A Reinforcement Learning Model for Fear Reconsolidation and Exinction During
Dreaming

Wenjie Li (wenjieli@nyu.edu)
Courant Institute of Mathematical Sciences, New York University

Monika Dagar (md4676 @nyu.edu)
Courant Institute of Mathematical Sciences, New York University

Ziheng Chen (zc2068 @nyu.edu)

Finance and Risk Engineering Department, New York University

Abstract

We present a simulation of fear reconsolidation and extinction
in dream using reinforcement learning in the Pac-Man frame-
work. Our computational model is based on the hypothesis
that mismatches of memory units in dream facilitate regula-
tions of fear memories. We use experience replay in rein-
forcement learning to model the mechanism of hippocampal
replay during sleep. Our experiments show that fear regula-
tion in dream is possible, and the brain could smoothly switch
between fear reconsolidation and extinction in respond to envi-
ronmental changes via a dynamically updated mismatch prob-
ability.

Keywords: dream, reinforcement learning, experience replay,
hippocampal replay, fear extinction, emotion regulations

Introduction

Dreaming is important for learning and emotion regulations.
Researchers have found strong reactivation of communica-
tions between the hippocampus and the basolateral amygdala
in rodents during sleep, in correspondence with contextual
emotional memory consolidation. Nightmares make up a dis-
proportional amount of dreams in one’s life. These dreams
usually involve people’s everyday concerns, stresses, or trau-
mas. They are particularly frequent and prevalent in the psy-
chiatric population (Lin, 1992). PTSD patients have more
replicative flashback-like nightmares together with strong
amygdala activities, indicating activation of fear memories
in dreams. The functions and mechanisms of nightmares
are under scrutiny. Many studies suggest the utility in fear
emotion regulation, in particular with fear extinction learn-
ing (Tibor Bosse & Treur, 2013). During sleep, fear mem-
ories acquired during the day are replayed, and under some
boundary conditions, the brain may weaken or strengthen the
connection between fear stimulus and response. The mech-
anism of how this process is administered is under debate
(Van Izquierdo & Myskiw, 2016).

We propose a reinforcement learning model that simulates
fear reconsolidation and extinction learning in dreams. We
use the classical Pac-Man game as our basic framework, and
show how Pac-Man’s behaviors change after ”dreaming.” We
model the dreaming process with experience replay in rein-
forcement learning, where the replay episodes are sampled
from Pac-Man’s interactions with ghosts. Our experiments
show that replaying of fear memory help an agent regulate
fear reaction to better suit the change in environment, which

is shown to be beneficial for Pac-Man’s performances. Our
code is available in the GitHub repository. !

The remainder of this paper is structured as follows. In
Section 2, an overview is given about the psychology ba-
sis behind fear reconsolidation and extinction in nightmares.
Section 3 presents the implementation details of the Pac-Man
game, with dream related features. Section 4 shows our ex-
periments and results. Lastly, Section 5 discusses some re-
sults of the experiments that validate the model.

Background
Fear extinction and reconsolidation

Fear extinction is the decline in conditioned fear responses
(CR) when there is a reduction in the predictive value of the
conditioned stimulus (CS) as to the occurrence of the uncon-
ditioned stimulus (US). Losing fear is not the erasure of fear
memory. In fact, it is commonly believed as an inhibitory
learning process that disassociate the stimulus with the fear-
related consequences (Myers & Davis, 2007). The most fa-
mous behavioral experiment that demonstrates fear extinction
is Pavlov’s dog. When the animals realize a reinforcement is
no longer administered, a learned response (fear in this case)
fades away.

Fear reconsolidation, on the contrary, is a process that
strengthens the conditioned fear response and the stimulus.
Unlike fear extinction which can be initiated anytime after
the triggered learning event, fear reconsolidation can only be
formed in a brief time window after the latest training session.
Fear extinction and reconsolidation are commonly viewed as
two sides of the same coin. Their occurrence utilize the same
brain structure. It is believed that when a boundary condi-
tion is triggered, the brain can decide which course of actions
to follow — whether to strengthen or weaken a learned re-
sponse. However, it is unknown what the boundary condition
is. Some propose the presence and removal of the CS is what
triggers reconsolidation and extinction respectively, but it is
inapplicable in cases where the boundary between the onset
and offset of CS are vague (Van Izquierdo & Myskiw, 2016).
We will present a simplified model that allows the agent to
switch between fear extinction and reconsolidation. It will be
discussed later on in this report.

