i,j=1

∂2g

∂xj∂xi
(a)(xi − ai)(xj − aj).

A big question to answer here is: Why the 1
2 coefficient? Think about this.

There is a much better way to view the form of T2:

Definition 11.1. Given f ∶X ⊂ Rn → R a C2 function, the n×n matrix

whose ijth entry is ∂2f
∂xj∂xi

,

Hf =
⎡⎢⎢⎢⎢⎢⎣

fx1x1 ⋯ fx1xn
⋮ ⋱ ⋮

fxnx1 ⋯ fxnxn

⎤⎥⎥⎥⎥⎥⎦
is called the Hessian of f .
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Now, denote by h = x − a, so that hi = xi − ai. Then we can write

T2(x) = g(a) +
n

∑
i=1

∂g

∂xi

(a)(xi − ai) +
1

2

n

∑
i,j=1

∂2g

∂xj∂xi

(a)(xi − ai)(xj − aj)

= g(a) + [ gx1
(a) ⋯ gxn(a) ]

⎡⎢⎢⎢⎢⎣

h1

⋮
hn

⎤⎥⎥⎥⎥⎦
+ 1

2
[ h1 ⋯ hn ]

⎡⎢⎢⎢⎢⎢⎣

gx1x1
(a) ⋯ gx1xn(a)
⋮ ⋱ ⋮

gxnx1
(a) ⋯ gxnxn(a)

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

h1

⋮
hn

⎤⎥⎥⎥⎥⎦

= g(a) +Dg(a)h + 1

2
h

T
Hfh.

So what would the third Taylor polynomial look like? Generalize in the
obvious fashion, and get

T3(x) = g(a) +
n

∑
i=1

∂g

∂xi
(a)(xi − ai) +

1

2

n

∑
i,j=1

∂2g

∂xj∂xi
(a)(xi − ai)(xj − aj)

+ 1

6

n

∑
i,j,k=1

∂3g

∂xk∂xj∂xi
(a)(xi − ai)(xj − aj)(xk − ak),

of course. And the polynomial T`(x), for natural number ` > 3?
You may notice that I did not write T3(x) in a more elegant fashion,

using some three dimensional verion of the derivative matrix or the Hessian
matrix. It get difficult now since we would be creating and using objects
that are higher dimensional arrays (All 8 = 23 of the third-order partials of
f ∶ R2 → R would be arranged into a three dimensional array. These objects
do exist and are manifestations of what are called tensors. Getting a handle
on the notation and working with these objects would involve a bit more
time than we can devote to it at the moment. So we rely simply on the
summation notation, and basically stop here.

Exercise 8. Devise a mathematical notation that would provide an
array-based version of the third-order terms in T3(x).



LECTURE 12

Extrema

Synopsis. Local and global extrema are much like their counterparts in
single variable calculus. They are just points in the domain of a real-valued
function where the function value is locally the lowest or highest. And they
occur, if at all, at critical points of the function. If the function is differen-
tiable everywhere, then extrema only occur at places where the derivative
(matrix) has zeros in all of its elements. Thus all of the directional deriva-
tives are 0 here also. But since directional derivatives are just derivatives
along slices through the function, we can also check the concavity of these
slice functions along vector directions in the domain. This leads to a notion
of a second directional derivative, and also to one major application of the
Hessian matrix of second partials. Relating this to a quadratic form, we
construct the Second Derivative Test for a C2-real-valued function of more
than one variable. We then end with the multidimensional counterpart of
the Extreme Value Theorem, once we understand what closed and bounded
mean for a domain in real n-space.

Helpful Documents. Mathematica: Extrema, MoreExtrema.

Local extrema. Like in single variable calculus, local extrema are im-
portant properties of functions:

Definition 12.1. The function f ∶ X ⊂ Rn → R, for X open, has a
local minimum at a ∈ X if there exists a neighborhood U(a) ⊂ X such that
f(x) ≥ f(a), for every x ∈ U . And f has a local maximum at a ∈ X if there
exists a neighborhood U(a) ⊂X such that f(x) ≤ f(a), for every x ∈ U .

Some Notes:

● A local minimum (maximum) is global if U =X.
● If f ∈ C1, then local extrema have a special quality:

Theorem 12.2. Given X ⊂ Rn open and f ∶ X → R a C1-
function, if f has a local extremum at a ∈ X, then Df(a) is the
zero matrix (every entry in the matrix is 0).

● The proof of this theorem shows that a directional derivative, eval-
uated at a in this case, would see a local extremum here in every
direction. In particular, in the coordinate directions. And the only
matrix A1×n that takes every possible n-vector to 0 is the 0-matrix.
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Definition 12.3. Given f ∶X ⊂ Rn → R, with X open, a point a ∈X is
a critical point of f if either

(1) Df(a) = 01×n, or
(2) Df(a) is undefined.

Just like in single variable calculus, extrema happen at critical points,
but not all critical point need be extrema. Some examples of critical points
include:

● sharp mountain ridges or roof peaks, or mountain top points, where
the derivative matrix is not defined,

● smoothed over mountain tops where the derivative matrix is the
zero matrix,

● saddle points,
● mesas and flood plains.

Recall that the graph of a function f ∶X ⊂ Rn → R is a subset of Rn+1 where
X ⊂ Rn is pictured as the “floor”, and the height above the floor is hte value
of the last variable xn+1. At a place (a, f(a)), where the derivative matrix
is the zero matrix, the equation of the tangent space would be

xn+1 = f(a) +Df(a) (x − a) = f(a)
and the tangent space is parallel to the floor, or “horizontal”.

However, like in Calculua I, extrema do not need to exist at all for
particular functions:

Example 12.1. Let f(x, y) = x2+y2, on the domain X = R2−(0,0), the
plane without the origin. What would you consider the point in X where f
achieves its maximum? How about it’s minumum?

So how does one detect an extremum, given a critical point? Really, it
is all about the structure. Some ideas:

(1) Look for extreme bahavior by simply testing functions values for
points “near” the critical point. In single variable calculus, we
sometimes call this the 0th Derivative Test. This method is some-
times employed when the derivative matrix is not defined at a crit-
ical point.

(2) If f is differentiable at a critical point a, then the derivative matrix
is the zero matrix there. Again, this means that every directional
derivative will also be 0 at a. Recall that directional derivatives
are defined via vertical slices through the graph of the function
f along directions through a in the domain. If one follows the
curve where graph(f) intersects the slice, adn sees the derivative
go from negative (before a), to 0 (at a), to positive (after a), and
this happens in every direction, then you have a local minimum
at a. Of course, one can generalize this stipulation and say that
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in some or all directions, the derivative can stay 0 near a, and we
would still have a local min there. One can characterize this as a
form of First Derivative Test for a critical point.

(3) Or if, within each slice, f , restricted to the slice is concave up or
down and stays that way for all of the slices, then f is locally ex-
treme at a. (Again, all that is really necessary is that the concavity
is not mixed along the slices.) If locally extreme is every direction,
then locally extreme.

Example 12.2. For the parabolic bowl, f ∶ R2 → R, f(x, y) = x2 + y2,
we know that f ∈ C1, since it is a polynomial, and

Df(x) = [ 2x 2y ] = [ 0 0 ]
only at the origin x = y = 0. So we have

Dv ([ 0
0

]) =Df(0)v = [ 0 0 ] [ v1

v2
] = 0, ∀v ∈ R2.

So choose a direction v = [ v1

v2
] ∈ R2 ⊂ R3 in the floor of R3, considered

the domain of f . Then the vertical plane containing v is defined by the

vector orthogonal to both v and the vector

⎡⎢⎢⎢⎢⎢⎣

0
0
1

⎤⎥⎥⎥⎥⎥⎦
(why is this true?), and is

⎡⎢⎢⎢⎢⎢⎣

v1

v2

0

⎤⎥⎥⎥⎥⎥⎦
×
⎡⎢⎢⎢⎢⎢⎣

0
0
1

⎤⎥⎥⎥⎥⎥⎦
=
RRRRRRRRRRRRR

i j k
v1 v2 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

v2

−v1

0

⎤⎥⎥⎥⎥⎥⎦
, or v2x − v1y = 0.

Notice that, in the domain, this is just the line y = v2
v1
x, at least when v1 /= 0.

Now the graph of this line is the set of points

(x, v2

v1
, f (x, v2

v1
)) = (x, v2

v1
, x2 (1 + v

2
2

v2
2

)) ∈ R3.

So let fv = f ∣
y= v2

v1
x

∶ R → R, where fv(x) = x2 (1 + v22
v21

). Here, of course, we

have the data

f ′v(0) = 2x(1 + v
2
2

v2
1

) ∣
x=0

= 0, and f ′′v (0) = 2(1 + v
2
2

v2
1

) ∣
x=0

> 0.

Hence, within the slice formed by v, fv is concave up, and, at least
in this direction, according to the Second Derivative Test for an extremum

from Calculus I, the point 0 corresponds to a local min of f ∣
v

. And since

this will be true of all choices of v (we did ntoot specify values of the entries
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v1 and v2), we can safely conclude that a = 0 is a local minimum for f . Yes,
I know, it is a global minimum on any domain that contains the origin

Now for f ∶ X ⊂ Rn → R a C2-function, we already have access to all of
its second derivative information in the form of the Hessian of f ,

HF (a) =
⎡⎢⎢⎢⎢⎢⎣

fx1x1(a) ⋯ fx1xn(a)
⋮ ⋱ ⋮

fxnx1(a) ⋯ fxnxn(a)

⎤⎥⎥⎥⎥⎥⎦
.

Recall thatDvf(a) =Df(a)v. One can also show thatD2
vf(a) = vTHf(a)v

is the second directional derivative of f in the direction of v. It directly mea-
sures the concavity of the curve which is the intersection of graph(f) with
the slice determined by v at a.

Exercise 9. Show that the second directional derivative of f in the
direction of v is given by D2

vf(a) = vTHf(a)v.

Hence if D2
vf(a) = vTHf(a)v > 0, for every direction v at a ∈ X, then

we can be assured that there is a local minimum of f at a.
Some notes:

● For every n × n matrix A, one can construct a quadratic form: A
real-valued function Q ∶ Rn → R defined by

Q(x) = xTAx =
n

∑
i=1

aijxixj .

In dimension-1, any quadratic form will look like Q(x) = ax2, and

in dimension-2, with A = [ a b
c d

], we have Q(x, y) = ax2 + (b +

c)xy+dx2. In general, a quadratic form will be a polynomial in the
variables given, with each monomial corresponding either to the
product of two variables or the square of one of them, with total
exponent 2 (sum the exponents of each of the factors).

● Quadratic forms are invariant under conjugations of the matrix
defining the form. Hence we can always take A to be symmetric
(which means aij = aji throughout A, or AT = A.

● Hessians are always symmetric! (why?)
● A quadratic form Q(x) is called positive definite if Q(x) > 0, for

every x /= 0. (And negative definite if Q(x) < 0, for every x /= 0.)

Theorem 12.4. For X ⊂ Rn open, let f ∶ X → R be C2 with a critical
point a ∈X.

(1) if Hf(a) is positive definite, then f has a local minimum at a.
(2) if Hf(a) is negative definite, then f has a local maximum at a.
(3) If detHf(a) /= 0, and neither positive nor negative definite, then a

is a saddle.
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There is a mechanical process for determining when a matrix if positive
or negative definite and it is all linear algebra. In essence, it involves testing
the leading principal minors of Hf(a) to see if Hf(a) is positive definite,
negative definite, or neither.

Indeed, let Q(a) = xTan×nx be a quadratic form. Define the kth leading
principal minor of A to be the determinant of

Ak =
⎡⎢⎢⎢⎢⎢⎣

a11 ⋯ a1k

⋮ ⋱ ⋮
ak1 ⋯ akk

⎤⎥⎥⎥⎥⎥⎦
.

This Ak is a k × k submatrix of A consisting of entries that are both in the
first k rows and the first k columns of A. Of course, A has n of these:

A1 = a11. A2 = [ a11 a12

a21 a22
] ,A3 =

⎡⎢⎢⎢⎢⎢⎣

a11 a12 a13

a31 a22 a23

a31 a32 a33

⎤⎥⎥⎥⎥⎥⎦
, . . . , An = A.

So what can we say?

● If all of these leading principal minors are positive, so if detAk > 0,
for k = 1, . . . , n, then A, and hence Q(x), is positive definite.

● A, and hence Q(x), is negative definite if det A < 0 for k-odd and
det A > 0 for k-even.

● A is called indefinite if neither of the two cases above holds but all
of the leading principal minors are non-zero.

● Q(x) is called degenerate, as is A, if det A = 0, and nondegener-
ate otherwise. Note here that it is certainly possible that Q(x) is
nondegenerate but at least one of the leading principal minors is 0.
Just take any nonsingular matrix with a11 = 0.

Lastly, the Extreme Value Theorem from single variable calculus has
a counterpart in vector calculus. Recall that a set X ⊂ Rn is closed if it
contains all of its boundary points. A set X ⊂ Rn is called bounded if there
exists a real number M > 0 such that

∣∣x∣∣ <M, ∀x ∈X.
And a set X ⊂ Rn is called compact if it is both closed and bounded in Rn.

Theorem 12.5 (The Extreme Value Theorem). If X ⊂ Rn is compact
and f ∶ X → R is continuous, then f has a global maximum and a global
minimum on X.

Just like in single variable calculus, it is certainly possible for a func-
tion f on a possibly nonclosed or unbounded (or both )X to have global
extrema. But it is only guaranteed to have each when X is compact and f
is continuous.
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Optimization

Synopsis. Just as in single variable calculus, optimizing a function of
one variable is a matter for the Extreme Value Theorem and local extrema.
But often, situations arise where the objective function involves more than
one variable. In this case, there are usually relationships between the vari-
ables that allow for rewriting the function as a function of one variable. This
is a form of constrained optimization that generalizes well to multivariable
calculus. Today we explore this idea, using geometry to “see” our way
through to a technique. This leads to the technique of Lagrange multipliers,
which we develop here.

Helpful Documents. Mathematica: LagrangeMult.

Figure 30. A fenced yeard along a

river.

One variable optimization. Recall
optimization in single variable calculus:

Example 13.1. Using 1800 linear feet
of fencing, construct a rectangular yard
along a straight river with the largest area
possible. The idea here is to maximize area
of a rectangular region. Given the two un-
knowns of length and width, say, x and y,
maximize area A = xy. Of course, there is a constraint in that you can only
use up to 1800 feet of fencing. Mathematically speaking, this means that
1800 = 2x + y, given the arrangement of the rectangle in Figure 30. We
call the area equation here the objective function, and the perimater fencing
equation the constraint.

The constraint facilitates calculation by

● allowing us to change the objective function, via substitution, into a function of only one variable,
and

● allows us to use single variable calculus techniques to help locate the extrema of the objective
function within the constraints.

Now, since 1800 = 2x + y, we know y = 1800 − 2x, so that

A = xy = x(1800 − 2x) = 1800x − 2x2.

This is a clue that we are on the right track here, as A(x) has a graph which
is a parabola opening down (the leading coefficient is negative). Hence
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it will have a max at the vertex. We also know that the variables must
be nonnegative numbers, as they denote lengths. Hence 0 ≤ x ≤ 900 and
0 ≤ y ≤ 1800. Hence A(x) has a domain [0,900] and by the Extreme Value
Theorem, must achieve its maximum either at an endpoint or at a critical
point. And as A(x) is differentiable, all critical points will occur at places
where a′(x) = 0. Here

A′(x) = 1800 − 4x = 0 is solved only by x = 450.

Immediately, using the Second Derivative Test, we also see that A′′(450) =
−4 > 0. Hence x = 450 corresponds to a local maximum, and since A(0) =
A(900) = 0, x = 450 corresponds to a global maximum.

The solution, then, is to construct the pen in Figure 30 with x = 450
feet, and y = 900 feet.

Here is a different viewpoint of the same problem: Leave the function
A = A(x, y) = xy as a function on two variables, and consider the level sets
of A(x, y) on the domain

R = {(x, y) ∈ R2 ∣ 0 ≤ x ≤ 900,0 ≤ y ≤ 1800} ,
a few of which are graphed in Figure 31. Also on R an in the figure, we can
graph the constraint curve (as the red line), thinking of it as the 0-level set
of the function P (x, y) = 2x + y − 1800. Now, if we are forced to stay on the
constraint line, is there a place on this red line where we touch or cross the
level set of A(x, y) corresponding to the largest area? One can possibly see
it in the figure. But can one “calculate” it?

Figure 31. Level set of A(x, y) = xy in black,

and 0-level set of P (x, y) = 1800 − 2x − y in red.

In this new approach, both the
objective function and the con-
straint are left as functions of the
two variables. And we search for a
geometric solution to locating an ex-
tremum of one function constrained
by a second one. One can see in the
figure that, as we move along the
red line, we are cutting through the
level sets of A for a while. At some
point, we go tangent to a particu-
lar level set and then we start cut-
ting through level sets of A again,
although in the other direction (first
form lower to higher, then from
higher to lower values of A). SO

what to we see as the values of A along the red line? We see A rising for a
while (cutting through blue lines of increasing A, topping out at some point
(the red line becomes tangent to a blue line), then declining in value (again
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cutting through level set of decreasing A). We have found our maximum of
A along the red line via the point of tangency with a blue line!

This new, geometric, idea of optimization can be generalized: Optimize
f ∶ X ⊂ Rn → R, subject to g ∶ X → R, where g(x) = c. We look for extrema
of f while constrained to the c-level set of g. We note here that the idea
we started with, that of using the constraint to remove one of the variables
in the objective function is less helpful in this multivariable setting. And
possibly impossible:

Example 13.2. Maximize f(x, y, z) = x2 + 3y2 + y2z4, subject to
g(x, y, z) = exy − xyz + cos (xyz ) = 2. Try to solve for one of the variables
in g as a function of the other two, and substitute that into f to remove a
variable!

Theorem 13.1. For X ⊂ Rn open, f, g ∶X → R both C1-functions, let

S = {x ∈X ∣ g(x) = c}

be the c-level set of g. Then, if f ∣
S

has an extremum at x0 ∈ S, where

∇g(x0) /= 0, then ∃λ ∈ R such that

∇f(x0) = λ∇g(x0).

Some notes:

● The extrema of f will happen at places where ∇f is a multiple of
∇g, as vectors. These wind up being places of tangency between
level sets, and places where often the level set of g stops cutting
through the level sets of f (for a moment).

● The equation ∇f(x0) = λ∇g(x0) is actually set of n equaitons (non-
linear) in n + 1 unknowns (each component of the vector x, along
with the real number λ). So there are lots of solutions!

● But if we add in the constraint itself, we arrive at n + 1 equations
in n + 1 unknowns:

fx1(x) = λgx1(x)
⋮

fxn(x) = λgxn(x)
g(x) = c.

● The variable λ is called a Lagrange multiplier. It’s actual value is
not nearly as important as its existence!

Example 13.3. Identify all critical points of f(x, y) = 5x + 2y, subject
to g(x, y) = 5x2 + 2y2 = 14.
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Here, ∇f(x) = [ 5
2

] and ∇g(x) = [ 10x
4y

]. The system is then

fx(x) = λgx(x) 5 = λ10x

fy(x) = λgy(x) 2 = λ4y

g(x) = c 5x2 + 2y2 = 14.

Solving, we find by the first and second equations, that x = 1
2λ = y. So

the last equations becomes

5

4λ2
+ 2

4λ2
= 14, Ô⇒ λ = ± 1

2
√

2
.

Hence the critical points are (x, y) = (
√

2 ,
√

2 ) and (x, y) = (−
√

2 ,−
√

2 )

Geometrically, one can see whether these points are extrema or not, and
why the gradient condition is quite telling. And analytically?

Handling multiple constraints is done in the same general fashion:

● Each constraint tends to reduce the number of independent vari-
ables by one.

● Each constraint tends to reduce the dimension of the space that we
evaluate the objective function along by one.

● in R3, one objective function has level sets which are generically
surfaces. Each constraint will also have level sets which are mostly
surfaces. two surfaces typically meet in a curve. We then evaluate
the objective function along this curve, looking for extrema in a
very single variable calculus fashion.

Example 13.4. Find the extrema of f(x, y, z) = 2x + y2 − z2, subject to
g1(x, y, z) = x − 2y = 0 and g2(x, y, z) = x + z = 0.

Here, one could simply replace z with −x and y with x
2 , and look for

extrema of f(x) = 2x + x2

4 − x2 = 2x − 3
4x

2. One would find that x = 4
3 is the

only extremum and that it is a maximum. So the point x0 = (4
3 ,

2
3 ,−

4
3
) is

the only critical point of f .

Geometrically, How do we construct a system that we can solve for?

Theorem 13.2. For X ⊂ Rn open, f, g1, . . . , gk ∶X → R be C1-functions,
with k < n. Let

S = {x ∈X ∣ g1(x) = c1, . . . , gk(x) = ck}

be the intersection of the level sets of the gi, i = 1, . . . , k. Then, if f ∣
S

has an

extremum at x0 ∈ S, where ∇g1(x0), . . . , gk(x0) are all linearly independent
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as vectors, then there exist scalars λ1, . . . , λk ∈ R such that

(13.0.1) ∇f(x0) = λ1∇g1(x0) + . . . + λk∇gk(x0).
Notes:

● Recall that linear independence as vectors as means that every
vector must be nonzero!

● Basically, as a vector and at an extremum, ∇f(x0) must be in the
space spanned by the ∇gi(x0), for i = 1, . . . , k.

Example 13.5. In Example 13.4 above, we sought the extrema of
f(x, y, z) = 2x+y2 − z2, subject to the two constraints g1(x, y, z) = x−2y = 0
and g2(x, y, z) = x + z = 0. To use Theorem 13.2, we form Equation 13.0.1
directly via the vectors

∇f(x) =
⎡⎢⎢⎢⎢⎢⎣

2
2y
−2z

⎤⎥⎥⎥⎥⎥⎦
, ∇g1(x) =

⎡⎢⎢⎢⎢⎢⎣

1
−2

0

⎤⎥⎥⎥⎥⎥⎦
, and ∇g2(x) =

⎡⎢⎢⎢⎢⎢⎣

1
0
1

⎤⎥⎥⎥⎥⎥⎦
.

Here, the constraint vectors are linearly independent everywhere (why is
this?), so the system is

fx(x) = λ1
∂g1

∂x
(x) + λ2

∂g2

∂x
(x) 2 = λ1 + λ2

fy(x) = λ1
∂g1

∂y
(x) + λ2

∂g2

∂y
(x) 2y = −2λ1

fz(x) = λ1
∂g1

∂z
(x) + λ2

∂g2

∂z
(x) −2z = λ2

g1(x) = c1 x − 2y = 0

g2(x) = c2 x + z = 0.

There are many ways to solve these 5 equations in 5 unknowns. One
way it so eliminate the lambdas in the first equation via substitution using
the second and third. One obtains λ1 = −y and λ2 = −2z, so that the first
equation is 2 = −y − 2z. And eliminating x in the last two equations yields
the single equation 0 = 2y + z. Together, the system

2 = −y − 2z

0 = 2y + z
is solved by z = −4

3 and y = 2
3 . One then calculates x = 4

3 , so that the only

critical point of f is again x0 = (4
3 ,

2
3 ,−

4
3
).





LECTURE 14

The Definite Integral

Synopsis. The integral calculus of functions of more than one variable
also follows closely the structure and patterns of single variable calculus.
However, noting that graphs of functions, even of two independent variables
are no longer curves, but hypersurfaces in Rn+1, the idea of “area under a
curve” must be suitably generalized. In this lecture, we lay the groundwork
to understand volumes in many dimensions and what is means to calculate.
Then we alter the idea of single variable integration to fit this new multi-
dimensional arena and build the tools and structures we need to create the
integral calculus.

Volumes of regions. The area of a two dimensional region R (say the
difference between the graphs of two function over the same domain in single
variable calculus, is really just a “sum” of the lengths of all of the vertical
lines formed by slicing (along lines of constant values of the independent
variable x) on some interval of x comprising the region. Using Figure ??
below, we have

Area(R) =
ˆ b

a
`(x)dx,

where for each value of x ∈ [a, b], the value of `(x) is f(x)− g(x) on the left
and f(x) − 0 = f(x) on the right.

This remains true in higher dimensions, at least once we understand
the notions of lengths and areas in higher dimensions: Given f(x, y), a
nonnegative function defined and continuous on the rectangle

(14.0.1) R = {(x, y) ∈ R2 ∣ a ≤ x ≤ b, c ≤ y ≤ d} ,

its graph lies “over” the region in the xy-plane in R3 as the set of points
(x, y,0) ∈ R3, where (x, y) ∈ R. Add in the vertical walls connecting the
four edges of R in the floor to the corresponding graphs of the edges in
graph(f), and one obtains a solid region in R3, as in Figure ??, which we
define as

S = {(x, y, z) ∈ R3 ∣ a ≤ x ≤ b, c ≤ y ≤ d, 0 ≤ z ≤ f(x, y)} .

We can calculate the volume of S as the sum of all of the areas of the
“vertical” slices through S by, say, slicing along lines of constant x, which

89
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we will call Rx. In this way, we could write

Volume(S) =
ˆ b

a
Area(Rx)dx.

Note that we could also slice vertically along lines of constant y, creating
regions Ry, so that

Volume(S) =
ˆ d

c
Area(Ry) dy.

We will stick with the former for now.
So, for each value of x, what is the area of eachRx? At a point x0 ∈ [a, b],

the area of Rx0 is

Area(Rx0) =
ˆ d

c
`(y) dy =

ˆ d

c
f(x0, y) dy.

Nesting these two concepts together, we arrive at

Volume(S) =
ˆ b

a
Area(Rx)dx =

ˆ b

a
(
ˆ d

c
f(x, y) dy) dx =

ˆ b

a

ˆ d

c
f(x, y) dy dx.

Some notes:

● The parentheses distinguishing the “inside” integral from the “out-
side” (in the penultimate expression) are not strictly needed (and
hence removed) if one understands that the integrals are always
taken to be nested.

● The use of the choice of x = x0 subscript is also not needed, and
hence removed. It is understood here that as one integrates with re-
spect to one variable, the other is considered fixed, like a parameter.
Do you recall this idea from the notion of partial differentiation?

● If the limits of the variables do not depend on each other, then
the region one is integrating over is rectangular. In this case, one
can reverse the process and form a nested pair of integrals with the
order of integration reversed, but with the same result. So

Volume(S) =
ˆ b

a

ˆ d

c
f(x, y) dy dx =

ˆ d

c

ˆ b

a
f(x, y)dx dy.

The general notion of parameterizing the parallel slices (in any chosen
direction) through a solid to find its volume is known as Cavalieri’s Prin-
ciple. Let S ⊂ Rn be an n-dimensional solid in n-space, bounded in the
x1-direction by [a, b]. Then

Volume(S) =
ˆ b

a
Volume(Rx1)dx1,

where Volume(Rx1) is the volume of the (n−1)-dimensional x1-slice through
S at x1 ∈ [a, b]. Recursively speaking, calculating the volume of S will
involve a nested set of n integrals, or an n-tuple integral. Note that, while
we would easily use terms like quadruple integral or quintuple integral for
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volumes in, respectively, R4 and R5, we commonly refer to a nested set of
three integrals as a triple integral, and in two dimensions, a double integral.

Now one can define a double integral on a rectangular region R via a
2-dimensional Riemann Sum:

Define a nonnegative f(x, y) on the region R defined above in Equa-
tion 14.0.1, and partition R into boxes by partitioning the two intervals
[a, b] and [c, d]:

a = x0 < x1 < ⋯ < xn−1 < xn = b, and

c = y0 < y1 < ⋯ < ym−1 < ym = d,
so that ∆xi = xi −xi−1 and ∆yj = yj − yj−1. Then the area of the ijth box is
then ∆Aij = ∆xi∆yj .

Now choose a point (pi, qj) within each box, where pi ∈ [xi−1, xi] and
qj ∈ [yj−1, yj], i = 1, . . . , n and j = 1, . . . ,m. Then we can approximate the
volume of the solid S between the floor (the domain R in the xy-plane in
R3, the ceiling (the graph(f) over R, by the sum of all of the volumes of the
small cuboids whose base in [xi−1, xi] × [yj−1, yj], height is f(pi, qj). Hence

Volume(S) ≈
n

∑
i=1

m

∑
j=1

f(pi, qj)∆Aij .

This is a 2-dimensional Riemann Sum.

Definition 14.1. The double integral of f on R is¨
R
f dA = lim

n,m→∞

n

∑
i=1

m

∑
j=1

f(pi, qj)∆Aij

when the limits exists.

Notes:

(1) Actually, as stated, the definition has a serious flaw in it. I will
leave it unspecified to see if you can see it. It is a flaw in the nature
of the limit. Find it!

(2) If the limit exists, then we say f is integrable on R.
(3) The notation used, without specific upper and lower limits but the

more general R under the double integral sign, is common and
accentuates the region R instead of the coordinates used. But,
using the standard cartesian coordinates x, and y, we automatically
know then, that, in this case,¨

R
f dA =

ˆ b

a

ˆ d

c
f(x, y) dy dx =

ˆ d

c

ˆ b

a
f(x, y)dx dy.

(4) Over any base box in a Riemann Sum, if f(x, y) < 0, then we
interpret the volume of that box as negative, just like in single
variable calculus.

(5) Also like in single variable calculus, the same problems and caveats
that occur with the limit can occur here also:
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● In single variable calculus, piecewise continuous functions on
an interval [a, b] are integrable. Recall that piecewise con-
tinuous functions are those that are continuous everywhere,
except on a finite set of points where “jump” discontinuities
can occur.

● In two dimensions, if f is bounded on R with the set of all
discontinuities having zero area, then f is integrable. One way
to see this is to think of graph(f) as smooth but possibly cut
up into a finite number of pieces.

● Continuous functions on closed, bounded domains are always
integrable.

Theorem 14.2 (Fubini). Let f be bounded on R = [a, b] × [c, d] and
assume that the set S of discontinuities of f on R has zero area. If every
line parallel to the coordinate axes meets S in, at most, a finite number of
places, then¨

R
f dA =

ˆ b

a

ˆ d

c
f(x, y) dy dx =

ˆ d

c

ˆ b

a
f(x, y)dx dy.

Notes:

● The fact that R is a rectangle is vital here.
● The stipulation that all lines parallel to coordinate axes meet S in

at most a finite number of places is sufficient but not strictly nec-
essary. It forces the function intersecting the slice to be piecewise
continuous, and thus integrable. But this is not the only way to
have an integrable funciton on each slice.

● For all intents and purposes, aero area means that the set of dis-
continuities has smaller dimension as a set than R.

The properties of double integrals reflect those of their 1-dimensional
cousins. See Proposition 5.2.7 on page 320 of the text.

Keep in mind that Cavalieri’s Principle will still hold for solids in 3-space
defined for regions of the plane (as domains for functions) more general than
rectangles. However, the order of integration, when defining and calculating
a double integral, may matter. Hence, we need to understand why and how.

Definition 14.3. A region D ⊂ R2 is called elementary if it can be
described via an interval in one variable and as the difference between two
functions of that variable in the other. There are three types:

(1) Type I: D = {(x, y) ∈ R2 ∣ a ≤ x ≤ b, γ(x) ≤ y ≤ δ(x)} , where γ(x)
and δ(x) are continuous functions on [a, b].

(2) Type II: D = {(x, y) ∈ R2 ∣ c ≤ y ≤ d,α(x) ≤ x ≤ β(x)} , where α(y)
and β(y) are continuous functions on [c, d].

(3) Type III: D is of both Type I and Type II.

A region D is called non-elementary if it is neither Type I nor Type II. We
immediately have:
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Theorem 14.4. If D ⊂ R2 is elementary and f is C0 on D, then

(1) Type I:

¨
D
f dA =

ˆ b

a

ˆ δ(x)

γ(x)
f(x, y) dy dx,

(2) Type II:

¨
D
f dA =

ˆ d

c

ˆ β(y)

α(y)
f(x, y)dx dy.

Note here that the proof is noneventful, and relies on a notion of ex-
tending D to some rectangular region R ⊃ D by creating a new function
f ext on R which equals f on D and is 0 outside of D in R. This creates a
discontinuous function on R, but one that is integrable according to Fubini.
Do not worry about this technique. It works for the theorem, but is not
necessary to know for a good understanding of integration.

Example 14.1. Let f(x) = −3
2x+4, and g(x) = 1

2x. The region D in the
(closed) first quadrant of the plane between these two functions is a triangle
of height 2, with base along the y-axis from 0 to 4. Integrate the function
h(x, y) = 2x + 2y on D.
Strategy: View D as elementary of either type and construct the double
integral according to Theorem 14.4. Then use the Fundamental Theorem of
Calculus (from single variable calculus) on the “inside” integral, then again
on the “outside” integral.
Solution: Viewing D as a Type I elementary region, we set γ(x) = g(x)
and δ(x) = f(x), and use the formula of Theorem 14.4 to set up the integral.
We get ¨

D
f dA =

ˆ 2

0

ˆ − 3
2
x+4

1
2
x

(2x + 2y) dy dx.

Then we calculate:¨
D
f dA =

ˆ 2

0

ˆ − 3
2
x+4

1
2
x

(2x + 2y) dy dx =
ˆ 2

0

⎡⎢⎢⎢⎢⎣
(2xy + y2) ∣

− 3
2
x+4

1
2
x

⎤⎥⎥⎥⎥⎦
dx

=
ˆ 2

0
[2x(−3

2
x + 4) + (−3

2
x + 4)

2

− (2x(1

2
x) + (1

2
x)

2

)] dx

=
ˆ 2

0
[−3x2 + 8x + 9

4
x2 − 12x + 16 − x2 − 1

4
x2] dx

=
ˆ 2

0

(−2x2 − 4x + 16) dx

= (−2

3
x3 − 2x2 + 16x) ∣

2

0

= −16

3
− 8 + 32 = 56

3
.
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Notice that we can also deem D as elementary of Type II, using

α(y) = 0, and β(y) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−2
3(y − 4) y ∈ [1,4]

2y y ∈ [0,1].
Then the construction and calculation become¨
D
f dA =

ˆ 4

0

ˆ β(y)

α(y)
(2x + 2y) dx dy

=
ˆ 1

0

ˆ 2y

0
(2x + 2y) dx dy +

ˆ 4

1

ˆ − 2
3
(y−4)

0
(2x + 2y) dx dy

=
ˆ 1

0

⎡⎢⎢⎢⎢⎣
(x2 + 2xy) ∣

2y

0

⎤⎥⎥⎥⎥⎦
dy +

ˆ 4

1

⎡⎢⎢⎢⎢⎣
(x2 + 2xy) ∣

− 2
3
(y−4)

0

⎤⎥⎥⎥⎥⎦
dy

=
ˆ 1

0

((2y)2 + 2(2y)y) dy +
ˆ 4

1
((−2

3
(y − 4))

2

+ 2(−2

3
(y − 4)) y) dy

=
ˆ 1

0
8y2 dy − 2

3

ˆ 4

1
(−2

3
(y2 − 8y + 16) + 2y2 − 8y) dy

=
⎡⎢⎢⎢⎢⎣

8

3
y3∣

1

0

⎤⎥⎥⎥⎥⎦
− 2

3

ˆ 4

1
(4

3
y2 − 8

3
y − 32

3
) dy

= 8

3
− 8

9

⎡⎢⎢⎢⎢⎣
(y

3

3
− y2 − 8y) ∣

4

1

⎤⎥⎥⎥⎥⎦
= 8

3
− 8

9
(64

3
− 16 − 32 − 1

3
+ 1 + 8) = 8

3
− 8

9
(−18) = 8

3
+ 16 = 56

3
.

And lastly, more complicated regions (those that are not elementary),
can usually be broken up into a set of elementary regions that meet along
boundaries. Then the integrals over these adjacent regions can be added
together, noting that the contributions along the boundaries will be zero.

Example 14.2. Consider the annular region D between the two planar
equations x2 + y2 = 1 and x2 + y2 = 4. This region is not elementary! But in
the plane, slice up D into four regions using the two vertical lines x = ±1, as
in Figure ??. Then we have

● D1 = {(x, y) ∈ R2 ∣ − 4 ≤ x ≤ −1, −
√

4 − x2 ≤ y ≤
√

4 − x2 },

● D2 = {(x, y) ∈ R2 ∣ − 1 ≤ x ≤ −1, −
√

4 − x2 ≤ y ≤ −
√

1 − x2 },

● D3 = {(x, y) ∈ R2 ∣ − 1 ≤ x ≤ −1,
√

1 − x2 ≤ y ≤
√

4 − x2 },
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● D4 = {(x, y) ∈ R2 ∣ 1 ≤ x ≤ 4, −
√

4 − x2 ≤ y ≤
√

4 − x2 }. As writ-

ten, all of these are Type I.

Example 14.3. Find the area of a circle of radius r ≥ 0. Here, the
circle of radius r centered at the origin is the set of points that satisfy the
equation x2 +y2 = r2. The region is then the closed disk Dr consisting of the
interior of this circle and the circle itself. It is elementary of Type III, and
can be written as elementary of Type I as

Dr = {(x, y) ∈ R2 ∣ − r ≤ x ≤ r, −
√
r2 − x2 ≤ y ≤

√
r2 − x2 } .

Using this, then, we have

Area(Dr) =
ˆ r

−r

ˆ √
r2−x2

−
√
r2−x2

dy dx.

Two things here: First, what is the integrand here? And why does this
work? And secondly, finish this calculation. Note that you will have to use
a inverse trig substitution to solve this. Perhaps THAT is why you will wind
up with the answe: Area(Dr) = πr2.





LECTURE 15

The Definite Triple Integral

Synopsis. Today we continue the general idea of integration of a real-
valued function on more than one variable by generalizing the 2-dimensional
version to three dimensions. There is little that is new here except for
the pattern of the generalization that leads to the n-dimensional version.
Fubini’s Theorem still holds, and switching the order of integration outside
of a cuboid region still involves checking that the region is elementary in
different permutations of the variables of integration and that, if so, one can
rewrite the limits as functions of some of the variable properly.

Volumes of higher dimensional regions. Let

B =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
(x, y, z) ∈ R3

RRRRRRRRRRRRR

a ≤ x ≤ b
c ≤ y ≤ d
p ≤ z ≤ q

⎫⎪⎪⎪⎬⎪⎪⎪⎭
be a cuboid. We can approximate the volume of the four-dimensional solid S
with B as its base (can you envision this?) and graph(f) as its roof, where
f ∶ B → R is a nonnegative C0-function, by:

● Partitioning all three dimensions of B so that

Bijk =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
(x, y, z) ∈ R3

RRRRRRRRRRRRR

x ∈ [xi−1, xi]
y ∈ [yj−1, yj]
z ∈ [zk−1, zk]

⎫⎪⎪⎪⎬⎪⎪⎪⎭
,

with lengths ∆xi = xi − xi−1, ∆yj = yj − yj−1, and ∆zk = zk − zk−1.
Note that, in this construction, we will choose a partition size of n
for all three dimensions. This will greatly simplify the construction;

● Find volume(Bijk) = ∆Vijk = ∆xi∆yj∆zk;
● Choose a point cijk ∈ Bijk, ∀i, j, k ∈ {1, . . . , n};
● Sum over indices,

volume(S) ≈
n

∑
i,j,k=1

f(cijk)∆Vijk.

Then the triple integral of f over B is

volume(S) =
˚
B
f dV = lim

n→∞

n

∑
i,j,k=1

f(cijk)∆Vijk = lim
n→∞

n

∑
i,j,k=1

f(xi, yj , zk)∆xi∆yj∆zk.

Here are some facts about triple integrals:

(1) Fubini’s Theorem still holds in higher dimensions.
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(2) A region W ∈ R3 is called elementary if it can be written as

W =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
(x, y, z) ∈ R3

RRRRRRRRRRRRR

a ≤ x ≤ b
α(x) ≤ y ≤ β(x)

ϕ(x, y) ≤ z ≤ ψ(x, y)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
,

or some permutation of these variables. Here, one direction should
look like an interval, a second direction should look like the dif-
ference between two functions of that first variable, and the third
direction should look like the difference between two functions of
the other two.

(3) Given an elementary W, then, if f is continuous on W, we have
˚
W
f dV =

ˆ b

a

ˆ β(x)

α(x)

ˆ ψ(x,y)

ϕ(x,y)
f(x, y, z)dz dy dx,

or, again, some permutation of the three variables. Note again that
the integrals are nested here.

(4) The volume of the solid W can be found by integrating the unit
function f(x, y, z) = 1, so

volume(W) =
˚
W

1dV =
˚
W
dV.

(5) Sometimes, it is advantageous to understand that
˚
W
f dV =

¨
D

ˆ ψ(x,y)

ϕ(x,y)
f(x, y, z)dz dA,

for D elementary in x and y, and W elementary in all three vari-
ables.

Example 15.1. What is the volume of the unit sphere in R3?
Here we define the unit 2-sphere as

S2 = {(x, y, z) ∈ R3 ∣ x2 + y2 + z2 = 1} ,
noting that the notation is common in mathematics and generalizes to Sn,
the unit n-sphere, n ∈ N, as a subset of Rn+1. One ways to think of this is
the set of all unit-length vectors in (n+1)-space. So what does S1 look like?
How about S0??