Thttps://github.com/wliwenjieli/dreamer



Unlikely Combinations Nightmares often involve events
that are bizarre and incompatible with wake-time experi-
ences. Sometimes they are in the form of mismatching com-
binations of events or subjects that are unlikely to happen to-
gether in everyday life. The occurrence of mismatches usu-
ally happens with major shift in emotions in dreams. To the
psychiatric population mismatches are more prevalent with
nightmares, as opposed to mundane dreams that are similar
to everyday activities. Some researchers find the aspect of
unlikely combination to be the key to fear extinction in night-
mares, though the details of how it happens are not well stud-
ied (Levin & Nielsen, 2007). In our project, we propose a
computational model that specifies how mismatching enables
fear extinction as well as reconsolidation. Specifically, our
hypothesis is that mismatching introduces a new non-aversive
outcome to a fear-eliciting cue that the agent has been previ-
ously conditioned to, and thereby forming a new conditioned
connection between the stimulus and a non-fear response in
place of the original fear response.

Hippocampal replay in reinforcement learning

It is recorded in multiple in situ experiments that in dreams,
multiple regions of brains are reactivated that mimic day-
time experience. Many cognitive neuroscience models de-
clare hippocampal replays during sleep to be a crucial step
for memory consolidation and learning. In replays, a men-
tal map of the environment is simulated to guide future de-
cisions by conducting both on-line and off-line explorations.
This prospect of hippocampal replay draws a parallel with re-
inforcement learning, where policy-making is learnt through
explorations. In particular, it shares a similar structure with
experience replay, which is a process often incorporated with
reinforcement learning to speed up learning by retraining an
agent with data sampled from the original dataset. Differ-
ent reinforcement learning replays may model different kinds
of hippocampal replays. In particular, the model-free family
of reinforcement learning algorithm enables optimization in
decision making through trial-and-error, which is similar to
on-line hippocampal replay. An example would be a mouse
trying to find the food reward at the end of a maze. When it
faces an intersection, the mouse explores the left path first and
return to explore the right path if the first try was unsuccess-
ful. The model-based approach on the other hand conducts
off-line learning where the benefit of a decision is calculated
before execution by knowledge of the model. In the same
maze scenario, the mouse would mentally calculate the re-
sults of going each direction with its knowledge of the model
and make a decision (Romain Cazé & Girard, 2018).

In most real-life scenario as well as in the Pac-Man game,
the environment is too complex to be modeled, and there-
fore a model-free algorithm is often more realistic with hu-
man decision-making. As a result, we choose approximate
Q-learning, a model-free approach, as the backbone of our
reinforcement learning algorithm.

SCORE: 302

Figure 1: Gridworld

Stimulation with the Pac-Man Game

We use the Pac-Man framework developed by the Berkeley
AI Lab 2. This open-sourced project contains the basic set-
up of a Pac-Man game, providing a perfect scaffolding for
testing Al models. In our set-up, we create a reinforcement
learning agent using approximate Q-learning and add an ex-
perience replay feature to model the dreaming process.

Basic set-up

Gridworld Gridworld is the environment where agents op-
erate in. It is a rectangular maze with walls and food
dots. Gridworld is a discrete world with each location rep-
resented by a state tuple s € {(x,y) : x =0,...,width,y =
0,...,height}. Figure 1 shows the Gridworld with one Pac-
Man agent and six ghost agents.