Here, then, the space consisting of S2 and its interior is sometimes called
the (unit) 3-ball, or B3. So we are looking for the volume of B3. Note that
B3 is elementary, and can be written as the difference between two functions

z = −
√

1 − x2 − y2 and z =
√

1 − x2 − y2 , on the domain

D = {(x, y) ∈ R2 ∣ x2 + y2 = 1} = {(x, y, z) ∈ R2 ∣ x2 + y2 = 1, z = 0} .
These graphs of these two functions are the southern and northern hemi-
spheres of S2, respectively, and meet at the equator.
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So here,

volume(B3) =
˚

B
i dV =

¨
D

ˆ √
1−x2−y2

−
√

1−x2−y2
dz dA

=
ˆ 1

−1

ˆ √
1−x2

−
√

1−x2

ˆ √
1−x2−y2

−
√

1−x2−y2
dz dy dx.

Example 15.2. LetW be the region bounded by y = x2 and y+z = 9
and the xy-plane. Integrate f(x, y, z) = 8xyz over W. Here, the roof
of this solid is the inclined plane z = 9− y, the floor is the xy-plane, and the
wall is given by the parabolic y = x2, projected vertically out of the floor.
We get Figure 32 below. W is an elementary region, and one way to see this
is the following: As z goes from the floor at 0 to the roof at 9−y, the variable
y goes from 9 to x2, and x ranges from −3 to 3. Hence the integration is
ˆ 3

−3

ˆ 9

x2

ˆ 9−y

0
8xyz dz dy dx =

ˆ 3

−3

ˆ 9

x2

⎡⎢⎢⎢⎢⎣
8xy (z

2

2
) ∣

9−y

0

⎤⎥⎥⎥⎥⎦
dy dz

=
ˆ 3

−3

ˆ 9

x2
4xy(9 − y)2 dy dx

=
ˆ 3

−3

ˆ 9

x2
4x (81y − 18y2 + y3) dy dx

=
ˆ 3

−3
4x

⎡⎢⎢⎢⎢⎣
(81

2
y2 − 18

3
y3 + y

4

4
) ∣

9

x2

⎤⎥⎥⎥⎥⎦
dx

=
ˆ 3

−3
4x [812

2
− 6(9)3 + 94

4
− 81

2
x4 + 6x6 − x

8

4
] dx = 0.

A good question to ask is: Why is this quantity 0? One can “see” that
this is true at this point due to the properties of the integral one learned in
single variable calculus. Indeed, notice that the integrand is actually an odd
function, symmetric with respect to the origin. In this case, the integrans is
a polynomial with all of the monomials of odd degree, and that the interval
one is integrating over is of the form [−a, a], for some a ≥ 0. Hence one can
cease calculating here and conclude.
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Figure 32. The solid W in Example 15.2.



LECTURE 16

Changing Variables in Integration

Synopsis. Here, we focus on the idea of changing the coordinates in an
integral. In Calculus I, the Substitution Method was an actual change of
coordinates used usually to make the integrand easier to play with. Here,
and in more generality, changing the coordinate system on a region is used
more to make the region easier to integrate over. Of course, it must be
true that the value of the definite integral should be the same no matter
the coordinates used. Hence one must be careful to properly account for
the change, precisely as in the Substitution Method, where a change of
variable creates a new variable corresponding to the ”inside function” of
the composition of functions in the integrand (this is a function of the old
variable). The extra piece was the derivative of the inside function. This
generalizes as the 1-dimensional version of a similar phenomena in higher
dimensions. We detail this today.

Helpful Documents. PDF: SphereVolume.

Parameterization. Placing new coordinates on a space involves again
a function: Let T ∶ X ⊂ R2 → R2, T (u, v) = (x(u, v), y(u, v)) be a C1-map.
Then, any subset D ⊂ X, in the uv-coordinates, is mapped to its image
T (D), another region (in the xy-coordinates). See Figure 33. To do this,
one needs to write the old coordinates as functions of the new coordinates.
In functional form, this involves a function whose domain is in the new
coordinates and whose codomain uses the old coordinates.

Figure 33. A coordinate change in the plane.
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Example 16.1. Polar Coordinates. Working in polar coordinates
in the plane involves switching the variables from x and y, to r and θ,
representing, respectively, range (Euclidean distance from the origin) and
angle (from a reference line in the xy-plane, often the positive x-axis. The
resulting coordinate equations are x = r cos θ and y = r sin θ, which takes
the domain D = [0,1] × [0,2π] in the rθ-plane to the unit disk T (D) in the
xy-plane. See Figure 34 below.

Figure 34. Here, T (r, θ) = (x(r, θ), y(r, θ)) = (r cos θ, r sin θ) = (x, y).

Notice here that, in this coordinate change, the edges of the box D under
T do not behave so well. For instance, the entire left edge is mapped to
the origin (all points (0, θ) in the rθ-plane represent the origin no matter
the value of θ), and the top and bottom edges of D under T are identified
(mapped point by point to the same image). This represents the fact that
(r, θ + 2π) = (r, θ). However, on the inside of the box D, the map T is
injective. This will be vitally important.

Figure 35. Here, T (u, v) = (x(u, v), y(u, v))) = (u + 1, v + 2).

Example 16.2. Translations. In the process of studying the properties
of an equilibrium solution in a system of ordinary differential equations, one
often changes coordinates by a translation, moving the equilibrium solution
(really a point in Euclidean space) to the origin, before analyzing. For
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example, the coordinate change u = x − 1 and v = y − 2 is a transformation
of the plane that moves the origin down 2 and to the left 1. Then, writing
x and y in terms of the new variables u and v, we see that the unit square
= [0,1]×[0,1] in the uv-plane is moved by T to T (D) = [1,2]×[2,3]. Under
this transformation, if, for example, one were to integrate a function over
[1,2] in x and [2,3] in y, then by changing coordinates, one could instead
integrate over the unit square in the uv-plane.

Example 16.3. A Linear Map of R2. Domains which are parallelo-
grams have the quality that a linear transformation can take them to squares
(or at least rectabgles). Consider T the linear planar transformation x = u+v
and y = u − v. As a transformation, T takes the unit square D to a bigger
square T (D), though here it is one that is not oriented so that its sides are
parallel to the coordinate axes. See Figure 36

Figure 36. Here, T (u, v) = (u(x, y), v(x, y))) = (x + 1, y + 2).

Notes:

● In general, it takes practive to “see” a transformation, and to con-
struct one.

● One good practice to well-understand how to transform the bound-
ary first, or at least any vertices.

● Example 16.3 is an example of a transformation that is often easily
constructible.

Proposition 16.1. Let A = [ a b
c d

], where detA = ad − bc /= 0. Then

the planar transformation T (u, v) = A [ u
v

] is one-to-one, onto, takes par-

allelograms to parallelograms (vertices to vertices), and

area(T (D)) = ∣detA∣area(D).

Some notes:
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● As a linear transformation, note that it is always the case that the
origin goes to the origin, so no translations here.

● Notice the use of the absolute value for the determinant. One needs
this to relate the areas, which are positive measures of size in the
plane.

● Of course, this proposition generalizes to n-dimensions, for n ∈ N.
● The proof is really just linear algebra with a bit of geometry thrown

in.

So here is the new question: Why would someone interested in integra-
tion over a domain want to change the shape and/or size of the domain?
The answer is that rectangles are easier to integrate over than more general
domains, and often a nonelementary domain can be made elementary via a
coordinate change.
Special Note: Notice in the above examples that the more complicated

regions are in the codomain of the transformation T (u, v) = (x, y). This is
because one writes the given variables x and y in terms of the new variables
u and v, so x = x(u, v) and y = y(u, v). Then, by composition, any function
f(x, y) can be composed with T to generate a version of f written in terms
of u and v:

(f ○ T ) (u, v) = f (T (u, v)) = f(x(u, v), y(u, v)) = f(u, v).

You have seen this before in single variable calculus in the form of the
Substitution Method for the evaluation of an integral. If g′(x) is continuous
on [a, b], and f is continuous on the range of u = g(x), then

ˆ b

a
f (g(x)) g′(x)dx =

ˆ g(b)

g(a)
f(u)du.

Here, one changed the variable x to u in order to make the integrans easier
to integrate. Part of the simplifying effect of the change in variables was the
required term given by the relationship between differentials du = g′(x)dx.
We will also need this in our new multi-dimensional case.

Let T (u, v) = (x(u, v), y(u, v)) be a C1-transformation of R2. Then

DT (u, v) =
⎡⎢⎢⎢⎣

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

⎤⎥⎥⎥⎦
, and

Jac(T ) = det(DT ) =
RRRRRRRRRRR

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

RRRRRRRRRRR
= ∂(x, y)
∂(u, v) = ∂x

∂u

∂y

∂v
− ∂x
∂v

∂y

∂u
.

We have

Theorem 16.2. Let D and D∗ be elementary regions in the xy-plane
and uv-plane, respectively, and suppose T ∶ R2 → R2 is C1, D = T (D∗), and
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T is injective on te interior of D∗. Then for any integrable f ∶D → R,

¨
D
f(x, y)dxdy =

¨
D∗

f (x(u, v), y(u, v)) ∣∂(x, y)
∂(u, v)∣dudv.

Again, the absolute value of the Jacobian determinant is an important
part of this formula. We will see why later on in teh course. Here is a
fun fact: By this theorem, you actually learned the Substitution Method
backwards!

In 1-dimension, the theorem says
ˆ
I
f(x)dx =

ˆ
I∗
f(x(u))x′(u)du,

where I = [a, b] and I∗ = [u(a), u(b)], and the 1-dimensional Jacobian was
x′(u) for the coordinate change T (u) = x(u). Some notes:

● You learned it backwards because you prupose back then was to
simplify the integrand.

● The purpose in more generality (in multivariable calculus) is to
simplfy the integrating region.

● This was never stressed in Calculus I, but even in 1-dimension, the
coordinate change to switch to the new variable does need to be 1-1
for the transformation to work correctly. Funny how the examples
you worked on always did work out that way...!

New question: So why does the Jacobian arise is the way that it does
when changing variables? Here is the answer:

Under the transformation T , a small rectangular region R centered at
(u0, v0) in D∗ given by ∆u = u − u0 and ∆v = v − v0 is taken to a new
region R = T (R∗) ⊂D: Here, aera(R∗) = ∆u∆v > 0, and, since T is C1 and
bijective, area(R) > 0 also. We cannot calculate area(R) directly, but we
can approximate it: A linear approximation to T (u, v), near (u0, v0) is the
function

h(u, v) = T (u0, v0) +DT (u0, v0) [
u − u0

v − v0
] .

This linear approximation maps (u0, v0) ↦ T (u0, v0) = (x0, y0), and takes
R∗ to a parallelogram h(R∗) which is close to R = T (R∗), so that

area(R) ≈ area (h(R∗)) .

We will focus on this later in the course, but it is true that the area
of a parallelogram in the plane can be computed by using a form of the
cross product adapted to vectors in R2. Indeed, given two vectors a and b
in R2, embed them as vectors in R3 simply by giving each a 0 in the last
coordinate. Then, the area of the parallelogram that has these two vectors
as sides is given by the quantity ∣∣a × b∣∣. This is a general feature of the
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cross product in R3. So here, then,

area(R∗) = ∣∣[ ∆u
0

] × [ 0
∆v

]∣∣ = ∆u∆v, and

area(h(R∗)) ≈ ∣∣h([ ∆u
0

]) × h([ 0
∆v

])∣∣

= ∣detDT (u0, v0)∣ ⋅ area(R∗)

= ∣∂(x, y)
∂(u, v)∣∆u∆v.

Now consider a cahnge of coordinates from polar to Cartesian: x = r cos θ
and y = r sin θ. Then

dA = dxdy = ∣∂(x, y)
∂(r, θ) ∣dr dθ = ∣ cos θ −r sin θ

sin θ r cos θ
∣ dr dθ = r dr dθ.

Hence ¨
D
f(x, y)dxdy =

¨
D∗

f(r cos θ, r sin θ)r dr dθ,

where the region D∗ is rectangular in the rθ-plane. This is precisely where
the extra r in the integrand comes from when converting to polar coordi-
nates.

Note again, here, though, that the transformation T from polar to Carte-
sian is not 1-1 on D∗. But it is on the interior, and hence is fine. So why is
this the case when integrating??

Recall the famous formula from single variable calculus: Given a function
r = f(θ), one can find the area of the region D formed from the origin to
f(θ) between two values θ1 and θ2 as

area(D) =
ˆ θ2

θ1

1

2
[f(θ)]2 dθ.

So why is this true?

Figure 37. The classic formula from Calculus I on the area of a sector capped
by r = f(θ).

The region D is actually written in the Cartesian plane (the xy-plane),
as in the right side of Figure 37. Then, under the polar coordinate transfor-
mation, D∗ looks like the left side. Note that D∗ is elementary in θ. Then
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the area of D can be calculated:

area(D) =
¨
D

1dxdy =
¨
D∗

r dr dθ

=
ˆ θ2

θ1

ˆ f(θ)

0
r dr dθ =

ˆ θ2

θ1

⎡⎢⎢⎢⎢⎣

r2

2
∣
f(θ)

0

⎤⎥⎥⎥⎥⎦
dθ

=
ˆ θ2

θ1

1

2
[f(θ)]2 dθ.

Ans lastly, a quick comment: ALl of this discussion was in the context
of functions defined in a region in the plane. But all of this is readily
generalizable to Rn: For example, a C1-transformation in three space would
look like

T (u, v,w) = (x(u, v,w), y(u, v,w), z(u, v,w)) ,

and the resulting Jacobian would look like

Jac(T ) = ∣ ∂(x, y, z)
∂(u, v,w)∣ =

RRRRRRRRRRRRRRRR

∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

RRRRRRRRRRRRRRRR

.

Example 16.4. Cartesian-to-Spherical Coordinate Jacobian.
The spherical coordinate system is one of the natural generalizations of polar
coordinates in the plane. One set of equations constructing the transforma-
tion is x = ρ sinϕ cos θ, y = ρ sinϕ sin θ, and z = ρ cosϕ. Given a point p ∈ R3

in this coordinate system, ρ is the distance from p to the origin in the Eu-
clidean metric, ϕ is angle the ray from 0 to mathbfp makes with respect to
the positive z-axis, and θ is the angle between the positive x-axis and the
ray formed inside the xy-plane between the origin and the projection of p
into the xy-plane inside R3. If we were to switch from Cartesian coordinates
to spherical coordinates in order to integrate, we would need the Jacobian.
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We have

∣∂(x, y, z)
∂(ρ,ϕ, θ)∣dρdϕdθ =

RRRRRRRRRRRRRRRRR

∂x
∂ρ

∂x
∂ϕ

∂x
∂θ

∂y
∂ρ

∂y
∂ϕ

∂y
∂θ

∂z
∂ρ

∂z
∂ϕ

∂z
∂θ

RRRRRRRRRRRRRRRRR

=
RRRRRRRRRRRRR

sinϕ cos θ ρ cosϕ cos θ −ρ sinϕ sin θ
sinϕ sin θ ρ cosϕ sin θ ρ sinϕ cos θ

cosϕ −ρ sinϕ 0

RRRRRRRRRRRRR

= cosϕ ∣ ρ cosϕ cos θ −ρ sinϕ sin θ
ρ cosϕ sin θ ρ sinϕ cos θ

∣

− (−ρ sinϕ ∣ sinϕ cos θ − sinϕ sin θ
ρ sinϕ sin θ ρ sinϕ cos θ

∣)

= ρ2 cosϕ (sinϕ cosϕ cos2 θ + sinϕ cosϕ sin2 θ)
+ ρ2 sinϕ (sin2ϕ cos2 θ + sin2ϕ sin2 θ)

= ρ2 sinϕ cos2ϕ + ρ2 sinϕ sin2ϕ

= ρ2 sinϕ.

Hence the integration becomes˚
W ∗

f(x, y, z)dxdy dz =
˚

W
f (ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ)ρ2 sinϕdρdϕdθ.



LECTURE 17

The Line Integral

Synopsis. Here, we dive deeper into integration under the idea that in
multiple directions, there are more ways to study the properties of functions.
The first type is called the line integral, where one integrates over a curve.
The two varieties, the scalar and vector line integrals, have interesting geo-
metric interpretations as well as simple meaning on their own. Today, we
define and study these two types.

Helpful Documents. GIF: LineIntegralOfScalarField, LineIntegralOfVectorField.

17.0.1. Return to notation. Recall the notation we used when dis-
cussing integration:

● In single variable calculus,

ˆ b

a
f(x)dx =

ˆ
I
f dx,

where x ∈ I ⊂ R and f is assumed to be a function of x.
● In vector calculus to date: For a double integral,

¨
D
f dA, D ⊂ R2.

And for triple integrals,
˚
W
f dV, W ⊂ R3,

where f is real-valued, so f ∶W → R.

These are definite integrals whose value would remain unchanged upon
a change of variables. Hence the notation denotes a coordinate-free attempt
to write the quantities: For D a region in the xy-plane, for example, then

ˆ
D
f dA =

¨
D
f(x, y)dxdy.

In this lecture, we will define some new ways to study properties of functions
over relevant domains in Rn.

17.0.2. Line Integrals.

109



110 17. THE LINE INTEGRAL

17.0.2.1. Real-valued, scalar functions. Recall that differentiating a C1-
function f ∶ X ⊂ Rn → R along a curve x ∶ I ⊂ R→ Rn, where x(I) ⊂ x ⊂ Rn,
looks a lot like a single variable calculus endeavor:

df

dt
(t) = d

dt
f (x(t)) =Df (x(t)) ⋅ dx

dt
(t)

= ∂f

∂x1

dx1

dt
+⋯ + ∂f

∂xn

dxn
dt

∈ R.

One would expect, then, that integrating a funciton f ∶ X ⊂ Rn → R over
a curve (in essence, adding up its values along the curve) should also seem
like a 1-dimenaional calculation. In fact, it is quite similar, once we can
interpret things correctly:

Definition 17.1. Given an integrable f ∶ X ⊂ Rn → R, and a C1-curve
x ∶ I → Rn, where I = [a, b] ⊂ R and x(I) ⊂ X, the scalar line integral of f
over x is ˆ

x
f ds =

ˆ b

a
f (x(t)) ∣∣x′(t)∣∣ dt.

Some notes:

● The symbolic s denotes arclength: Recall that, for any curve pa-
rameterization x ∶ [a, b]→ R, the arclength parameter is

s(t) =
ˆ t

a

∣∣x′(τ)∣∣ dτ.

Seen as a change in variables, the new differential is then, by the
Fundamental Theorem of Calculus

ds = s′(t)dt = ( d
dt

[
ˆ t

a

∣∣x′(τ)∣∣ dτ]) dt = ∣∣x′(t)∣∣ dt.

This suggests that the (scalar) line integral is parameterization in-
dependent. This suggestion is correct.

● The scalar line integral is also sometimes called the path integral,
or the line integral of a scalar field.

● Here is a good geometric interpretation of the scalar line integral,
using a function on two variables so that we can see the graph,
f ∶ X ⊂ R2 → R: The graph(f), as a subset of R3 defined as
the set of solutions to z = f(x, y), sits vertically over X sitting
within the xy-plane in R3. The curve x sits inside X. Form a
vertical wall by drawing a vertical line from each point in x ⊂X to
graph(x) ⊂ graph(f). Then the scalar line integral of f along x
is the total area of this wall. This is simply the curved version of
the standard geometric interpretation of the integral of a function
f(x) over an interval in Calculus I. See Figure ??.

● So, again, the scalar line integral of f along x is essentially a 1-
dimensional calculation, but now in Rn, n > 1.
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Example 17.1. A constant function along a straight line. Let

f(x, y) = 4, and x(t) = [ 3
4

] t, defined on I = [0,1]. Then

ˆ
x
f ds =

ˆ 1

0
f (x(t)) ∣∣x′(t)∣∣ dt

=
ˆ 1

0
f (3t,4t)

√
32 + 42 dt

=
ˆ 1

0
4
√

25 dt = 20t∣
1

0

= 20.

Perhaps this was rather obvious, since the rectangle (in R3), whose base if
x([0,1]), and whose height is 4 has area which is the length of the curve
times the height: The length of the curve is 5, so the area is 4 ⋅ 5 = 20.

Example 17.2. Surface area of a cylinder. The surface area SA of
a cylinder of radius r and height h is SA = 2πrh (there is no top nor bottom
to this cylinder). We can functionally calculate this: Let g(x, y) = h, and

define c(t) = [ r cos t
r sin t

] t be a curve, defined on I = [0,2π]. Then

ˆ
c
g ds =

ˆ 2π

0
h
√
r2 cos2 t + r2 sin2 t dt =

ˆ 2π

0
hr dt = 2πrh.

Example 17.3. A curve in R3. Integrate f(x, y, z) = xz
y over x(t) =

⎡⎢⎢⎢⎢⎢⎣

4
2t
t2

2

⎤⎥⎥⎥⎥⎥⎦
, defined on I = [1,2]. First, we calculate

∣∣x′(t)∣∣ =
√

02 + 22 + t2 =
√

4 + t2 .
Then we can calculate the integral:

ˆ
x
f ds =

ˆ 2

1

(4) ( t22 )
2t

√
4 + t2 dt =

ˆ 2

1
2t

√
4 + t2 dt.