Agent There are two kinds of competing agents: Pac-
Man and ghosts.  The agents can make action a €
{east,south,west,north}. A move is possible when the re-
sulting new state s of the state-action pair (s,a) is not a wall.
Ghosts move randomly in the Gridworld and when they col-
lide with Pac-Man, the latter will be attacked and lose points
with probability P, (attack) where w € {war, peace} is the
mode of the environment. A Score variable measures Pac-
Man’s performance in the game. For Pac-Man, the goal of the
game is to maximize Score. Being attacked by a ghost makes
Pac-Man loses 200 points, eating a food dot allows Pac-Man
to gain 10 points, eating all the dots give Pac-Man another
200 points and the game finishes. In addition, Pac-Man loses
10 point for every time lapse it stays in an unfinished game.
Pac-Man knows the location of all the food dots. All agents
know the distance between themselves and the others. All
distance in the game is manhattan distance given by:

d=liy —i2|+|j1 — j2|

where (i, j») and (i, j») are the states two agents/food dots
locate at.

Policy-Making
In our reinforcement learning model, emotions are simplisti-
cally made binary: negative emotion associated with events

Zhttp://ai.berkeley.edu/project_overview.html



to be avoided and positive emotion related to rewards. More
specifically, the expected value of an action made by an agent
given the game state is determined by four features: fear of
immediate danger — the number of ghosts one step away, fear
of potential danger — the distance to the closest ghost, imme-
diate reward — there is a food dot at the location the agent
occupies, and potential reward — distance to the closest food
dot. We use approximate Q-learning to maintain and update
policy-making. Q-value Q(s,a) is a function of a state-action
pair that describes the expected reward for the rest of the
game when an agent take an action a from state s

O(s,a) =wy fi(s,a) +...+wafa(s,a) +wsb

where f; for i = 1,2,3, and 4 are the features variables de-
scribed above and b is a bias term. The goal of training is
to find appropriate weights w; that optimize Pac-Man’s be-
haviors to maximize its score. The following pseudocoe de-
scribes the optimization of the weights (Russell, 2010). Note
that o is the learning rate and 7 is a discount factor.

Initialize Q(s,a) arbitrarily

for each episode do

Initialize s

for each step in an episode do

Take action a and observe r, s’
O(s,a)
O(s,a) +ofr+ymax, Q(d',a") — O(s,a)]
s s
end

end

Memory Replay

Fear Memory Units Sampling We use a replay buffer to
store Pac-Man’s fear memory. Every time Pac-Man is at-
tacked by a ghost, three tuples (s,a,r,s’) recorded from two
steps before and up to the present attack are pushed into the
replay buffer. We will call the collection of these three tu-
ples an attack event. The fear memory buffer store all attack
events from the entire training process.

The purpose of choosing exactly three tuples to make up
a single event is for maintain the relative continuity of event
episodes and facilitate planning in advance. An event is made
no longer than three movements in order to model the fact
that complete episodic memories do not typically appear in
dreams. Rather, events are replayed as if fear memories were
reduced to basic units (Levin & Nielsen, 2007).

Mismatching Replay The replay session trains Pac-Man
with events randomly sampled from the replay buffer. Be-
fore training, the reward variable r in the last slice of an at-
tack event — the slice at the exact moment that the attack hap-
pen — is modified to create the mismatch effect. Specifically,
r = —200 with probability Pyjgnarch(attack) and r = 0 other-
wise, signifying Pac-Man is attacked by a ghost at a collision

Choose a at s using policy derived from the current Q

Pac-Man grows up in peace for 200 episodes...
A ghost attacks Pac-Man with probability @.2.
Average Score: 831

Pac-Man goes to war for 5 episodes...

A ghost attacks Pac-Mon with probability 1.

Average Score: -203

Pac-Man dreams at war camp...

A ghost attacks Pac-Man with probability ©.6.
Pac-Man wakes up and go to war for 5 episodes...
A ghost attacks Pac-Man with probability 1.
Average Score: -2

Figure 2: Performance in a fear consolidation scenario

Pac-Man at warzone for 200 episodes...

A ghost attacks Pac-Man with probability 1.

Average Score: -76

Pac-Man lives in a peaceful world for 5 episodes...
A ghost attacks Pac-Man with probability 0.2.
Average Score: 281

Pac-Man dreams about war time...

A ghost attacks Pac-Man with probability 0.6.