With the substitution u = 4 + t2, along with du = 2t dt, we getˆ 2

1
2t

√
4 + t2 dt =

ˆ 8

5

√
u du = 2

3
u

3
2 ∣

8

5

= 2

3
(16

√
2 − 5

√
5 ) .
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17.0.2.2. Real-valued, vector functions (vector fields). For a curve x ∶
I → Rn, I = [a, b] ⊂ R, where x(I) ⊂ x ⊂ Rn, inside a vector field F ∶ X ⊂
Rn → Rn (it is again understood that the entire curve is in X), one can ask
how much of the vector field can be “seen” by (a point on) the curve. Recall

for a curve where x′(t) /= 0, ∀t ∈ I, that T(t) = x′(t)
∣∣x′(t)∣∣ is the unit tangent

vector at t. Then the component of F along x is

F (x(t)) ● T(t).

We can, again, “add up” these values all along the curve to getˆ
x
(F ● T) ds,

the scalar line integral of F ● T, as a scalar-valued function, along x.
Note, that, in a way, this represents the aggregate boost or hindrance a

particle moving along the curve would feel by the vector field.
But ˆ

x
(F ● T) ds =

ˆ b

a
(F (x(t)) ●

x′(t)
∣∣x′(t)∣∣)

∣∣x′(t)∣∣ dt

=
ˆ b

a
F (x(t)) ● x′(t)dt

=
ˆ b

a
F (x(t)) ● ds =

ˆ
x

F ● ds,

where

ds =
⎡⎢⎢⎢⎢⎢⎣

dx1

⋮
dxn

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

x′1(t)dt
⋮

x′n(t)dt

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

x′1(t)
⋮

x′n(t)

⎤⎥⎥⎥⎥⎥⎦
dt = x′(t)dt

is the vector infinitesimal displacement and represents an infinitesimal change
in displacement along each coordinate direction (instead of just along the
curve).

Definition 17.2. For a C1-curve x ∶ [a, b] → X ⊂ Rn in a vector field
F ∶X ⊂ Rn → Rn, the vector line integral of F along x is

ˆ
x

F ● ds =
ˆ b

a
F (x(t)) ● x′(t)dt.

Some notes:

(1) Recall that the work W done by a vector field F (force field) on
a particle is just the force times the displacement d. As vector
quantities, when the particle’s motion is
● linear:

W = F ● d = ∣∣F∣∣ ∣∣d∣∣ cos θ = ∣∣F∣∣ ⋅ (displacement in direction of F) .
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● curved: Here we must measure infinitesimally, and

W =
ˆ b

a
F (x(t)) ● x′(t)dt,

a scalar integral.
(2) Some facts:

Theorem 17.3. A scalar line integral is independent of the
curve’s parameterization.

Theorem 17.4. A vector line integral depends on a curve’s
parameterization only in the direction of travel.

(3) Some curve facts:
● For I = [a, b], and x ∶ I → Rn, a piecewise C1-continuous curve,

a C1-function h ∶ J = [c, d] → I, which is 1-1, onto, and has a
C1-inverse, induces p ∶ J → Rn, p = x○h a reparameterization.

● For x 1-1 on I, then x(I) has only two directions of travel. A
choice of direction, given by the notion of increasing values of
t along x, is called an orientation of the curve.

● A reparameterization is called oriantation preserving if the di-
rection of travel along p(J ) is the same as that along x(I).
Otherwise, the reparameterization is called orientation revers-
ing.

● Again, for I = [a, b], a curve x ∶ I → Rn is called simple if x is
1-1 on (a, b), and closed is x(a) = x(b).

● In general, scalar line (path) integrals are defined on curves,
and vector line integrals are defined on oriented curves.

(4) If x is a simple, closed curve, then the notation for a vector line
integral is ˛

x
F ● ds

and is called the circulation of F along x. We will see the geometric
interpretation of this in time.

(5) For a vector line integral, the term

F ● ds = F1 dx1 + . . . + Fn dxn =
n

∑
i=1

Fi dxi

is called a differential 1-form. We will devote more time to this
later.

Example 17.4. Evaluate the integral˛
c
(x2 − y2)dx + (x2 + y2)dy,
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where c is the boundary of the unit square, oriented clockwise.
Recognizing that this integral is simply a vector line integral of the vector
field F = (x2 − y2)i + (x2 + y2)j over the closed, simple curve c given by the
edge of the unit square, one sees that

(x2 − y2)dx + (x2 + y2)dy = F ● ds

is just a differentiable 1-form. The process here would be, then, the param-
eterize the unit square perimeter by time, and integrate under the parame-
terization: We get

c(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(0, t) 0 ≤ t ≤ 1
(t − 1,1) 1 ≤ t ≤ 2
(1,3 − t) 2 ≤ t ≤ 3
(4 − t,0) 3 ≤ t ≤ 4

as our clockwise parameterization, beginning and ending at the origin. To
understand the switch to the parameterization, we highlight the first “piece”:
Along the left-side edge of the unit square only, the parameterization is the
path c1, going from (0,0) to (0,1) and parameterized by t in the y-direction
only. We getˆ

c1

F ● ds =
ˆ
c1

(x2 − y2)dx + (x2 + y2)dy

=
ˆ 1

0
F1(x(t), y(t))x′(t)dt + F2(x(t), y(t))y′(t)dt

=
ˆ 1

0

((0)2 − (t)2) (0dt) + ((0)2 + (t)2) (1dt)

=
ˆ 1

0
t2 dt = t

3

3
∣
1

0

= 1

3
.

Hence on the four pieces (so once around the square), we get˛
c

F ● ds =
˛
c

(x2 − y2)dx + (x2 + y2)dy

=
ˆ 1

0

t2 dt +
ˆ 2

1

((t − 1)2 − 12) dt +
ˆ 3

2

(12 + (3 − t)2) dt +
ˆ 4

3

(4 − t)2 dt

=
ˆ 1

0

t2 dt +
ˆ 2

1

(t2 − 2t) dt +
ˆ 3

2

(10 − 6t + t2) dt +
ˆ 4

3

(16 − 8t + t2) dt

= 1

3
+ ( t

3

3
− t2) ∣

2

1

+ (10t − 3t2 + t3

3
) ∣

3

2

+ (16t − 4t2 + t3

3
) ∣

4

3

= 1

3
+ (8

3
− 4 − 1

3
+ 1) + (30 − 27 + 9 − 20 + 12 − 8

3
) + (64 − 64 + 64

3
− 48 + 36 − 9)

= 1

3
− 2

3
+ 4

3
+ 1

3
= 4

3
.
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Example 17.5. Calculate the circulation of F = xi + yj over the
unit circle in the plane. Here, we can parameterize the unit circle as the

simple closed curve x(t) = [ cos t
sin t

], for t on the interval t ∈ [0,2π]. So

˛
x

F ● ds =
ˆ 2π

0
F (x(t)) ● x′(t)dt

=
ˆ 2π

0
([ cos t

sin t
] ● [ − sin t

cos t
]) dt =

ˆ 2π

0
0dt = 0.

Note that, here, the vector field is perpendicular to the curve everywhere.
Hence there is no circulation of F along x in this case.

Example 17.6. Circulation of a vector field along one if its in-
tegral curves. By definition, if x is an integral curve of a vector field F on
some interval [a, b], then for all t ∈ [a, b], we have x′(t) = F (x(t)). Soˆ

x
F ● ds =

ˆ b

a
F (x(t)) ● ●x′(t)dt

=
ˆ b

a
x′(t) ● x′(t)dt =

ˆ b

a

∣∣x′(t)∣∣2 dt.

In this case, we are again simply adding up the vector field components
along the curve, but here they equal the velocity vectors all along the curve.





LECTURE 18

The Theorem of Green

Synopsis. Today, we go directly into on of the three big theorem’s of
vector calculus, Green’s Theorem. This theorem exposes a deep relationship
between the aggregate behavior of a vector field along the boundary of a
relatively nice region in the plane (the vector line integral), to the integral
of a related function on the interior of the region. Since Green’s Theorem
is restricted to regions in the plane, there are a number of ways to craft
the related integrals, giving different geometric meaning to the quantities.
One interesting geometric interpretation is that the theorem relates the total
twisting effect of a vector field in the region (measured by integrating the
curl of the vector field as it sits in three space with no vertical component), to
the total tangent component of the vector field along the closed boundary.
Proving this theorem is neither deep nor long, and we go over the idea
here in lecture. We finish with a general definition and discussion of the
properties of a special kind of vector field that shows up in an lot of physical
applications.

18.0.1. Green’s Theorem. We begin directly with the theorem:

Theorem 18.1. Let D be a closed, bounded region in R2, whose boundary
c = ∂D is a finite union of simple, closed, curves, oriented so that D is always
on the left. For a C1-vector field on D F(x, y) = M(x, y)i + N(x, y)j, we
have
(18.0.1)

(
ˆ
c
F ● ds =)

˛
c
M dx+N dy =

¨
D
(∂N
∂x

− ∂M
∂y

) dxdy (=
¨
D
(∇×F) ● kdA) .

Some notes:

● The first equal sign is obvious since F = [ M
N

] and ds = [ dx
dy

].

● The last equal sign is also obvious since (∇×F) = (∂N∂x −
∂M
∂y )k.

To see this, think of a vector field in R2 as a vec tor field in R3 with
z-component 0. Then calculate ∇×F.

● The theorem basicallt says that the vector line integral (the circu-
lation) of F along ∂D equals the curl of F on D.

(1)

ˆ
c
F ● ds measures the aggregate component of f tangent to c

and in the direction of travel along c.

117
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(2) Curl in two dimensions measures the rotation or twisting one
would experience if flowing along F.

So the sum total of the push or pull of a particle by F along D
equals the total rotational effect of F on D.

Example 18.1. A constant vector field. For a constant
vector field F, we know ∇×F = 0. So what can we say about what
is happening on the left-hand side of Equation 18.0.1? How about
in the middle?

● The proof is elementary, and relies on three facts:
(1)

Lemma 18.2. If D is elementary of Type I, then

˛
∂D
M dx =

−
¨
D

∂M

∂y
dA.

(2)

Lemma 18.3. If D is elementary of Type II, then

˛
∂D
N dy =¨

D

∂N

∂x
dA.

(3) Any region D, valid for Green’s Theorem, can be cut up into
a finite number of elementary regions, so that (i) the ends of
each cut line are in ∂D, (ii) the cuts do not intersect, (iii)
D = ⋃Di, with each Di elementary of Type III, and (iv) each
cut intersects exactly 2 Di’s with each cut oriented in each Di
oppositely. Note there, that then, vector line integral along the
cut lines will cancel out. So there will be no contribution of the
cut lines in the calculation. And within the double integral,
the contributions of all cut lines will also be 0.

Here is the idea of the proof of Lemma 18.2:

Proof of Lemma 18.2. With D elementary of Type I, write

D = {(x, y) ∈ R2 ∣ a ≤ x ≤ b, α(x) ≤ yβ(x)} .

Orient ∂D = c+1∪d+1∪c−2∪d−2 , as needed, where the plus sign means compatible
with variable values, and the minus sign means contrary to parameter values.
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Then, on the right-hand side, we have

−
¨
D

∂M

∂y
dA =

ˆ b

a

ˆ β(x)

α(x)
− ∂M

∣partialy dy dx

= −
ˆ b

a
(M(x,β(x)) −M(x,α(x))) dx

=
ˆ b

a
(M(x,α(x)) −M(x,β(x))) dx

by the Fundamental Theorem of Calculus, suitably adapted. But here

−
ˆ b

a
M(x,β(x))dx =

ˆ
c−2

M dx, and

ˆ b

a
M(x,α(x))dx =

ˆ
c+1

M dx.

Now add to this the fact thatˆ
d+1

M dx =
ˆ
d−2

M dx = 0

since x is constant along these curves, and we have

−
¨
D

∂M

∂y
dA =

ˆ
c+1

M dx +
ˆ
d+1

M dx +
ˆ
c−2

M dx +
ˆ
d−2

M dx

=
˛
∂D
M dx.

�

Exercise 10. Prove Lemma 18.3.

18.0.2. Conservative Vector Fields. Here, we have a definition:

Definition 18.4. A C0-vector field F has path-independent line integrals
if for any two piecewise C1-curves with the same endpoints x1 and x2, we
have ˆ

x1

F ● ds =
ˆ
x2

F ● ds.

Now notice that, since the two curves have the same endpoints, they
together form a closed curve (traversing one of them backwards, that is).
Sometimes this closed curve is simple.

Theorem 18.5. A C0-vector field F has path-independent line integrals

iff

ˆ
c
F ● ds = 0 for every piecewise C1-simple, closed curve c in the domain

of F.

Note: If x+1 ∪x−2 is not simple, yet consists of a finite number of isolated
intersections and/or intervals that coincide, then the result is still true. Why
is this the case? Can you reason it through?
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Definition 18.6. A C0-vector field F is called conservative or a gradient
field if there is a C1-real valued function f , where F = ∇f . Such an f is
called a potential for F, adn is said to generate the vector field F.

Notes:

● Conservative vector fields always and only (read: iff) have path-
independent line integrals. Indeed,ˆ

x
F ● ds =

ˆ
x
∇f ● ds =

ˆ b

a
∇f (x(t)) ● x′(t)dt

=
ˆ b

a

d

dt
[f (x(t))] dt

= f (x(t)) ∣
b

a

= f (x(b)) − f (x(a)) ,

depends only on the endpoints of the path. This is Theorem 6.3.3
in the text. And when the curve is closed, the endpoints are the
same, so....

● In R2 and R3, conservative vector fields are irrotational: If F is
conservative, then ∇ ×F = ∇ ×∇f = 0. The converse of this state-
ment, suitably modified, is: If F is irrotational, AND the domain
of F is simply connected, then F is conservative. This is Theorem
6.3.5 in the text.

Definition 18.7. A region in either R2 or R3 is simply connected if it is
connected (comes in one piece) and every simply closed curve in the region
has its entire interior inside the region.

So a disk in the plane in simply connected, but an annulus in the plane
is not.

Example 18.2. A nonconservative vector field on a non-simply
connected domain. Let

F = −y
x2 + y2

i + x

x2 + y2
j + 0k

on W = R3 − {(0,0, z) ∈ R3 ∣ z ∈ R} . Here, F is irrotational (∇ × F = 0),
but F is not conservative. It is also the case, though, that W is not simply
connected, as the unit circle in the xy-plane inside R3 cannot be continuously
shrunk to a point in W. I will offer this as an exercise to show that F is not
conservative. As a hint, find a simple, closed curve where the vector line
integral of F along the curve is not 0.

So a good question is: how does one tell if a vector field is conservative?
The answers are varied, but include tools like (1) checking the mixed partials
of what the potential function would be, (2) integrating to attempt to find
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the potential, and (3) searching for a closed simple curve on which the vector
line integral of the vector field does not vanish.

Example 18.3. Find a potential for F = (y + z)i + 2zj + (x + y)k, if

conservative. The solution here: If a potential f exists, then ∂f
∂x = y + z.

But this means that f(x, y, z) = xy + xz + g(y, z). But then

∂f

∂y
= x + ∂g

∂y
(y, z) = 2z.

Do you see why this cannot happen? Also,

∇×F =
RRRRRRRRRRRRRR

i j k
∂
∂x

∂
∂y

∂
∂z

y + z 2z x + y

RRRRRRRRRRRRRR
= (1 − 2)i + ...

and at this point, we can halt the calculation, since the vector field is not
irrotational, and hence cannot be conservative.

Example 18.4. Find a potential for F = (2x + y)i + (z cos yz + x)j +
(y cos yz)k. Here, one first step is to identify that if a function f ∶ R3 → R
exists so that ∇f = F, then ∂f

∂x = 2x + y. Thus, we can see that

f(x, y, z) = x2 + xy + g(y, z)
by anti-differentiation. Thus,

∂f

∂y
= x + ∂g

∂y
(y, z) = x + z cos yz,

so that ∂g
∂y (y, z) = z cos yz and g(y, z) = sin yz + h(z). We now know that

f(x, y, z) = x2 + xy + sin yz + h(z).
Lastly, we have

∂f

∂z
= y cos yz + h′(z) = y cos yz

so that h′(z) = 0, and thus h(z) = const. Thus we can say that

f(x, y, z) = x2 + xy + sin yz.





LECTURE 19

Surface Parameterizations

Synopsis. The two dimensional counterpart to a curve in n-space is
a surface in n-space, and today we define and discuss the properties of
parameterized surfaces in (mostly) three-space (and sometimes n-space.)
The parallels to curves will be obvious, and discussing these parallels will
bring up very interesting contrasts, which we will highlight. Then we will
begin the discussion of how a parameterization of a surface in space allows
us to discuss the properties of the surface, including how functions behave
when defined along the surface.

Helpful Documents. Mathematica: ParameterizedSurfaces.

19.0.1. Coordinates on a surface. We typically parameterize a curve
in Rn via a map c ∶ I → R, where I = [a, b] ⊂ R, and

c(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1(t)
x2(t)
⋮

xn(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rn.

For n = 3, we would usually write the three coordinate functions as x(t),
y(t), and z(t), all real-valued functions on I.

Now let D ⊂ R2 be a connected, open set, along with some or all of its
boundary points. A parameterized surface in Rn is then a C0-function X ∶
D → Rn (n > 2), that is one-to-one on the interior of D. The corresponding
image of X is then

X(s, t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1(s, t)
x2(s, t)

⋮
xn(s, t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rn.

Example 19.1. Let D = {(s, t) ∈ R2 ∣ 0 ≤ s ≤ 2π, 0 ≤ t ≤ π} = [0,2π] ×
[0, π] in the st-plane. Then the map X ∶ D → R3, defined by

X(s, t) =
⎡⎢⎢⎢⎢⎢⎣

x(s, t)
y(s, t)
z(s, t)

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

a cos s sin t
a sin s sin t
a cos t

⎤⎥⎥⎥⎥⎥⎦
has image S2

a the sphere of radius a centered at the origin in R3. In this
parameterization, every point on the interior of D is mapped uniquely to a

123
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point on S2
a = X(D). However, the top and bottom edges of D are each all

mapped to a point (the north and south poles, respectively, while the two
walls are together mapped to a line from the north pole to the south pole.
Perhaps we can call that line the “seam” of the ball? See Figure ??.

Note: Just as a curve sits inside Rn, n > 2, a surface can have Rn, n > 3 as a
codomain. For now, we will restrict our examples to three space R3 for the
convenience and clarity of visualization.

Example 19.2. Graphs of functions are parameterizations. Any
f ∶ D ⊂ R2 → R has graph(f) ⊂ R3 parameterized directly by the coordinates
of D, where (x, y)↦ (x, y, f(x, y)). The points in the domain parameterize
graph(f) ⊂ R3 because the third coordinate is uniquely specified once the
first two are known.

Example 19.3. The square torus. The 2-torus T 2 has a nice de-
scription as the product of two copies of the circle T 2 = S1 × S1, where
each coordinate is an angular one. This is fundamentally different form
the two angular coordinates that comprise the 2-sphere, though. Here, let
D = [0,2π] × [0,2π] = [0,2π]2. Then, for a > b > 0 positive constants, the
map X ∶ D → R3, defined by

X(s, t) =
⎡⎢⎢⎢⎢⎢⎣

x(s, t)
y(s, t)
z(s, t)

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

(a + b cos t) cos s
(a + b cos t) sin s

b sin t

⎤⎥⎥⎥⎥⎥⎦
has the shape of the surface of a doughnut. Here b is the cross-sectional
radius and a is the radial distance from the z-axis to the center of any corss-
sectional circle. The torus T 2 is often described as simply the unit square
in the plane with the “opposite sides identified”.

Definition 19.1. A surface S = X(D) is differentiable if its coordinate
functions are. When this is the case, then

Xs(s0, t0) =
∂X

∂s
(s0, t0) =

⎡⎢⎢⎢⎢⎢⎢⎣

∂x
∂s (s0, t0)
∂y
∂s (s0, t0)
∂z
∂s(s0, t0)

⎤⎥⎥⎥⎥⎥⎥⎦

.

The same is true for Xt(s0, t0).

If these two first partials are continuous functions, then the derivative
matrix DX = [Xs,Xt] exists and is a 3 × 2 matrix. Each of Xs and Xt is
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a vector of functions, and when evaluated at the point (s0, t0), each rep-
resents a vector tangent to the embedded surface S = X(D), at the point
(x(s0, t0), y(s), t0), z(x0, t0)). Hence Xs(s0, t0) and Xt(s0, t0) are member
of the tangent space to S at (s0, t0), where s, t are parameter coordinates
on the surface, and (x(s0, t0), y(s0, t0, z(s0, t0)) is the corresponding point
in the ambient coordinates in R3.

Now as Xs and Xt are always members of the tangent space to X(D) ⊂
R3, then Xs×Xt is normal to the surface (when it is nonzero and the surface
is C1, that is). Call this normal vector N(s0, t0) = (Xs ×Xt) (s0, t0).

Definition 19.2. The surface S = X(D) is called smooth at the point
X(s0, t0) if X is C1 in an open neighborhood of (s0, t0) and if N(s0, t0) /= 0.
The surface S is called smooth if it is smooth everywhere.

Note that C1 and smoothness ensure that the embedded surface has no
sharp edges only if the normal vector is nonzero. This is similar to the image
of a parameterized curve, where if the parameter function is differentiable,
one may still have a corner in the image of the curve if the tangent vector
is 0.

Example 19.4. For S2
a = X(D), given in Example 19.1 above, we have

Xs =
⎡⎢⎢⎢⎢⎢⎣

−a sin s sin t
a cos s sin t

0

⎤⎥⎥⎥⎥⎥⎦
, and Xt =

⎡⎢⎢⎢⎢⎢⎣

a cos s cos t
a sin s cos t
−a sin t

⎤⎥⎥⎥⎥⎥⎦
.

Hence N = Xs ×Xt = −a sin t

⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
. Hence, under this parameterization, N

is nonzero everywhere except for when t = 0, π, so everywhere except for at
the poles.

Exercise 11. Do the calculation that shows that N = Xs×Xt = −a sin t

⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
in Example 19.4 above.

However, S2
a is smooth everywhere, even at the poles. But not according

to this parameterization. To see the poles as smooth, one would have to
reparameterize so that the points corresponsding to the poles lie somewhere
inside the corresponding region domain D. In a sense, the parameterization
we specified does give meaning to the phrase “One cannot walk east or west
when standing at the north pole. One can only walk south!”

Definition 19.3. A piecewise smooth parameterized surface is the union
of images of finitely many parameterized surfaces Xi ∶ Di → R3, where
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each Di is (1) elementary, (2) C1 except possibly along ∂Di, and (3) each
Si = Xi(Di) is smooth except at possibly a finite set of points.

19.0.2. Surface area. Recall that the length of a parameterized curve
c ∶ [a, b]→ Rn can be calculated using the parameterizationˆ b

a

∣∣c′(t)∣∣ dt,

even as the actual length of the curve in Rn is independent of the param-
eterization. In 2-dimensions, we can develop a similar construction: Given
a surface parameterization X ∶ D → Rn, for a region D, a small rectangle
R ⊂ D, based at a point (s0, t0) and of size ∆s and ∆t, will have image
X(R) a small region inside the surface S = X(D). This image will most
likely not be a parallelogram. But it can be approximated by one with sides
Xs(s0, t0)∆s and Xt(s0, t0)∆t. Then, the area of this image region is

area (X(R)) ≈ ∣∣Xs(s0, t0)∆s ×Xt(s0, t0)∆t∣∣
= ∣∣Xs(s0, t0) ×Xt(s0, t0)∣∣∆s∆t = ∣∣N(s0, t0)∣∣∆s∆t.

Note that this quantity is the area of the unit square inside the tangent
space to S at (s0, t0), suitably scaled by ∆s and ∆t.

In the limit, as ∆s,∆t → 0, we get ∣∣Xs ×Xt∣∣ dsdt. With the idea that
area(D) =

˜
D dA, we get

area(S) =
¨
S
dS =

¨
D
∣∣Xs ×Xt∣∣ dsdt =

¨
D
∣∣N(s, t)∣∣ dsdt.

Here dS = ∣∣N(s, t)∣∣ dA is the differential of area, or an area form on S.
Some notes:

● The expression dS = ∣∣N(s, t)∣∣ dA is the 2-dimensional analog to
dc = ∣∣c′(t)∣∣ dA in the scalar-line integral.

● For X(s, t) = (x(s, t), y(s, t), z(s, t)) ∈ R3,

Xs ×Xt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂(y,z)
∂(s,t)

−∂(x,z)∂(s,t)
∂(x,y)
∂(s,t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

so

area(S) =
¨
D

¿
ÁÁÀ(∂(y, z)

∂(s, t) )
2

+ (∂(x, z)
∂(s, t) )

2

+ (∂(x, y)
∂(s, t) )

2

dsdt,

where each of the summands under the radical is the square of a
Jacobian determinant. Compare this to the calculation of arclength
for a parameterized curve in the plane in single variable calculus:
Given c(t) = (x(t), y(t)),

arclength(c) =
ˆ
c

¿
ÁÁÀ(dx

dt
)

2

+ (dy
dt

)
2

dt.
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Example 19.5. The surface area of S2
a a 2-sphere of radius a.

Recall that X(s, t) = (a cos s sin t, a sin s sin t, a cos t). So, as detailed in Ex-
ample 19.4 above.

Xs =
⎡⎢⎢⎢⎢⎢⎣

−a sin s sin t
a cos s sin t

0

⎤⎥⎥⎥⎥⎥⎦
, and Xt =

⎡⎢⎢⎢⎢⎢⎣

a cos s cos t
a sin s cos t
−a sin t

⎤⎥⎥⎥⎥⎥⎦
,

leading to

N = Xs ×Xt = −a sin t

⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

a2 cos s sin2 t
−a2 sin s sin2 t
−a2 sin t cos t

⎤⎥⎥⎥⎥⎥⎦
.

This leads to

∣∣Xs ×Xt∣∣ =

¿
ÁÁÀ(∂(y, z)

∂(s, t) )
2

+ (∂(x, z)
∂(s, t) )

2

+ (∂(x, y)
∂(s, t) )

2

=
√
a4 cos2 s sin4 t + a4 sin2 s sin4 t + a4 sin2 t cos2 t

=
√
a4 sin2 t = a2 sin t.

where we do not need to shroud this last term in absolute values since sin t
is nonnegative for t ∈ [0, π].

Thus we have

area(S2
a) =

¨
S2
a

dS =
ˆ π

0

ˆ 2π

0
∣∣Xs ×Xt∣∣ dsdt

=
ˆ π

0

ˆ 2π

0
a2 sin t ds dt =

ˆ π

0
2πa2 sin t dt

= −2πa2 cos t∣
π

0

= 2πa2 + 2πa2 = 4πa2.

Example 19.6. The surface area of a graph. For f ∶ D ⊂ R2 → R,

S = X(D) = {(x, y, z) ∈ R3 ∣ z = f(x, y)} = graph(f).
Here

Xx(x, y) =
⎡⎢⎢⎢⎢⎢⎣

1
0
fx

⎤⎥⎥⎥⎥⎥⎦
, and Xy(x, y) =

⎡⎢⎢⎢⎢⎢⎣

0
1
fy

⎤⎥⎥⎥⎥⎥⎦
,

so that

Xx ×Xy =
RRRRRRRRRRRRR

i j k
1 0 fx
0 1 fy

RRRRRRRRRRRRR
= −fxi − fyj + k =

⎡⎢⎢⎢⎢⎢⎣

−fx
−fy

1

⎤⎥⎥⎥⎥⎥⎦
.
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Then the surface area of S = X(D) = graph(f) is

area (S) =
¨
S
dS =

¨
D
∣∣Xs ×Xt∣∣ dt =

¨
D

√
(fx)2 + (fy)2 + 1 dA.

Now compare this to the single variable calculation of the length of a curve
which is the graph of a function f ∶ [a, b]→ R:

length =
ˆ b

a

√
1 + (f ′(x))2 dx.



LECTURE 20

Surface Integration

Synopsis. We continue with the idea of understanding how the calculus
of functions behaves along parameterized surfaces (instead of along param-
eterized curves.) Today, we define and study both scalar and vector surface
integrals, of real-valued functions and vector fields along surfaces embedded
in three space, respectively. We sill stick to surfaces in three space for the
expediency of understanding these concepts without too much intricate ma-
chinery. But we will allude regularly to the idea that we can embed and
parameterize a surface in n-space, (n > 2), and play the same game. We also
discuss the idea of reparameterizations, orientation of a surface, and geo-
metric interpretations, all as a lead up to another of the three big theorems,
Stoke’s Theorem.

20.0.1. Functions defined on surfaces. In a similar fashion that
we integrate functions (real-valued) and vector fields (vector-valued) over
curves, we can do so over surfaces:

● Like for scalar line integrals, if the surface in R3 lies inside the
domain of a real-valued function on (a part of) R3, we can restrict
the domain of the function to only the surface. Then adding up
the values of the function, essentially integrating the function, over
the surface is straightforward.

● If the surface is parameterized, so has coordinates defined directly
on it, then the integration process can utilize the parameterization
and we integrate using a double integral. However, it should also be
obvious that the value of such an integration must be independent
of any particular choice of parameterization.

● Basically, for a surface S, we look to define the quantity¨
S
f dS, where dS = ∣∣N∣∣ dA,

where, by the previous lecture, the vector N is the normal to the
surface at a point, defined via the cross product of the tangent
partial derivative vectors of the parameterization, and dA is the
area-form given also by the parameterization.

● Given a parameterization X ∶ D ⊂ R2 → Rn, we will refer to the
surface as simply X or X(s, t). This is entirely similar to our ref-
erence to a curve parameterization x ∶ I ⊂ R → Rn as simply x, or
x(t), when appropriate.

129
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Definition 20.1. Let X ∶ D ⊂ R2 → R3 be a smooth parameterized
surface, with D bounded. Let f be a C0 function defined on a domain that
includes X. Then the scalar surface integral of f along X is¨

X
f dS =

¨
D
f (X(s, t)) ∣∣Xs ×Xt∣∣ dsdt

=
¨

X
f (x(s, t), y(s, t), z(s, t))

¿
ÁÁÀ(∂(y, z)

∂(s, t) )
2

+ (∂(x, z)
∂(s, t) )

2

+ (∂(x, y)
∂(s, t) )

2

dsdt.

Some notes:

● Like for line integrals, dS is a scalar 2-form (as ds is a scalar 1-
form), and represents an infinitesimal change in surface area along
the surface.

● For f(x, y, z) = 1, the scalar surface integral of f gives the surface
area of X.

● In the parameter coordinates (s, t), this looks like a standard double
integral.

● If X is not smooth, but has edges, so is piecewise smooth, then
each smooth piece must be integrated separately, and the results
added together.

Definition 20.2. Let X ∶ D ⊂ R2 → R3 be a smooth parameterized
surface, with D bounded. Let F be a C1-vector field defined on a domain
that includes X(D). Then the vector surface integral of F along X is¨

X
F ● dS =

¨
D

F (X(s, t)) ● N(s, t)dsdt

=
¨

X
F (x(s, t), y(s, t), z(s, t)) ●

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂(y,z)
∂(s,t)

−∂(x,z)∂(s,t)
∂(x,y)
∂(s,t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

dsdt.

Some notes:

● Here dS = N(s, t)dsdt is a vector 2-form. It is the differential of
surface area written in terms of the normal to the surface at (s, t).

● If we normalize the normal vector

n(s, t) = N(s, t)
∣∣N(s, t)∣∣ ,

then¨
X

F ● dS =
¨
D

F (X(s, t)) ● N(s, t)dsdt

=
¨
D

F (X(s, t)) ● n(s, t) ∣∣N(s, t)∣∣ dsdt

=
¨

X
(F ● n) dS.
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Thus, the vector surface integral of a vector field along a surface
is just the scalar surface integral of the component of the vector field
normal to the surface, along the surface. This concept wil be very important in the near future!

So what is the geometric interpretation of a vector surface integral? The
normal component of the vector field at a point on the surface measures
the flow at that point through the surface. Hence the quantity

˜
X F ● dS

measures the total vector field flow through the surface. This is also called
the flux of F through X. Compare this to the interpretation of the vector
line integral

´
c F ● ds, the circulation, which measures the vector field flow

in the direction of c along c.

Definition 20.3. Let X ∶ D1 ⊂ R2 → R3 and Y ∶ D2 ⊂ R2 → R3 be two
parameterizations, such that X(D1) = Y(D2). The Y is called a reparam-
eterization of X if there exists a one-to-one and onto H ∶ D2 → D1, with
inverse H−1 ∶ D1 → D2, such that Y = X ⋅H

Note that a reparameterization is called smooth if both X and Y are
smooth and if H is C1. Here are some facts:

(1)

Theorem 20.4. For f a C0-function on a domain including a
smooth X ∶ D → R3, then for any smooth reparameterization Y of
X, ¨

Y
f dS =

¨
X
f dS.

(2) For a smooth curve c, an orientation is a choice of a continuously
varying unit tangent vector along c. This is entirely consistent
with the idea of simply choosing a direction of travel along the
curve. Note that an orientation is given automatically when one
parameterizes the curve (the direction of increase in values of the
parameter), but one may also “choose” to move in the opposite
direction, as we did when proving Green’s Theorem.

For a smooth surface X, an orientation is a choice of continu-
ously varying unit normal vector along X. In effect, you are choos-
ing a “side”, as in above vs. below, or inside vs. outside. Note
that there are surfaces that are not orientable. But note that any
parameterization X automatically orients the surface, since

n(s, t) = N(s, t)
∣∣N(s, t)∣∣ =

Xs(s, t) ×Xt(s, t)
∣∣Xs(s, t) ×Xt(s, t)∣∣

.

(3) One may ask if two smooth parameterizations X and Y defining
the same surface are oriented compatibly. Essentially, we are asking
if a smooth reparameterization preserves orientation. The answer
is yes, if the two calculated unit normal vectors at each point are
“on the same side”. But this can be determined by H ∶ D2 → D1,
the function defining the reparameterization. Indeed, let Y(s, t),
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defined on D2 be a reparameterization of X(u, v), defined on the
domain D1, with H, defined as above. Then Y(s, t) = X(u, v) =
X (H(s, t)). Then one can use the Chain Rule to show

NY(s, t) = ∂(u, v)
∂(s, t) NX(u, v),

where the subscripts on the normal vectors here only denote to
which parameterization the normal vector belongs. Hence if the
Jacobian determinant of H is positive, the reparameterization is
orientation preserving. If negative, then the reparameterization is
orientation reversing: We have

Theorem 20.5. For F a C0-vector field on a domain including
a smooth X ∶ D → R3, then for any orientation preserving smooth
reparameterization Y,¨

Y
F ● dS =

¨
X

F ● dS.

If Y is orientation reversing, then¨
Y

F ● dS = −
¨

X
F ● dS.

(4) Orienting a surface automatically orients the boundary of the sur-
face. Indeed, let S be an oriented surface with boundary in R3 such
that ∂S is a piecewise-C1 closed curve. Let p = (s0, t0) ∈ ∂S, where

p = (s0, t0) = (x(s0, t0), y(s0, t0), z(s0, t0)) ,
and choose c ∶ [a, b]→ S ⊂ R3 a smooth curve in the surface so that
c(a) = p and c ∩ ∂S = {p}. Now define

n(p) = lim
t→a

n (c(t)) , and v(a) = lim
t→a

c′(t).

Here, n and v are vectors based at p and are orthogonal to each
other. Hence they determine a two dimensional plane in R3 as the
set of all linear combinations. Then n×v is perpendicular to both,
and using the right-hand rule, determines a unique direction on ∂S.

This is the direction specified in Green’s Theorem!



LECTURE 21

The Theorem of Stokes

Synopsis. In this lecture, we begin to finish the foundational material
of what makes a vector calculus course with a full discussion of one of the
two other Big Theorems, those of Stokes and Gauss. Here, we present
and discuss Stokes’ Theorem, developing the intuition of what the theorem
actually says, and establishing some main situations where the theorem is
relevant. Then we use Stokes’ Theorem in a few examples and situations.

Theorem 21.1 (Stokes’ Theorem). Let S be a bounded, piecewise smooth,
oriented surface in R3, where ∂S consists of finitely many piecewise smooth
closed curves oriented compatibly. FOr F a C1-vector field on a domain
containing S, ¨

S
∇×F ● dS =

˛
∂S

F ● ds.

Some notes:

(1) Here, the surface integral of the curl of a vector field along a surface
is equal to the circulation of the vector field along the boundary of
the surface.

(2) This is a lot like Green’s Theorem:
● The left-hand side measure the normal component of the curl

of F along S, so measures the amount of twisting in the direc-
tion through S).

● The right-hand side measures the tangent component of F
along ∂S.

(3) In a way, the shape of the surface doesn;t matter as much as what
is happening on the boundary. According to Stokes’ Theorem, in
each of the surfaces in Figure ??, the value of

˜
S ∇×F ● dS is the

same.
(4) Typical use: Sometimes the flux of the curl of F is hard to calculate

across a bounded surface. But the circulation along its boundary
is not!

Example 21.1. Compute the flux of the curl of F = xz i + yz j +
xy k through the surface of the sphere x2 + y2 + z2 = 4 inside the
cylinder x2 + y2 = 1 and above the xy-plane in R3. The strategy for
this calculation is that, since both the vector field and the surface satisfy

133
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Stokes’ Theorem (F is C1 and S, using the outward normal is orientable
and bounded with a closed, smooth boundary curve, which we can orient
compatibly as counterclockwise, or with S on the left, walking upright on
the curve), we look to calulate the surface integral by instead calculating
the circulation of F along ∂S.

First, let’s parameterize ∂S so that the orientation given by the param-
eterization is conpatible with the surface orientation. Here, ∂S is on both
the sphere x2 + y2 + z2 = 4, as well as the cylinder x2 + y2 = 1. Hence

(x2 + y2) + z2 = 1 + z2 = 4,

so that z2 = 3 and z =
√

3 (recall we are only using the positive hemisphere
here). So parameterize ∂S as c ∶ [0,2π]→ R3 via

c(t) =
⎡⎢⎢⎢⎢⎢⎣

cos t
sin t√

3

⎤⎥⎥⎥⎥⎥⎦
∈ R3.

The next step is to calculate the circulation of F over c. Here we have¨
S
∇×F ● dS

Stokes’ÔÔÔÔ
ˆ
∂S

F ● ds =
ˆ
c
F (c(t)) ● c′(t)dt

=
ˆ 2π

0

⎡⎢⎢⎢⎢⎢⎣

√
3 cos t√
3 sin t

cos t sin t

⎤⎥⎥⎥⎥⎥⎦
●

⎡⎢⎢⎢⎢⎢⎣

− sin t
cos t

0

⎤⎥⎥⎥⎥⎥⎦
dt

=
ˆ 2π

0
0dt = 0.

Now suppose that we did this calculation directly, without using Stoke’s.
In this case, the strategy is to parameterize the surface, which we will do
using spherical coordinates (note that the “curved disk” here, which com-
prises S, lies on the ρ = 4 sphere). In spherical coordinates, we find that
the region is, in fact, a rectangle in the two angles. Then we calculate the
resulting double integral.

Here, we start with calculating curl(F):

curl(F) = ∇×F =
RRRRRRRRRRRRRRR

i j k
∂
∂x

∂
∂y

∂
∂z

xz yz xy

RRRRRRRRRRRRRRR
= (x − y) i − (y − x) j + 0k =

⎡⎢⎢⎢⎢⎢⎣

x − y
x − y

0

⎤⎥⎥⎥⎥⎥⎦
.

Next, we parameterize S. First, we again note that the entirety of S
lies on the sphere at ρ = 2. This leaves us already with the parameterization
X ∶ D → R3 based solely on the angles

X(θϕ) =
⎡⎢⎢⎢⎢⎢⎣

2 cos θ sinϕ
2 sin θ sinϕ

2 cosϕ

⎤⎥⎥⎥⎥⎥⎦
.
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Second, we seek to define the region D in the θϕ-plane that leads to S =
X(D). To this end, we note that the azimuth angle goes all the way to
describe S, so θ ∈ [0,2π]. However, the polar angle ϕ will only go from
ϕ = 0, at the north pole, to the edge of S, so we need to find the value
of ϕ that corresponds to the edge. To see this, look directly into the xz-
plane, and note that the ρ = 2 sphere forms a semicircle of radius 2, and
the intersection of ∂S in this plane occurs at a point on this semicircle with
x-coordinate 1. One can calculate that the y-coordinate here is

√
3 , and

that the radial line from the origin to ∂S has angle α = π
3 . This means that

the polar angle ϕ = π
2 − α = π

6 .

Hence the region D in the θϕ-plane corresponds to D = [0,2π] × [0, π6 ].
Next, before we integrate, we need to check to ensure that our idea of

orienting S with the normal pointing outward is correct, using this param-
eterization. We need this since we have already oriented our curve c in the
previous calculation to be compatible with the outward pointing normal.
Here, we have

Xθ =
⎡⎢⎢⎢⎢⎢⎣

−2 sin θ sinϕ
2 cos θ sinϕ

0

⎤⎥⎥⎥⎥⎥⎦
, and Xϕ =

⎡⎢⎢⎢⎢⎢⎣

2 cos θ cosϕ
2 sin θ cosϕ
−2 sinϕ

⎤⎥⎥⎥⎥⎥⎦
,

and N = Xθ ×Xϕ =
⎡⎢⎢⎢⎢⎢⎣

cos θ sinϕ
sin θ sinϕ

cosϕ

⎤⎥⎥⎥⎥⎥⎦
(−4 sinϕ). But this means

n = N

∣∣Xθ ×Xϕ∣∣
= −

⎡⎢⎢⎢⎢⎢⎣

cos θ sinϕ
sin θ sinϕ

cosϕ

⎤⎥⎥⎥⎥⎥⎦
.