Pac-Man wakes up in a peaceful world for 5 episodes...
A ghost attacks Pac-Man with probability 0.2.

Average Score: 466

Figure 3: Performance in a fear extinction scenario

or not, respectively. We ignore the effects of other rewards
and penalties at this event because they are trivial comparing
to the points loss from an attack. Essentially, we regenerate
outcomes for a series of previously conditioned stimuli (col-
liding with ghosts) to achieve mismatch. The mismatch prob-
ability variable is dynamically sampled from the attack rate
of ghosts in the latest 10 episodes of game before the time
replay takes place.

Our hypothesis is that the mismatch probability determines
whether fear reconsolidation or extinction take place. We
believe the proportion of weights the reinforcement learning
algorithm assigns to features related to avoidance of ghosts
represents an intrinsic estimation of the probability of a ghost
attack given its presence at the moment. If before dreaming,
this probability is larger than P;gnarcn (attack), then Pac-Man
learns to be less scared of ghosts in the dream, resulting in
fear extinction, and vice versa. This agrees with the hypoth-
esis that fear reconsolidation and extinction are both adjust-
ments of fear reactions that can be interchangeable according
to the environments.

Experiments
Procedure

We construct a peaceful environment and a war environment
where a fear-eliciting cue is weakly and strongly presented,
respectively. This is achieved by modifying the probability of
attack when a ghost and Pac-Man collide. For our experiment
specifically, we set Ppeqce(attack) = 0.2 in the peaceful envi-
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Figure 4: Change of feature weights during the training of
a scenario of fear reconsolidation. Note: phase 1 the first
training session that familiarizes Pac-Man with an environ-
ment and phase 3 is the dreaming process. Phases 2 and 4 are
testing stages where change of feature weights do not apply.
Same for below.
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Figure 5: Change of feature weights during the training of a
scenario of fear extinction.

ronment and P, (aftack) = 1 at the war environment. All
other set-ups are the same for the two environments.

For fear reconsolidation simulation, we first train Pac-Man
in a peaceful environment for 200 episodes. Then we test Pac-
Man’s performance in a war environment for 5 episodes in
which Pac-Man is expected to perform poorly because it has
not learnt to avoid ghosts adequately. We will then train Pac-
Man with events sampled from the fear memory replay buffer
with mismatch probability sampled from the probability of
attack in the last 10 episodes. Finally, Pac-Man is tested in
the war environment again for 5 episodes. We expect Pac-
Man to develop more avoidanance behaviors towards ghosts
together with an improvement in Score after the replay.

Similarly, for fear extinction simulation, we train Pac-man
in a war environment for 200 episodes. Then we test Pac-
Man’s performance in a peaceful environment for 5 episodes
in which Pac-Man is expected to perform suboptimally be-
cause of its inaccurate estimation of harm (irrational fear)
from the ghosts. We train Pac-Man with events sampled
from the fear memory replay buffer with mismatch proba-
bility sampled from the probability of attack in the last 10
episodes. Finally, we test Pac-Man in a peaceful environ-
ment again for 5 episodes. We expect the algorithm to weigh
food-related reward features more and show improvement in
Pac-Man’s overall performance.

Results

For the fear reconsolidation experiment (see Figure 2), we
see a high performance with an average score of 831 in a
peaceful environment where Pac-Man'’s collision with a ghost
only results in 0.2 probability of attack. However, the lack
of avoidance behaviors towards ghosts results in poor perfor-
mance when Pac-Man is in a war environment where ghosts
attack Pac-Man more aggressively. The mismatch probabil-
ity at replay sampled the chance of attack in the previous 10
games, 5 of which are in war environments and the rest 5
in peace environments, resulting in Pysmarcn (attack) = 0.6.
Replaying attack events with this probability results in an im-
provement in performance from an average score of -203 to
-2 in the war environment. The plot for feature weights (see
Figure 5) shows an increased preference to avoid immediate
danger (#-of-ghosts-1-step-away). The motivation of eating
food (eats-food) decreases. The weights corresponding to the
distance to the closest food stays neutral throughout the en-
tire experiment. Surprisingly, the weights regarding distance
to the closest ghost changes sign during replay sessions.
With the fear extinction scenario (see Figure 3), we first
see a poor performance by Pac-Man in the war environments
due to overwhelming ghost attacks, resulting in an average
score of -76 in the most recent training sessions. When Pac-
Man is then tested in a peace environment, its performance
improves due to reduced ghost attacks. However, we see that
this performance is not optimal as we see an improvement in
performance after the replay process which trains Pac-Man
with old collision data with P,;sarch (attack) = 0.6. After the
replay, Pac-Man scores 466 in a peaceful environment with