Unfortunately, this unit normal points inward (toward the origin). This is
fine, but it is incompatible with our orientation of ∂S. To fix this, we simply
reparameterize to generate the other orientation. The simplest way to do
this is to rewrite the region D as lying inside the ϕθ-place instead of the θϕ-
plane. Then the region D = [0, π6 ] × [0,2π] in the ϕθ-plane and the normal
vector to S using this new orientation reversing reparameterization will be

N = Xϕ ×Xθ = −Xθ ×Xϕ

by the properties of the cross product.
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Lastly, we calculate the flux of the curl:¨
S
∇×F ● dS =

¨
D
∇×F (X (ϕ, θ)) ● (Xϕ ×Xθ) dA

=
¨
D
(∇×F (X (ϕ, θ)) ● n) dA

=
ˆ π

6

0

ˆ 2π

0

⎡⎢⎢⎢⎢⎢⎣

2 sinϕ(cos θ − sin θ)
2 sinϕ(cos θ − sin θ)

0

⎤⎥⎥⎥⎥⎥⎦
●

⎡⎢⎢⎢⎢⎢⎣

cos θ sinϕ
sin θ sinϕ

cosϕ

⎤⎥⎥⎥⎥⎥⎦
(4 sinϕ)dθ dϕ

=
ˆ π

6

0

ˆ 2π

0
8 sin3ϕ (cos2 θ − sin2 θ) dθ dϕ

=
ˆ π

6

0
8 sin3ϕ(

ˆ 2π

0
sin 2θ dθ) dϕ.

But the inside integral is 0, since
ˆ 2π

0
sin 2θ dθ =

⎡⎢⎢⎢⎢⎣
−1

2
cos 2θ∣

2π

0

⎤⎥⎥⎥⎥⎦
= 0.

Hence the entire double integral is 0.
So which was easier??

Here is a less typical example of the use of Stokes’ Theorem: Sometimes,
one can use Stokes’ to change the surface in a way that leaves the boundary
fixed. So if a calculation of the flux of the curl of a vector field across S is
difficult, and the circulation of the vector field along ∂S is also difficult, if
Stokes applies, one can just find a different surface, with the same boundary,
where the flux of the curl is easier to integrate.

Example 21.2. Example 7.3.2 of the text. Calculate the flux of the
curl of

F =
⎡⎢⎢⎢⎢⎢⎣

ey+z − 2y
xey+z + y
ex+y

⎤⎥⎥⎥⎥⎥⎦
across S = {(x, y, z) ∈ R3 ∣ z ≥ 1

e
, z = e−(x2+y2)} .

By inspection and a few quick calculations (check the book), one can use
Stokes’ Theorem here, but both sides of the equal sign in the theorem are
quite difficult calculations! However, by Stokes’, any surface with the same
boundary as S will do, when calculating the flux of the curl of F across it.

So here, choose

Ŝ = {(x, y, 1

e
) ∈ R3 ∣ x2 + y2 ≤ 1} .
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Then, we have

∂Ŝ = ∂S = {(x, y, 1

e
) ∈ R3 ∣ x2 + y2 = 1} .

So by Stokes’ Theorem,¨
S
∇×F ● dS =

¨
Ŝ
∇×F ● dS =

¨
Ŝ
(∇×F ● n) dS.

So for this calculation, we find

∇×F =
⎡⎢⎢⎢⎢⎢⎣

ex+y − xey+z
ey+z − ex+y

2

⎤⎥⎥⎥⎥⎥⎦
, and n =

⎡⎢⎢⎢⎢⎢⎣

0
0
1

⎤⎥⎥⎥⎥⎥⎦
.

So then ∇×F ● n = 2. Now the calculation is simply¨
S
∇×F ● dS =

¨
Ŝ
(∇×F ● n) dS

=
¨
Ŝ

2dS = 2 (area(Ŝ)) = 2 (π(1)2) = 2π.

Here ae some great uses for Stokes’ Theorem:

(1) A surface is called compact if it is closed as a set, and bounded. A
surface is called closed if it is compact and has no boundary.
● Surfaces like the 2-sphere S2, and the 2-torus T 2 are closed,

while the disk, or a surface which is the continuous injective
graph of a closed rectangle in the plane (we tend to call this a
(flying) carpet.

● Recall that a curve in Rn is simple if it does not intersect itself.
Hence a bounded simple curve with its endpoints is compact.
Its boundary are the two endpoints. A closed curve forms a
loop, and hence has no boundary.

● Also, the surface of teh unit cube in R3 is closed. Creases and
corners are not considered boundaries of a surface. So, in a
very mathematical sense, there is no real difference between
the surface of a cube, and the surface of a ball. One does
have edges and corners and the other does not, but each does
enclose space. Now, there is a difference, though. The surface
of the unit cube is not smooth, while the surface of the ball
is. But we can still integrate over each. The difference is that,
to integrate over the cube (a piece-wise smooth surface), we
would have to break up the integral calculation into each face,
and then add the results at the end.

(2) In the case of a closed surface, the curl of any vector field in R3

over a closed surface will be 0, by order of Stokes’ Theorem: The
total flux of the curl of a vector field over a surface is equal to the
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circulation of that vector field over the boundary of the surface. If
the surface has no boundary, then there is no circulation. Then by
Stokes’, the curl of F has no flux across the surface.

(3) In contrast, let F be a conservative vector field, so F = ∇f for
a real-valued, C1-function. Then, for any surface S that satisfies
Stokes’, the circulation of F along ∂S is 0 (we say it vanishes), orˆ

∂S
F ● ds = 0.

Why is this? For any conservative vector field, ∇×F = ∇×∇f = 0.
Hence by Stokes’¨

S
∇×F ● dS =

¨
S

0 ● dS = 0 =
˛
∂S

F ● ds.



LECTURE 22

Thh Theorem of Gauss

Synopsis. In this lecture, we finish the foundational material of what
makes a vector calculus course with a full discussion of the last of the Big
Theorems, the theorem of Gauss. Really, the BIg Three theorems we are
discussing are all similar in nature yet vary in dimension. Again, for Gauss’
Theorem, we state the theorem and discuss its constituent pieces, develop
the intuition needed to see what the theorem states, and establish some main
situations where the theorem is relevant. Then we use Gauss’ and Stokes’
Theorems to give a much more precise idea of just what the divergence and
the curl of a vector field actually is and how to understand these concepts
geometrically.

22.0.1. Gauss’ Theorem.

Theorem 22.1 (Gauss’ Theorem). Let W ∈ R3 be a solid region, whith
∂W a finite set of piecewise smooth, closed, orientable surfaces, oriented
outwardly from W. For F a C1-vector field on a domain containing W,

(
"
∂W

(F ● n) dS =)
"
∂W

F ● dS =
˚
W
∇ ● FdV (=

˚
W

(div F) dV ) .

Special Notes:

(1) Recall that any compact domain in R2 with nonempty interior has
a set of closed curves as boundary. In R3, any compact domain
with nonempty interior has a set of closed surfaces as boundary.
And this generalizes to higher dimensions readily. But this leads to
the conclusion: The boundary of a compact region with nonempty
interior has no boundary! Think about this.

(2) The proof of Gauss’ Theorem is elementary and quite straightfor-
ward: Denoting points in R3 in the obvious way using the variable
x, y, and z, and with F = F1(x, y, z) i + F2(x, y, z) j + F3(x, y, z)k,
we first see that˚
W

(div F) dV =
˚
W

∂F1

∂x
dV +

˚
W

∂F2

∂y
dV +

˚
W

∂F3

∂z
dV.

Then, it should also be clear that¨
∂W

(F ● n) dV =
¨
∂W

F1 i ● ndV +
¨
∂W

F2 j ● ndV +
¨
∂W

F3 k ● ndV.

And finally, one simply shows that each is equal to each, respec-
tively.
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Exercise 12. Show

˚
W

∂F1

∂x
dV =

¨
∂W

F1 i ● ndV , when W
is elementary in all directions.

So we are now fully in a position to understand some concepts that we
have previously only vaguely discussed:

● Divergence of a vector field.
● Curl of a vector field.

22.0.2. Divergence.

● Intuitive definition: Measures the infinitesimal expansion of volume
under the flow of a vector field.

● Actual definition: Measures the aggregate flux of a vector field
across the boundary of an infinitesimal ball centered at a point.

Theorem 22.2. Let F be a C1-vector field defined in some (open) neigh-
borhood of a point p ∈ R3. For

Sa = {x ∈ R3 ∣ ∣∣x − p∣∣ = a} ,
a 2-sphere of radius a > 0 centered at p and oriented outwardly,

div F(p) = lim
a→0+

3

4πa3

"
Sa

F ● dS.

Proof. For any f ∈ C0[W ⊂ R3,R], W a bounded solid region, there
exists q ∈ R3 where˚

W
f(x, y, z)dV = f(q) ⋅ volume(W).

This is the Mean Value Theorem for triple integrals.
Now since F is C1 in an open neighborhood of p, there exists ε > 0 such

that F is C1 on
Bε = {x ∈ R3 ∣ ∣∣x − p∣∣ ≤ ε} .

Then ε = a in the theorem and Sa = ∂Bε. Then, there exists a q ∈ Bε such
that ˚

Bε
div(F)dV = div (F(q)) ⋅ volume (Bε)

= 4πε3

3
div (F(q)) ,

since divergence is simply a scalar field on Bε. Now, we can use Gauss’
Theorem:

lim
ε→0+

3

4πε3

"
Sε

F ● dS
GaussÔÔÔÔ lim

ε→0+

3

4πε3

˚
Bε

div (F) dV

= lim
ε→0+

3

4πε3
(4πε3

3
⋅ div (F(q)))

= lim
ε→0+

div (F(q)) = div (F(p)) .
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�

So Gauss’ Theorem says that the amount of volume created or lost upon
flowing along a vector field in a compact solidW is equal to the total amount
flowing through the boundary ∂W.

22.0.3. Curl.

● Intuitive definition: Measures the twisting effect of a vector field in
R3 felt by flowing along it.

● Actual definition: Measures the total circulation of a vector field
along an edge of an infinitesimal disk normal to the vector field at
a point.

Theorem 22.3. Let F be a C1-vector field defined in some (open) neigh-
borhood of a point p ∈ R3. Let n be a unit vector based at p, with

Da = {x ∈ R3 ∣ ∣∣x − p∣∣ ≤ a, (x − p) ● n = 0} ,
a 2-disk of radius a > 0 centered at p and normal to n. Orient Da compatibly
with n and also Ca = ∂Da. Then the component of curl in the direction of
n is

curlF(p) ● n = lim
a→0+

1

πa2

˛
Ca

F ● ds.

Hence, curl at a point is the infinitesimal circulation of F along a loop
perpendicular to the direction of flow. In essence, choose a unit vector n
based at p, and form a small disk normal to n and containing p. If the
vector field generally points in a direction along the boundary of the disk
compatibly with its orientation with the disk on its left (counterclockwise),
then the circulation will be positive. If, in the aggregate, it points in the
opposite direction to the orientation on the boundary of the disk, then the
circulation will be negative. And if, in the aggregate, the vector field is
orthogonal to the boundary of the disk, then the circulation will be 0.

Now allow n to vary. The magnitude of curlF(p) ●n will be maximized
at p precisely when

n = curlF(p)
∣∣curlF(p)∣∣ .

Therefore the twisting or rotating effect of the vector field F at p is greatest

about the axis parallel to
curlF(p)
∣∣curlF(p)∣∣ . One can use this as a definition of the

curl of a vector field.

Proof. Exactly like the previous theorem but using Stokes instead of
Gauss. �

Notes:

● The quantity div (F(p)) is also called the flux density of F at p:
It is the limit of the flux per unit volume.

● The quantity curl (F(p)) is also called the circulation density of F
at p: It is the limit of the flux per unit volume.
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Stokes’ Theorem says that the total rotational effect of a vector field on
a surface in R3 is equal to the aggregate boost or hindrance of a particle on
the edge.

Green’s Theorem is simply Stokes’ Theorem limited to domains in the
plane.

Example 22.1. For F = 2x i + y2 j + z2 k and

S = {(x, y, z) ∈ R3 ∣ x2 + y2 + z2 = 1} ,
the unit 2-sphere in R3, find the flux of F through S.

The solution here is a calculation of"
S
(F ● n) dS,

where n is the unit normal vector to S. We use Gauss’ Theorem to instead
integrate the divergence of F on the unit ball

B = {(x, y, z) ∈ R3 ∣ x2 + y2 + z2 ≤ 1} .
By Gauss,"

S
(F ● n) dS =

˚
B

divFdV

=
˚
B

2(1 + y + z)dV

= 2

˚
B
dV + 2

˚
B
y dV + 2

˚
B
z dV.

We do the middle integral first: We have

2

˚
B
y dV = 2

ˆ 1

−1

ˆ √
1−x2

−
√

1−x2

ˆ √
1−x2−z2

−
√

1−x2−z2
y dy dz dx

= 2

ˆ 1

−1

ˆ √
1−x2

−
√

1−x2

⎛
⎜
⎝
y2

2
∣

√
1−x2−z2

−
√

1−x2−z2

⎞
⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
0

dz dx

= 0.

The same will be true for the third integral. And so we have ,"
S
(F ● n) dS GaussÔÔÔÔ

˚
B

divFdV

= 2

˚
B
dV = 2 ⋅ vol (B) = 2(4π(1)3

3
) = 8π

3
.



LECTURE 23

Differential Forms

Synopsis. During these last three lectures, I will discuss the structure
of differential forms form the perspective of multi-linear algebra and n-forms
on vector spaces. This is basically not done in the book. This allows me to
give a much more foundational treatment of just what forms are and not just
how they work. We learn their structure, how to integrate them and how
to differentiate them, all with an eye toward what works regardless of the
dimension. We show how many of the things we learned in the past, from
the product rule and the Substitution Method in Calculus I to the Change
of Variables Theorem and Fubini’s Theorem in Calculus III, are all just
examples of more general structure. We then finish with the Generalized
Stoke’s Theorem, and show how the various big theorems of Gauss, Stokes
and Green are also simply particular examples. We end with the same
result of the Fundamental Theorem of Calculus. In fact, one can easily say
that the Generalized Stokes Theorem is just the Fundamental Theorem of
Multivariable Calculus.

23.0.1. Multilinear algebra. Let V be an n-dimensional vector space
on R. Then, relative to some basis {e1, . . . ,en}, (note that we will use the
notation of the standard basis in Rn for convenience, but one can adapt this
argument to any basis) any element v ∈ V can be written as

v = v1e1 + . . . + vnen.
Here, vi is the ith coordinate of v (in the given basis) and, by convention,
one often denotes elements of V by their set of coordinates in the form of a
(column) vector

v =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

v1

v2

⋮
vn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∈ V, vi ∈ R, for i = 1, . . . , n,

so that we say v ∈ V is a vector in V .
A linear functional, or (linear) 1-form, or covector, is a linear map f ∶

V → R, so satisfies

f(c1v + c1w) = c1f(v) + c1f(w), ∀v,w ∈ V, ∀c1, c2 ∈ R.
The set of all covectors of V is again a n-dimensional vector space V ∗ called
the dual space to V .
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Exercise 13. Show that V ∗ is a vector space.

So what is a basis for V ∗? For each i = 1, . . . , n, let ei ∶ V → R be defined
so that

e∗i (ej) = { 1 i = j
0 i /= j.

Then, by linearity, e∗i (w) = wi, and the ith basis covector strips off the ith
entry of w. One can readily show that {e∗1 , . . . ,e∗n} forms a basis for V ∗,
and that for any v∗ ∈ V ∗,

v∗ = v1e
∗
1 + . . . + vne∗n, vi ∈ R.

Here, v∗ ∶ V → R satisfies

v∗(w) = v1e
∗
1(w) + . . . + vne∗n(w)

= v1w1 + . . . + vnwn = v ● w

= [ v1 ⋯ vn ]
⎡⎢⎢⎢⎢⎢⎣

w1

⋮
wn

⎤⎥⎥⎥⎥⎥⎦
.

Some notes:

● In this way, we often write covectors as row vectors, since written
this way, they can readily “act” on vectors as functionals.

● The dot product dot ∶ Rn × Rn → R is not a linear function. It is
linear, however, on each of its factors separately, and is an exam-
ple of a mulitlinear function. Indeed, for v ∈ V , the dot product
dot(v, ⋅) = dotv(⋅) with one slot filled is a linear functional, so that
one can identify, for v∗ ∈ V ∗,

v∗(w) = dotv(w) = v ● w,

as before.
● In R3, each p ∈ R3 has a tangent space TpR3, which is another copy

of R3, but with its origin based at p. It is a different space than
the one where p “lives”.

On this last bullet point, for coordinates (x1, . . . , xn) on Rn, define a
coordinate system on TpRn as (dx1, . . . , dxn), where each dxi is the infin-
itesimal change in the coordinate xi at p in Rn, but ranges over all real
numbers in a particular direction in TpRn. Here, each dxi is a linear func-
tional on TpRn since, for a choice of v ∈ TpRn, dxi(v) = vi.

Some notes:

● Think of a parameterized hypersurface S ∈ Rn, and it is easier to
see how a tangent vector v ∈ TpS, but v /∈ S.

● This definition of dxi works because coordinates themselves are
actually linear functionals on a space (at least the Cartesian one
are). They are projections onto the factors of the space, which are
linear functions. INdeed, let p = (p1, p2) ∈ R2. Then the functions
x ∶ R2 → R and y ∶ R2 → R can be defined as x(p) = p1 and
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y(p) = p2. These coordinate functions are linear and hence are not
only continuous but differentiable, and the derivative functions are

Dxp ∶ TpR2 → R, Dxp = [ 1 0 ] , and

Dyp ∶ TpR2 → R, Dyp = [ 0 1 ] ,

where each is a 1 × 2-matrix. Then, given v = [ v1

v2
] ∈ TpR2, we

have

Dxp(v) = [ 1 0 ] [ v1

v2
] = v1,

Dxp(v) = [ 1 0 ] [ v1

v2
] = v1.

So we use this to define coordinates directly inside TpR2, (dx, dy), where

dx =Dxp = [ 1 0 ] , dy =Dyp = [ 0 1 ] .

Example 23.1. Let v ∈ R3, so v = v1 i + v2 j + v3 k. Then we can write

x ∶ R3 → R x(v) = v ● i = e∗1(v) = v1,
y ∶ R3 → R y(v) = v ● j = e∗2(v) = v2,
z ∶ R3 → R z(v) = v ● k = e∗3(v) = v3.

Defined, implicitly at least, this way, we often “abuse notation” for conve-
nience and clarity of concept and simply write

v =
⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
∈ R3,

as one would normally see in a calculus text.

Geometrically, a linear functional on Rn looks like

ω = a1 dx1 + . . . + an dxn = adx,

where the (row matrix) covector a is called the coefficient vector of the

functional, and dx =
⎡⎢⎢⎢⎢⎢⎣

dx1

⋮
dxn

⎤⎥⎥⎥⎥⎥⎦
is a basis of covectors (linear functionals) in

Rn. However, we could write a as a column vector. If we did, then, we
would be forced to write ω = a ● dx. We do see this at times, and context
should make it clear. See Equation 23.0.1 below.
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Example 23.2. Let a = [ 1 2 3 ] ,v =
⎡⎢⎢⎢⎢⎢⎣

−4
−5
−6

⎤⎥⎥⎥⎥⎥⎦
∈ R3. Then

ω = adx = a1 dx + a2 dy + a3 dz = dx + 2dy + 3dz,

and

ω(v) = a1 dx(v) + a2 dy(v) + a3 dz(v)

= a1v1 + a2v2 + a3v3 = [ a1 a2 a3 ]
⎡⎢⎢⎢⎢⎢⎣

v1

v2

v3

⎤⎥⎥⎥⎥⎥⎦
= [ 1 2 3 ]

⎡⎢⎢⎢⎢⎢⎣

−4
−5
−6

⎤⎥⎥⎥⎥⎥⎦
= 1(−4) + 2(−5) = 3(−6) = −32.

Example 23.3. It is also a good idea to keep in mind where different

mathematical objects “live”: Let v = [ −1
−2

] ∈ TpR2, for p = [ 1
1

]. Then,

while we envision v as a vector in R2 based at p, it is really a vector based
at the origin (like vectors should) of TpR2, considered a different space.