185 points in improvement. In the weights plot (see Figure
3), we notice a slight increase regarding the features #-of-
ghosts-1-step-away, implying that Pac-Man does not react as
aversively towards immediate danger, though caution is still
presented. We also notice similar neutral weights associated
with the distance to the closest food, a slight decrease in in-
terest of eating food, as well as an interesting change of signs
of the weights with distance to closest ghost.

Discussion

Our framework shows a simplified model of fear reconsolida-
tion and extinction in dreams through mismatching fear mem-
ory replay. The experimental results show drastic changes in
motivation in immediate danger or rewards in both fear re-
consolidation and extinction scenarios. This result validates
that fear regulation through mismatching experience replays
is possible. Pac-Man’s responses to long-term reward and
danger stay relatively neutral during training, especially with
long-term reward, indicating a lack of consideration in deci-
sion making under the game context. Both long-term features
stay stable during phase 1 training. Interestingly, the weights
corresponding to the feature that describes Pac-Man’s dis-
tance to the closest ghost drastically decrease and change
signs during replay, implying that Pac-Man “prefers” to stay
close to ghosts. We suspect this is because in all sampled
scenarios in the replay buffer Pac-Man is either in a collision
with a ghost or about to have a collision with a ghost. In other
words, its distance to the closest ghost is rather small compar-
ing to the average scenarios. We are unsure how this aspect
deflates a fear of ghosts in a long-term perspective specif-
ically, but we believe they are related. More experiments
are required for validation and for understanding its potential
psychological implications.

In addition, our experiments show that fear reconsolida-
tion and extinction are two sides of the same coin. In both
the fear consolidation and fear extinction scenarios of our
experiments, the mismatching probabilities are the same —
Prismarcn(attack) = 0.6 as it sampled from the most recent
10 games. With the fear reconsolidation scenario, these 10
games consist of 5 games in the peaceful environment where
Pac-Man is used to and 5 games in the new war environment.
With the fear extinction scenario, they are 5 games with the
war environment which Pac-Man is used to as well as 5 games
with the new peaceful environment. Namely, the proportions
of war and peaceful environments in the short-term memo-
ries are the same for the two scenarios. However, the replays
in the two scenarios produce different effects: in the fear re-
consolidation scenario, Pac-Man develops more fear towards
ghost because the mismatch attack probability is higher rel-
ative to before the replay and vice versa. The dynamically
updating mismatch probability allows a smooth transition be-
tween fear reconsolidation and extinction in our model. This
discovery may shed light on how the brain decides which
course to take in fear regulations in response to the environ-
ment.

Limitations and Future Work

Our model is simplified to capture the dynamic relations
between fear reconsolidation and extinction via replays in
dream. A lot of other factors in the dreaming process are not
considered and should be looked at more comprehensively in
order to understand emotion regulations in the brain.

For future work, more experiments can be done with our
Pac-Man framework with replays. For example, we may cre-
ate a replay buffer that samples from ordinary memories in-
stead of only fear memory. In particular, with the Gridworld
environment, the consolidation of spatial memory in dreams
can be studied. We are also interested in seeing how multiple
replay session during training may affect Pac-Man’s perfor-
mances. Lastly, besides using forward replay, we could ex-
periment with backward replay or random replay, where tu-
ples in an event of the replay buffer are played backward start-
ing from the attack state, or random in time, respectively, in
reference to reverse replay in hippocampal place cells (Foster
& Wilson, 2006).
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