Let c ∶ [a, b]→ R2 be a C1-curve. For t0 ∈ (a, b), p = c(t0) ∈ R2, the space
TpR2 is not the same plane as R2. For one, it has different coordinates. We
can write the tangent line `p to the curve at p via the coordinates (dx, dy)
of TpR2; This is because `p is defined as the set of all tangent vectors to c
at p, so `p ⊂ TpR2, and not really in the plane where c is defined. In fact,
the line `p is a vector subspace of TpR2: The equation for `p is

dy = (constant)dx.

Can you guess what the constant is?

Example 23.4. Let c ∶ [0,4] → R2 be defined by c(t) = (t, t2). In the

xy-plane, the equation for the tangent line to c at p = c(1) = [ 1
1

] is

(y − 1) = 2(x − 1), or y = 2x − 1.

However, in TpR2, a copy of R2, but with the origin at p and coordinates
(dx, dy), the equation for `p is

dy = 2dx, or
dy

dx
= 2.
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Just for contrast, the equation for `q ∈ TqR2, when q = c(3) = [ 3
9

] is

dy = 6dx.
Now compare this to the de-parameterized curve: Let x = t, so that

y = f(x) = x2. Now the curve c is the graph of the function f ∶ [0,4] → R
(and parameterized by x). Using dy as the infinitesimal change in y, its
relationship to dx, an infinitesimal change in x, is then dy = f ′(x)dx = 2xdx.
And we are back in Calculus I.

And now, we can generalize:

Definition 23.1. A one form on a smooth region D ⊂ Rn is a choice
of a linear one form on each tangent space to D which varies continuously
with p ∈ D.

Some notes:

● This definition sounds a lot like that of a vector field, a choice of a
vector in each tangent space to D which varies continuously with
p ∈ D. It is actually quite close!

● Instead of a vector choice in our vector field, a one-form is a choice
of a covector, or linear functional, in each tangent space. In this
sense, a 1-form on D is a covector field on D.

On R, a generic 1-form looks like ω = f(x)dx, for f a C0-function on
R. At a point x0 ∈ R, f(x0) = a, and the linear functional (the covector) at
Tx0R, which is a copy of R but with the origin at x0, is ωx0 = adx. Then,
for v ∈ Tx0R, we have

ωx0(v) = adx(v).
On Rn, a generic 1-form looks like

(23.0.1) ω = f1(x)dx1 + . . . + fn(x)dxn =
n

∑
i=1

fi(x)dxi = F ● dx,

where F(x) =
⎡⎢⎢⎢⎢⎢⎣

f1(x)
⋮

fn(x)

⎤⎥⎥⎥⎥⎥⎦
, and dx =

⎡⎢⎢⎢⎢⎢⎣

dx1

⋮
dxn

⎤⎥⎥⎥⎥⎥⎦
. Do you recognize this formula?

A common way to construct 1-forms on a domain is to use vector fields
as the coefficient functions of the form. But really, a 1-form is a covector
field. We are simply writing the coefficients a column vectors instead of
their more properly written row vectors. But this is what we alluded to in
the discussion just after Example 23.1

Some final notes:

● This dx is precisely the ds in the definition of the vector line integral´
c F ● ds. In a sense, integrating a vector field along a curve IS just

the adding up of the values of a 1-form along the curve.



148 23. DIFFERENTIAL FORMS

● A 1-form is called a differential 1-form if the coefficient functions
fi(x) are C1-functions for all i = 1, . . . , n.

● For any real-valued C2-function f ∶ D ⊂ Rn → R, its differential

df(x) =
n

∑
i=1

∂f

∂xi
(x)dxi =

∂f

∂x1
(x)dx1 + . . . +

∂f

∂xn
(x)dxn

is a differential 1-form since each of the functions ∂f
∂xi

(x) is a C1-

function. But 1-forms do not have to arise in this fashion (that is,
not all 1-forms arise as the differentials of functions).



LECTURE 24

More about Forms

Synopsis. A continuation of the last three lectures on differential forms
and their structure.

24.0.1. A covector product. Since dx and dy are linear functionals
on R2, viewed as coordinates of TpR2 for p ∈ D ⊂ R2, they are covectors.
And like vectors, beyond summing and constant multiples, one can define
products of covectors. But like vectors, products of covectors are not always
vectors. Think of the inner, outer, and cross products as forms of multipli-
cation where the output may have the same or a different structure from
the inputs. Here, we define a new product on covectors:

Definition 24.1. The wedge product of two linear 1-forms ω and ν on
Rn is

ω ∧ ν(v1,v2) = ∣ ω(v1) ω(v2)
ν(v1) ν(v2) ∣ = ω(v1)ν(v2) − ω(v2)ν(v1).

Exercise 14. Show ω ∧ ν ∶ Rn ×Rn → R is linear on each factor, but is
not a linear function (it is multi-linear).

Here is a good geometric interpretation: Think of a plane with two
vectors

v̂1 = [ ω(v1)
ν(v1) ] , and v̂2 = [ ω(v2)

ν(v2) ] .

Then ω ∧ ν(v1,v2) = (v̂1 × v̂2) ⋅ k is the signed area of the parallelogram in
the plane whose sides are v̂1 and v̂2.

Some notes:

● The wedge product is skew-symmetric, or anti-symmetric:

ν ∧ ω(v1,v2) = −ω ∧ ν(v1,v2).
● The wedge product of two 1-forms is also anti-symmetric in its

arguments:

ω ∧ ν(v2,v1) = ω(v2)ν(v1) − ω(v1)ν(v2)
= − (ω(v1)ν(v2) − ω(v2)ν(v1)) = −ω ∧ ν(v1,v2).

● ω ∧ ν(v1,v1) = 0, always. (Exercise)
● ω ∧ ω(v1,v2) = 0, always. (Exercise)
● (ω + µ) ∧ ν(v1,v2) = ω ∧ ν(v1,v2) + µ ∧ ν(v1,v2). (Exercise)
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150 24. MORE ABOUT FORMS

● The wedge product of two 1-forms is multilinear:

ω ∧ ν(c1w1 + c2w2,v) = c1ω ∧ ν(w1,v) + c2ω ∧ ν(w2,v), and

ω ∧ ν(v, c1w1 + c2w2) = c1ω ∧ ν(v,w1) + c2ω ∧ ν(v,w2).

For 1-forms ω and ν on Rn, ω∧ν is called a 2-form, where ω∧ν ∶ Rn×Rn →
R acts on paris of vectors. Indeed, let ω = ∑ai dxi and ν = ∑ bj dxj be 2
linear 1-forms. Then

ω ∧ ν =
n

∑
i,j=1

ai dxi ∧ bj dxj =
n

∑
i,j=1

aibj dxi ∧ dxj ,

since forms are linear on each factor. However, when i = j, Definition 24.1
implies

dxi∧dxi(v1,v2) = ∣ dxi(v1) dxi(v2)
dxi(v1) dxi(v2) ∣ = dxi(v1)dxi(v2)−dxi(v2)dxi(v1) = 0.

Couple this with the skew-symmetry of the wedge product, so that dxi ∧
dxj = −dxj ∧ dxi, and it becomes obvious that many terms in a generic
2-form can be neglected or combined, simplifying the form.

Exercise 15. Show that, for ω =
n

∑
i=1

fi(x)dxi and ν =
n

∑
j=1

gj(x)dxj , the

2-form ω ∧ ν is a sum of, at most, (n
2
) distinct, non-zero terms, which are

some function times dxi ∧ dxj , after all simplifications.

Example 24.1. In R3, with coordinates x, y, and z, let

ω = a1 dx + a2 dy + a3 dz

ν = b1 dx + b2 dy + b3 dz.
Then

ω ∧ ν = a1b1 dx ∧ dx + a1b2 dx ∧ dy + a1b3 dx ∧ dz
+ a2b1 dy ∧ dx + a2b2 dy ∧ dy + a2b3 dy ∧ dz
+ a3b1 dz ∧ dx + a3b2 dz ∧ dy + a3b3 dz ∧ dz

= (a2b3 − a3b2)dy ∧ dz + (a3b1 − a1b3)dz ∧ dx + (a1b2 − a2b1)dx ∧ dy.
Do you recognize the structure of the coefficient (row)-vector here?

Definition 24.2. A differential 2-form on a region in Rn is just a choice
of a linear 2-form on each tangent space to the region that varies differen-
tiably with respect to the region points.
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For ω =
n

∑
i=1

fi(x)dxi and ν =
n

∑
j=1

gj(x)dxj , we have

ω ∧ ν =
n

∑
i,j=1

hij(x)dxi ∧ dxj ,

with all appropriate cancellations and skew symmetries.

Example 24.2. Let ω = x2y dx∧ dy −xz dy ∧ dz be a 2-form on R3, and

p =
⎡⎢⎢⎢⎢⎢⎣

1
2
3

⎤⎥⎥⎥⎥⎥⎦
. Then, at p, we have

ωp =
⎛
⎝
x2y∣

p

⎞
⎠
dx ∧ dy +

⎛
⎝
xz∣

p

⎞
⎠
dy ∧ dz

= 2dx ∧ dy − 3dy ∧ dz,

a linear 2-form on TpR3. Now, if we choose two vectors v1 =
⎡⎢⎢⎢⎢⎢⎣

4
0
−1

⎤⎥⎥⎥⎥⎥⎦
and

v2 =
⎡⎢⎢⎢⎢⎢⎣

3
1
2

⎤⎥⎥⎥⎥⎥⎦
in TpR3, then

ωp(v1,v2) = 2dx ∧ dy
⎛
⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

4
0
−1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

3
1
2

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟
⎠
− 3dy ∧ dz

⎛
⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

4
0
−1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

3
1
2

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟
⎠

= 2 ∣ 4 3
0 1

∣ − 3 ∣ 0 1
−1 2

∣ = 2(4) − 3(1) = 5.

Note that

∣ 4 3
0 1

∣ =

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

dx
⎛
⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

4
0
−1

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟
⎠

dx
⎛
⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

3
1
2

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟
⎠

dy
⎛
⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

4
0
−1

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟
⎠

dy
⎛
⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

3
1
2

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟
⎠

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

.

Written out, then, a 2-form on R3, using the coordinates x, y, and z,
looks like

µ = f1(x, y, z)dx ∧ dy + f2(x, y, x)dx ∧ dz + f3(x, y, z)dy ∧ dz.
And in the case that µ is itself the wedge product of two 1-forms,

ω = g1 dx + g2 dy + g3 dz, and ν = h1 dx + h2 dy + h3 dz,
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then

f1(x, y, z) = g1(x, y, z)h2(x, y, z) − g2(x, y, z)h1(x, y, z),
with the other two coefficients defined similarly.

Notes:

(1) Completely generalizes to Rn, n > 3 with a very similar structure.
(2) A generic way to write a differential 2-form on Rn with coordinates

x1, . . . , xn is

µ =
n

∑
i,j=1

fij dxi ∧ dxj

and leave all cancellations and skew-symmetries up to the reader.
(3) We can continue to construct higher-order forms via the wedge

product:
● Let ωi be a set of m differentiable 1-forms on Rn, for i =

1, . . . ,m. Then

µ = ω1 ∧⋯ ∧ ωm
is a differential m-form on Rn which will ultimately look like

µ =∑Fi1⋯ik dxi1 ∧⋯ ∧ dxik
with a lot of terms vanishing and other simplifications. At a
point p ∈ Rn,

µp ∶ TpRn ×⋯ × TpRn
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m-terms

→ R,

is a linear m-form, and

µp(v1, . . . ,vm) =
RRRRRRRRRRRRR

ω1(v1) ⋯ ω1(vm)
⋮ ⋱ ⋮

ωm(v1) ⋯ ωm(vm)

RRRRRRRRRRRRR
.

The computation is a very mechanical process.
● Note also that µp, a linear m-form, is multilinear, so linear on

each argument:

µp(v1, . . . ,vi−1, c1u1+c2u2,vi+1, . . . ,vm)
= c1µp(v1, . . . ,vi−1,u1,vi+1, . . . ,vm)
+ c2µp(v1, . . . ,vi−1,u2,vi+1, . . . ,vm).

● And for ω a differentiable k-form and ν a differentiable `-form,
we have ω ∧ ν is a differentiable (k + `)-form

(4) Call a C1-function f on Rn a differentiable 0-form. Then, for ω a
differentiable k-form,

f ∧ ω = f ⋅ (∑Fi1⋯ik dxi1 ∧⋯ ∧ dxik)
=∑ f ⋅ Fi1⋯ik dxi1 ∧⋯ ∧ dxik

is still a k-form.
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(5) There exist 2-forms that do not arise as the wedge products of
1-forms.

(6) There are no m-forms on Rn, where m > n. Why not?
(7) An n-form on Rn is also called a volume form.
(8) The wedge product is also called the exterior product on forms.

Definition 24.3. A differential m-form on Rn, n ≥m

µ =
n

∑
i1,...,im=1

Fi1⋯im dxi1 ∧⋯ ∧ dxim

is a continuous family of linear m-forms µp, parameterized by p ∈ Rn, such
that, at each p,

µp ∶ TpRn ×⋯ × TpRn
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m-terms

→ R

is multilinear, so while not a linear function, it is linear on each argument
separately.

Here is an alternate view: For each p ⊂ DRn, and each factor TpRn of
µp, a choice of vp ∈ TpRn is a vector field on D ⊂ Rn. Hence a differential
m-form on D “acts” on a set of m vector fields on D simultaneously, and
returns a function on D.

Example 24.3. Let F = 2y i − xk be a vector field on R3, and

ω = x2y dx − xdy + y2z dz

be a differentiable 1-form. Then, at any given p =
⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
and v ∈ F, we have

ω(v) = (x2y dx − xdy + y2z dz)(v)
= x2y dx(v) − xdy(v) + y2z dz(v)
= x2y(2y) − x(0) + y2z(−x) = 2x2y2 − xy2z.

Hence we can write ω(F) ∶ Rn → R, as

ω(F)(x, y, x) = 2x2y2 − xy2z.

24.0.2. Integrating forms. Yet another alternate view: Forms are
“generalized” integrands; One can add them up on each tangent space over
a domain. Interpreting them as such and also geometrically will depend on
the form and the space we integrate over, though. Here are some examples:

I. Integrating n-forms in Rn:
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(a) n−1: Let f ∶ R→ R be C0. Then ω = f(x)dx is a continuous 1-form.
For I = [a, b] ⊂ R an interval (already parameterized),

ˆ
I
ω =

ˆ b

a
f(x)dx.

Any continuous function f(x) on an interval I ⊂ R can be associated
to a 1-form in this way, and integrating this form on the interval is
performed in the fashion one would employ in first semester, single
variable calculus.

(b) If ω = f(x, y)dx ∧ dy, on a region D ⊂ R2, then

(24.0.1)

ˆ
D
ω =

¨
D
f(x, y)dxdy.

(c) This generalizes quite naturally, and if ω = f(x)dx1 ∧ ⋯ ∧ dxn is a
continuous n − form in Rn, then on some compact, n-dimensional
region R ⊂ Rn, we can write

(24.0.2)

ˆ
R
ω =

¨
⋯
ˆ
R

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n-integrals

f(mathbfx)dx1⋯dxn.

This helps to understand the use of the term volume form for an n-
form in Rn; If f(x) ≡ 1, then integrating ω over R yields the volume
of R:

● For a form defined on a region, we always integrate the form
over a subset of that region of the same “size” as that of the
order of the form.

● Notice that in both Eqns 24.0.1 and 24.0.2, we use only a
single integral sign, even for multiple integrals. The form and
the region identify the type of integration, so we do not need
to use multiple integrals. This will be very useful later.

I. Integrating m-forms in Rn, m < n: Here, we highlight, via a few examples,
the integration of forms on spaces and see how one can interpret these
quantities in ways that we have already developed and discussed, but
using this new language of forms:

Example 24.4. Integrating 1-forms and the circulation of a
vector field. Let m = 1. Then, on a curve c ∶ [a, b]→ Rn, with

ω = f1(x)dx1 + . . . + fn(x)dxn =
n

∑
i=1

fi(x)dxi,
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we can write ω = F● ds, where F(x) =
⎡⎢⎢⎢⎢⎢⎣

f1

⋮
fn

⎤⎥⎥⎥⎥⎥⎦
can be interpreted as a vector

field, and ds =
⎡⎢⎢⎢⎢⎢⎣

dx1

⋮
dxn

⎤⎥⎥⎥⎥⎥⎦
is a vector form of infinitesimal displacement.

Then we haveˆ
c
ω =

ˆ
c
F ● ds =

ˆ
c
ωc (c(t)) dt

=
ˆ b

a
F (c(t)) ● ds (c′(t))

=
ˆ b

a
F (c(t)) ●

⎡⎢⎢⎢⎢⎢⎣

dx1 (c′(t))
⋮

dxn (c′(t))

⎤⎥⎥⎥⎥⎥⎦
dt

=
ˆ b

a
F (c(t)) ● c′(t)dt.

Hence our interpretation is that integrating a 1-form over a curve in Rn
is the same as calculating the circulation of a vector field over the curve
(a vector line integral of the field), when the vector field is the coefficient
vector of the form. In this interpretation, we have

ds =
⎡⎢⎢⎢⎢⎢⎣

dx1

⋮
dxn

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

x′1(t)dt
⋮

x′n(t)dt

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

x′1(t)
⋮

x′n(t)

⎤⎥⎥⎥⎥⎥⎦
dt = c′(t)dt.

Example 24.5. Integrating 2-forms and surface integrals. For
m = 2. Then, on a surface X ∶ D ⊂ R2 → Rn, with

ω =
n

∑
i,j=1

Fij(x)dxi ∧ dxj , (neglecting simplifications)

we have, with X(D) =R ⊂ Rn,ˆ
R
ω =

ˆ
X
ωX (Xs,Xt) ds ∧ dt,

where

Xs =
⎡⎢⎢⎢⎢⎢⎣

∂x1
∂s (s, t)

⋮
∂x1
∂s (s, t)

⎤⎥⎥⎥⎥⎥⎦
, and Xt =

⎡⎢⎢⎢⎢⎢⎣

∂x1
∂t (s, t)

⋮
∂x1
∂t (s, t)

⎤⎥⎥⎥⎥⎥⎦
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are the partial derivative vectors determined by the parameterization
X(s, t) = (x1(s, t), . . . , xn(s, t)). Thus, we haveˆ

R
ω =

ˆ
X
ωX (Xs,Xt) ds ∧ dt =

¨
R

F ● dS,

which looks something like a vector surface integral, but where we need to
understand and interpret these pieces appropriately. Here F is a vector of
all of the Fijs, but is not a vector field in the sense that we have already

defined it. For evidence of this, there will be (n
2
) elements in F after

simplifications. This is typically too many to actually serve as a vector
field. Also, the vector dS is a vector of the associated term dxi∧ dxj , and

is also a vector of size (n
2
), too many to serve geometrically as infinitesimal

displacement like it did in R3. However, at least formally, we can writeˆ
X
ωX (Xs,Xt) ds ∧ dt =

ˆ
D

F (X(s, t)) ● dS (Xs,Xt) ,

where, for each term in dS, we have

dxi ∧ dxj (Xs,Xt) = ∣
dxi (Xs) dxi (Xt)
dxj (Xs) dxj (Xt)

∣ ds ∧ dt =
RRRRRRRRRRRR

∂xi
∂s

∂xi
∂t

∂xj
∂s

∂xj
∂t

RRRRRRRRRRRR
ds ∧ dt

= ∂(xi, xj)
∂(s, t) ds ∧ dt.

For instance, if the surface X ∶ D → R4 with coordinates (x, y, z, u), then
the 2-form ω can look like

ω = F12 dx∧ dy+F13 dx∧ dz+F14 dx∧ du+F23 dy∧ dz+F24 dy∧ du+F34 dz∧ du.
Then we can write

F =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

F12(x, y, z, u)
F13(x, y, z, u)

⋮
F34(x, y, z, u)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, and dS =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

dx ∧ dy
dx ∧ dz

⋮
dz ∧ du

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂(x,y)
∂(s,t)
∂(x,z)
∂(s,t)
⋮

∂(z,u)
∂(s,t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ds ∧ dt,

even as these 6 = (4
2
)-vectors do not correspond to geometric objects on

R4.

Example 24.6. Integrating 2-forms in R3 and the flux of a
vector field. In the special case where the surface in in R3, so n = 3
and m = 2, we do have a good geometric interpretation of the integral
of a 2-form on the surface. For a parameterized surface S ⊂ R3, with
X ∶ D ⊂ R2 → R3, and S = X(D), we have ω with only 3 = (3

2
) terms, so

ω = F12(x)dx ∧ dy + F13(x)dz ∧ dx + F23(x)dx ∧ dy.
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Then we haveˆ
S
ω =

ˆ
D
ωX (Xs,Xt) ds ∧ dt =

ˆ
S

F ● dS.

where F(x) = F12(x) i+F13(x) j+F23(x)k is an actual vector field on R3

(it has the correct dimension), and

dS =
⎡⎢⎢⎢⎢⎢⎣

dy ∧ dz
dz ∧ dx
dx ∧ dy

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂(y,z)
∂(s,t)
∂(z,x)
∂(s,t)
∂(x,y)
∂(s,t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

ds ∧ dt.

Hence we can interpret the integration of a 2-form on a surface in R3 as the
calculation of the flux of a vector field through a surface, where the vector
field is the coefficient vector of the 2-form. This is a vector surface integral
of the field.

Special note here: Notice how we defined the “middle” term in ω
here using dz ∧ dx instead of dx ∧ dz. Geometrically speaking, there is
a reason for this, and we will get to that with a little more structure in
the next (and final) lecture. But for now, to associate the three functions
F12, F13, and F23 with the actual components of a vector field F, we need
to address an issue of a minus sign introduced in this middle term. We
choose to respect the minus sign by reversing the terms in the middle
wedge. Keep track of this and hold your thoughts for now.

More generally, let R ⊂ Rn be an m-dimensional region parameterized
by X ∶ D ⊂ Rm → Rn, where X(D) =R. Then, for ω a differential m-form
on Rn,

ω∣
X(D)

= ωX(D) = ωX

is an m-form on R which can be expressed and integrated via the pa-
rameterization. Indeed, with the coordinates (s, t, . . . , u) for D ∈ Rm, we
have ˆ

R
ω =

ˆ
X
ωX (Xs,Xt, . . . ,Xu) ds ∧ dt ∧⋯ ∧ du

=
ˆ
R

F ● dS,

where the vector F of all of the form coefficient functions Fi1i2⋯im , and
the vector dS, containing all of the respective form pieces dxi1∧ dxi2∧⋯∧
dxim , will each have only (n

m
)-distinct elements. They will not generally

correspond to vector fields in the way we define them (there are often
too many elements). We will go any deeper than this here, but do note
the following: Things tend to line up well, combinatorially, when one
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integrates a 1-form over a curve (the number of elements if F and ds is
(n

1
) = n), and when integrating an (n − 1)-form over a hypersurface (of

dimension again (n−1)) since then, again, the constituents vectors F and
dS have size ( n

n−1
) = n each. At that point, we can again think of F as a

vector field.

Exercise 16. Let F = [ y
x

] a vector field on R2 and ds = [ dx
dy

], the

quantity ω = F ● ds is the 1-form ω = y dx + xdy. Calculate
´
c ω, where

c ∶ [0,2]→ R2 is defined by c(t) = [ t2

t3
]. (Hint: The answer is 32.)

And now we end this lecture with some examples of techniques and quan-
tities you are already familiar with, but now revisited in the new language
of forms.

Example 24.7. Integrating a 1-form in R and the Substitution
Method in Calculus I. Let ω = f(u)du, a differential 1-form on I = [c, d].

Then

ˆ
I
ω =

ˆ b

a
f(u)du like in Calculus I. But let’s reparameterize I via

the function
g ∶ J → I, g ∶ [a, b]→ [c, d]

so that u = g(x), and c = u(a) and d = u(b).
Now using the reparameterization, we getˆ

I
ω =

ˆ
J
ωg (g′(x)) dx =

ˆ b

a
f (g(x)) ⋅ g′(x)dx,

so that ˆ d=g(b)

c=g(a)
f(u)du =

ˆ b

a
f (g(x)) ⋅ g′(x)dx.

Do you remember the structure of the Substitution Method in first semester
calculus?

Example 24.8. Fubini and the Change of Variables Theorem
in the language of forms. Here is a curious and beautiful fact: Recall
that forms are skew-symmetric, so dx ∧ dy = −dy ∧ dx. Hence for ω =
f(x, y)dx ∧ dy, we have −ω = f(x, y)dy ∧ dx. Let R ⊂ R2 be rectangular.
Then, by Fubini’s Theorem,¨

R
f(x, y)dxdy =

¨
R
f(x, y)dy dx.

However,ˆ
R
ω =

¨
R
f(x, y)dx ∧ dy ?ÔÔ

¨
R
f(x, y)dy ∧ dx = −

ˆ
R
ω.
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What is going on here? Actually, nothing out of the ordinary. Switching
the order of integration is like a reparameteriztion of the plane, from the
xy-plane to the yx-plane, and the switching function is T ∶ (y, x) = (x, y).
This, in fact, is an orientation-reversing reparameterization, since

Jac(T ) =
RRRRRRRRRRR

∂
∂y [x]

∂
∂y [y]

∂
∂x[x]

∂
∂x[y]

RRRRRRRRRRR
= ∣ 0 1

1 0
∣ = −1.

Now the standard Change of Variables formula is¨
R
f(x, y)dxdy =

¨
R
f(x, y) ∣∂(x, y)

∂(y, x)∣ dy dx

with the absolute value of the Jacobian determinant. But the absolute value
is artificial, and is a convenient shortcut to mask a much deeper structure.

Indeed, this curious fact relies on the idea that for Fubini’s Theorem, we
avoid orientation and forms, and simply state that the order of integration
(over a rectangle) does not matter. But with forms, it does matter, as
orientation is critical. In the above case, the change in orientation due to
the reparameterization introduces a minus sign. But the switch from the
form dx∧ dy to dy ∧ dx introduces another, which conveniently cancels out
the former. Simply changing the order of integration and taking the absolute
value of the Jacobian works. Something to think about. Without forms (and
orientation), we can conveniently simply change the order of integration in
Fubini’s Theorem without violating rules regarding orientation of variable
changes.
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Example 24.9. Integrating a 2-form on a surface in three space. Let

M = {(x, y, z) ∈ R3 ∣ z =
√

1 − x2 − y2 }

be the unit sphere above the xy-plane, and ω = z2 dx∧ dy be a differentiable
2-form on R3. Evaluate

´
M ω.

Strategy. Parameterize the hemisphere M and calculate the integral via
the parameterization.

Solution. Use the function

X(r, θ) = (r cos θ, r sin θ,
√

1 − r2 )

so that the paramter region is the rectangle D = [0,1] × [0,2π] in the rθ-
plane, as shown in Figure 38 below:

Figure 38. A parameterization of the unit northern hemisphere in R3.

Then we can calculate using the parameterization:ˆ
M
ω =

ˆ
D
ωX(r,θ) (

∂X

∂r
(r, θ), ∂X

∂θ
(r, θ)) dr ∧ dθ

=
ˆ
D
ωX(r,θ)

⎛
⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

cos θ
sin θ
−r√
1−r2

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

−r sin θ
r cos θ

0

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟
⎠
dr ∧ dθ.

Here, think of these as part of a cylindrical coordinate system on R3, with
the last coordinate z = 1 − r2. Then continuing:

ˆ
M
ω =

ˆ
D
(1 − r2)

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

dx
⎛
⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

cos θ
sin θ
−r√
1−r2

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟
⎠

dx
⎛
⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

−r sin θ
r cos θ

0

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟
⎠

dy
⎛
⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

cos θ
sin θ
−r√
1−r2

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟
⎠

dy
⎛
⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

−r sin θ
r cos θ

0

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟
⎠

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

dr ∧ dθ

=
ˆ
D
(1 − r2)

RRRRRRRRRRRR

∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

RRRRRRRRRRRR
dr ∧ dθ =

ˆ
D
(1 − r2) ∣ cos θ −r sin θ

sin θ r cos θ
∣ dr ∧ dθ

=
ˆ
D
(1 − r2)r dr ∧ dθ =

ˆ 2π

0

ˆ 1

0
(r − r3)dr dθ

=
ˆ 2π

0

⎡⎢⎢⎢⎢⎣
(r

2

2
− r

4

4
) ∣

1

0

⎤⎥⎥⎥⎥⎦
dθ = θ

4
∣
2π

0

= π
2
.



LECTURE 25

Generalized Stokes’ Theorem

Synopsis. A continuation of the last three lectures on differential forms
and their structure.

25.0.1. More notation. For ω = ∑Fi1i2⋯imdxi1∧⋯∧dxim a differential
m-form on M ⊂ Rn, n ≥m,

ˆ
M
ω =

ˆ
⋯
ˆ
M

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n-integrals

∑Fi1i2⋯imdxi1 ∧⋯ ∧ dxim ,

whereM is an m-dimensional region in Rn. Note that the order of the form
and the dimension of the region integrated over will agree.

Definition 25.1. Let f ∶ D ⊂ Rn → R be a C1-function. Then the
exterior derivative of f , denoted df , is the 1-form

df = ∂f

∂x1
dx1 + . . . +

∂f

∂xn
dxn =Df(x)dx = ∇f ● dx.

For ω = ∑Fi1i2⋯imdxi1 ∧ ⋯ ∧ dxim a differential m-form, the differential
(m + 1)-form

dω =∑d(Fi1i2⋯im) ∧ dxi1 ∧⋯ ∧ dxim

is called the exterior derivative of ω.

Some notes:

● We call a C1-function f ∶ D ⊂ Rn → R a (differential) 0-form.
Thus the exterior derivative of a function is simply its differential,
a 1-form. Thus theexterior derivative of any differential m-form is
always an (m + 1)-form.

● For each set of indices, the term d(Fi1i2⋯im) is the standard differ-
ential of a function, and is a 1-form. Upon writing it out, one must
then address any and all simplifications and cancellations, which
can be many.

161
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Example 25.1. Let ω = x2y dx − xdy be a C∞ 1-form on R2. Then

dω = d(x2y) ∧ dx − d(x) ∧ dy
= (2xy dx + x2 dy) ∧ dx − (1dx − 0dy) ∧ dy
= 2xy dx ∧ dx + x2 dy ∧ dx − dx ∧ dy
= −(1 + x2)dx ∧ dy.

So what is d(dω) = d2ω? (Hint: Is it possible to have a 3-form on the plane?)
Here

d(dω) = d(−(1 + x2))dx ∧ dy = −2xdx ∧ dx ∧ dy = 0. (Why?)

Example 25.2. Let f ∶ R3 → R be defined as f(x, y, z) = x2ye2z. Calcu-
late df and d(df) = d2f .

First, we have df = 2xye2z dx + x2e2z dy + 2x2ye2z dz. Then

d(df) = d(2xye2z) ∧ dx + d(x2e2z) ∧ dy + d(2x2ye2z) ∧ dz
= 2ye2z dx ∧ dx + 2xe2z dy ∧ dx + 4xye2z dz ∧ dx
+ 2xe2z dx ∧ dy + 0dy ∧ dy + 2x2e2z dz ∧ dy
+ 4xye2z dx ∧ dz + 2x2e2z dy ∧ dz + 4x2ye2z dz ∧ dz

= 0

due to skew-symmetry and term-by-term cancelations.

But this is a general feature of exterior differentiation, and has broad
implications. We say that the exterior derivative is nilpotent; it has a positive
power, in this case its square, that is 0:

Proposition 25.2. For ω a differential k-form, d(dω) = d2ω = 0.

We will not prove this here, but in coordinates, the proof relies on the
fact that mixed partials are equal for a sufficiently differentiable function.

Exercise 17. ω = F (x, y, z)dx+G(x, y, z)dy+H(x, y, z)dz+J(x, y, z)du,
a C2 1-form on R4, show that d2ω = 0.

Here are some other properties of the exterior derivative:

(1) If ω is a k-form, and ν is an `-form, then

(25.0.1) d(ω ∧ ν) = dω ∧ ν + (−1)kω ∧ dν.

Note that we call this equation the Wedge Product Rule for exterior
differentiation.

Exercise 18. Verify, using the Wedge Product Rule, that d2(ω∧
ν) = 0.
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(2) As a special case of the Wedge Product Rule, let k = ` = 0. Then
f ∧ g = f ⋅ g, since both f and g are just functions. But then the
Wedge Product Rule is simply the Product Rule for the (regular)
derivative of functions you learned in Calculus I. Indeed,

d (f(x)g(x)) = d(f ∧ g) = df ∧ g + (−1)0f ∧ dg

= f ′(x)dx ⋅ g(x) + f(x) ⋅ g′(x)dx = (f ′(x) ⋅ g(x) + f(x) ⋅ g′(x)) dx
= df ⋅ g + f ⋅ dg.

(3) Now look at forms in R3 only: What one sees is the following:
● d(0-form) = gradient of the coefficient function.
● d(1-form) = curl of the coefficient vector field.
● d(2-form) = divergence of the coefficient vector field.

Perhaps this is another way to think of the ideas that the curl of
the gradient is always the zero vector field, and the divergence of
the curl of a vector field is always 0. In the language of differential
forms on R3, they both are just d2ω = 0.

(4) Again, only in R3, there is a one-to-one correspondence between
0-forms and 3-forms:

f(x, y, z)←→ f(x, y, z)dx ∧ dy ∧ dz.

And, there is a one-to-one correspondence between 1 forms and
2-forms:

F1 dx + F2 dy + F3 dz ←→ F1 dx ∧ dy + F2 dx ∧ dz + F3 dy ∧ dz.

Theorem 25.3 (Generalized Stokes’ Theorem). Let D ⊂ Rk be a compact
region with nonempty interior, andM = X(D) be an oriented, parameterized
k-dimensional hypersurface in Rn, with k ≤ n and ∂M oriented compatibly.
Then, for a (k − 1)-form defined on an open set in Rn containing M, we
have ˆ

M
dω =

ˆ
∂M

ω.

Note: if M is closed, so that ∂M = ∅, then
´
∂M ω = 0, since integrating

over nothing is nothing.
Now we are in a position to understand the big theorems that we have

already studied individually.

25.0.2. In the language of forms, The Theorem of Gauss. In
Theorem 25.3, let n = k = 3, and M be a (3-dimensional) compact solid in
R3, with

ω = F1(x)dy ∧ dz + F2(x)dz ∧ dx + F3(x)dx ∧ dy

a differential 2-form on a superset of M in R3. Then, we know that ω
is a 2-form on the closed surface ∂M, and that one interpretation of the
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integral of ω over ∂M is just the vector surface integral of the vector field
F(x) = F1(x) i + F2(x) j + F3(x)k over the surface, so

ˆ
∂M

ω =
"
∂M

F ● dS, where dS =
⎡⎢⎢⎢⎢⎢⎣

dy ∧ dz
dz ∧ dx
dx ∧ dy

⎤⎥⎥⎥⎥⎥⎦
.

This is the left-hand-side of Gauss’ Theorem.
For the right-hand-side of Gauss’ Theorem, note that dω will be a 3-form.

We haveˆ
M
dω =

ˆ
M
d (F1(x)dy ∧ dz + F2(x)dz ∧ dx + F3(x)dx ∧ dy)

=
ˆ
M

(∂F1

∂x
dx + ∂F1

∂y
dy + ∂F1

∂z
dz) ∧ dy ∧ dz

+ (∂F2

∂x
dx + ∂F2

∂y
dy + ∂F2

∂z
dz) ∧ dz ∧ dx

+ (∂F3

∂x
dx + ∂F3

∂y
dy + ∂F3

∂z
dz) ∧ dx ∧ dy

=
ˆ
M

(∂F1

∂x
+ ∂F2

∂y
+ ∂F3

∂z
) dx ∧ dy ∧ dz =

ˆ
M

(div F) dV.

Note that all summands with like terms in their wedge products are 0, and
every permutation needed to make the only surviving term dx ∧ dy ∧ dz
introduces a minus sign, but there are an even number of permutations to
generate the coefficient sum. The end result is precisely the right-hand-
side of Gauss’ Theorem. So, when the dimensions match, The Generalized
Stokes’ Theorem is Gauss’ theorem.

25.0.3. In the language of forms, The Theorem of Stokes. In
Theorem 25.3, let k = 2 and n = 3. In this case, let D ⊂ R2 be a compact
region (with boundary), and S = X(D) ⊂ R3 be an oriented parameterized
surface, with the closed curve ∂S oriented compatibly. And let

ω = F1(x)dx + F2(x)dy + F (x)dz

be a differential 1-form, defined on a superset of S in R3. Then, we know
that ω is a 1-form on the closed curve ∂S, and that one interpretation of
the integral of ω over ∂S is just the vector line integral (the circulation) of
the vector field F(x) = F1(x) i + F2(x) j + F3(x)k over the curve. So

ˆ
∂S
ω =

˛
∂S

F ● ds, where ds =
⎡⎢⎢⎢⎢⎢⎣

dx
dy
dz

⎤⎥⎥⎥⎥⎥⎦
.

This is the left-hand-side of Stokes’ Theorem.
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For the right-hand-side of Stokes’ Theorem, note that dω will be a 2-
form. We have

ˆ
S
dω =

ˆ
S
d (F1(x)dx + F2(x)dy + F3(x)dz)

=
ˆ
S
(∂F1

∂x
dx + ∂F1

∂y
dy + ∂F1

∂z
dz) ∧ dx

+ (∂F2

∂x
dx + ∂F2

∂y
dy + ∂F2

∂z
dz) ∧ dy

+ (∂F3

∂x
dx + ∂F3

∂y
dy + ∂F3

∂z
dz) ∧ dz

=
ˆ
M

(∂F3

∂y
− ∂F2

∂z
) dy ∧ dz + (∂F1

∂z
− ∂F3

∂x
) dz ∧ dx + (∂F2

∂x
− ∂F1

∂z
) dx ∧ dy

=
ˆ
S
∇×F ● dS.

As before, all summands with like terms in their wedge products are 0,
and the minus signs come from the permutations needed to combine the
remaining terms, if possible. The end result is precisely the right-hand-
side of Stokes’ Theorem. So, again, when the dimensions are right, The
Generalized Stokes’ Theorem is Stokes’ Theorem.

25.0.4. In the language of forms, The Theorem of Green. Once
more in Theorem 25.3, let k = n = 2. In this case, let D ⊂ R2 be a compact
region (with boundary), and

ω = F1 dx + F2(x)dy

be a differential 1-form, defined on a superset of D in R2. As in the dis-
cussion above involving Stokes’ Theorem, integrating ω over ∂D is akin to
calculating the circulation of F over ∂D, so

ˆ
∂D
ω =

˛
∂D

F ● ds =
˛
∂D
F1 dx + F2 dy =

˛
∂D
M(x, y)dx +N(x, y)dy,

where here we expose the notation used in Green’s Theorem by setting
M(x, y) = F1(x, y) and N(x, y) = F2(x, y). This is the left-hand-side of
Green’s Theorem.
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For the right-hand-side of Green’s Theorem, note that dω will be a 2-
form. We haveˆ

D
dω =

ˆ
D
d (M(x, y)dx +N(x, y)dy) =

ˆ
D
dM ∧ dx + dN ∧ dy

=
ˆ
D
(∂M
∂x

dx + ∂M
∂y

dy) ∧ dx + (∂N
∂x

dx + ∂N
∂y

dy) ∧ dy

=
ˆ
D

∂M

∂x
dx ∧ dx + ∂M

∂y
dy ∧ dx + ∂N

∂x
dx ∧ dy + ∂N

∂y
dy ∧ dy

=
ˆ
D
(∂N
∂x

− ∂M
∂y

) dx ∧ dy =
¨
D
(∂N
∂x

− ∂M
∂y

) dxdy.

Again, the end result is precisely the right-hand-side of Green’s Theorem.
And, once again, when the dimensions are right, The Generalized Stokes’
Theorem is Green’s Theorem.

25.0.5. In the language of forms, The Fundamental Theorem
of Calculus. One last time, suppose that in Theorem 25.3, we let k = n = 1.
Then, for I = [a, b] ⊂ R a closed, bounded, (compact) interval in R, with
∂I = {a, b} 2 points, and for ω a 0-form (just a function) on a superset of I
in R. Then, upon orienting I, we automatically orient ∂I. Going from a to
b renders the orientation on ∂I in such a fashion that the upper endpoint
is considered positive and the lower endpoint is considered negative. Using
this, ˆ

∂I
ω = adding up all values of f(x) on the set of

points {a, b} , oriented compatibly with I
= f(b) − f(a).

This is just the right-hand-side of the Fundamental Theorem of Calculus.
Note: We have yet had no reason to understand the orientation of a

discrete set of points, or a 0-dimensional set. One does this simply by
assigning a plus or minus to each point separately. By convention, then,
the orientation induced on the boundary of an interval upon orienting the
interval assigns a minus sign to the lower point, and a plus to the higher
point. So here, f(a) is considered negative, and f(b) is considered positive.

And for ω a 0-form (a function), We know that dω will be a 1-form (its
differential). We have

ˆ
I
dω =

ˆ
I
df =

ˆ b

a
f ′(x)dx.

But putting these together, we getˆ
∂I
ω = f(b) − f(a) =

ˆ b

a
f ′(x)dx

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Fund. Thm of Calc.

=
ˆ
I
dω.
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Hence, The Generalized Stokes’ Theorem is also just the Fundamental The-
orem of Calculus.

Put all of this together and one can easily see that Theorem 25.3, being
a dimensionless, and coordinate-less statement on a relationship between
quantities defined on a region and related quantities restricted to its bound-
ary, is just The Fundamental Theorem of Vector Calculus.
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