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1. Introduction
We present an approach for image classification with only
0.5% labeled training data as our final project to Deep Learn-
ing course in Spring 2021 at New York University. Our
approach utilizes unsupervised learning, pseudo-label itera-
tions, semi-supervised learning and active learning methods.
Our final result achieves 55.80% accuracy on the test dataset
with 0.5% labeled data and 57.19% accuracy on the test
dataset with requested additional 0.25% labeled data. Sec. 2
reviews related literature, Sec. 3 describes our methods in
details, and finally Sec. 4 presents an analysis of the model’s
performance.

2. Related Works
2.1. Unsupervised Learning Methods

Unsupervised learning exploits the information in unlabeled
data to regularize downstream supervised tasks. One re-
cent trend is to use discriminative approaches based on
contrastive learning, where embeddings from related im-
ages are optimized to be closer than embeddings from unre-
lated images. SimCLR (Chen et al., 2020a) maximizes the
agreement of representations under different data transfor-
mations. MoCo (He et al., 2020) maintains a ”momentum”
network to output negative examples. To reduce the require-
ment of large batch size, MoCo v2 (Chen et al., 2020c)
integrates two design principles in SimCLR into MoCo.
SimCLRv2 (Chen et al., 2020b) borrows the memory mech-
anism from MoCo, and exploits larger ResNets and deeper
projection head. Contrastive methods often require myri-
ads of negative examples, and hence large batch size (Chen
et al., 2020a) or extra memory (He et al., 2020). This raises
the question as to whether negative pairs are indispensable.

One way to learn representations without explicit negative
examples is to use clustering. SwAV (Caron et al., 2020)
replaces previous expensive feature comparisons with clus-
tering consistency among different views of the same image.
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The underlying assumption is that the representation of an
augmented view should be predictive of the representation
of another augmented view of the same image. Under this, a
concurrent work BYOL (Grill et al., 2020) distills the knowl-
edge from the target network to teach the online network.

The above paradigms i.e. contrastive learning, clustering
and distillation optimize a similarity maximization objec-
tive to avoid trivial solutions. As opposed, a very recent
work Barlow Twins (Zbontar et al., 2021) makes another at-
tempt at learning a redundancy reduction objective. Barlow
Twins constructs a cross-correlation matrix from the repre-
sentations of two different views of the same image while
encouraging this matrix to be diagonal. We utilize Barlow
Twins as our unsupervised feature embedding method.

2.2. Semi-supervised Learning Methods

Semi-supervised methods consider both an unsupervised
loss on a vast amount of data and a classification loss over a
few labeled data. The one that is closely related to ours is
Pseudo-labeling (Lee et al., 2013) where the class from the
maximum predicted probability is treated as the true label.
In Sec. 3.2 we detail the adaptation of this method.

Regarding large-scale semi-supervised training, (Yalniz
et al., 2019) employs a ranking strategy to teach the stu-
dent network with unlabeled images trained on the labeled
dataset. Temporal Ensembling (Laine & Aila, 2016) stores
an exponential moving average (EMA) of label predictions
on each training sample, which we find helpful to smooth
the model at the last stage of training. Instead of averaging
label predictions, Mean teacher (Tarvainen & Valpola, 2017)
takes the average of model weights.

To summarize, we adopt the pseudo-label selection protocol
from (Yalniz et al., 2019) and utilize FixMatch as our semi-
supervised learning method. In Sec. 3.3, we discuss these
methods in detail.

2.3. Active Learning

The key to active learning is to design precise query strate-
gies that select samples to maximize the classification accu-
racy at a given point. One direction Heterogeneity-Based
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Models learn the regions that show the greatest heterogene-
ity e.g. in terms of the uncertainty of classification (Sensoy
et al., 2018). In this regime, we use margin of confidence as
the uncertainty sampling method for active learning.

3. Methods
In this section, we introduce our method which combines
techniques from unsupervised learning, pseudo-label itera-
tions, semi-supervised learning, and active learning. Sec. 3.1
explains how to obtain feature embeddings from unsuper-
vised learning. Sec. 3.2 introduces a balanced pseudo-label
iteration approach which generates pseudo-label from unla-
beled data. Sec. 3.3 describes a method to further improve
the performance by consistency regularization with semi-
supervised learning. Sec. 3.4 shows our active learning
approach which selects extra samples to be labeled in order
to obtain higher accuracy. Last but not least, We discuss the
effect of test-time augmentation in Sec. 3.5.

3.1. Feature Embedding from Unsupervised Learning

We adopt Barlow Twins (Zbontar et al., 2021) to obtain a fea-
ture representation that is invariant to distortions of the input
samples. For each image, we create two distorted images by
applying different image transformations. We train a neural
network that produces feature representation ZA, ZB for
these two samples. The goal is to encourage the empirical
cross-correlation matrix between two representations from
different distortions to be an identity matrix. Specifically,
The loss function includes two parts: an invariance term and
a redundancy term.

`BT =
∑
i

(1− `ii)2 + λ
∑
i

∑
j 6=i

`2ij (1)

`ij =

∑
b z

A
b,iz

B
b,j√∑

b(z
A
b,i)

2
√∑

b(z
B
b,j)

2
(2)

The invariance term
∑
i(1− `ii)2 encourages the diagonal

element of the cross-correlation matrix ` to be 1, and the
redundancy reduction term

∑
i

∑
j 6=i `

2
ij encourages other

elements than the diagonal entries to be zero. Positive λ
controls the ratio between these two terms.

Without the need of negative samples, Barlow Twins learns a
meaningful feature embedding from unlabeled data. We use
the backbone of ResNet-50 with three 8192-dimensional
fully connected projection layers as the neural network. We
train the network for 1000 epochs with learning rate set to
0.5, λ = 0.0051, and the same data augmentation adopted
in the original paper.

After we obtained the feature embedding, we attach a fully
connected layer as the linear classifier behind the ResNet-50
backbone (without three projection layers), and we fine-

tune the network on the labeled training dataset with 0.5%
images. We use 0.05 for both learning rates of the back-
bone and the linear classifier, and train the network for 40
epochs with zero weight decay. This procedure obtains a
46.67% top-1 accuracy on the validation dataset with only
unsupervised learning.

3.2. Self-training with Pseudo-label Iterations

To further improve the performance, we apply a self-training
approach with pseudo-label iterations. The idea introduced
by (Yalniz et al., 2019) is to generate label-balanced pseudo-
labels which are consistent with the label-balanced training
dataset. We follow the same protocol and keep iterating the
process until the performance reaches a bottleneck. In our
setting, we have N = 512000 unlabeled data and C = 800
classes. For each iteration, we use the current best model to
predict the class distribution of each sample. We pick top-K
classes for each sample to obtain K × N pairs of images
and pseudo-labels. In this step, K pseudo-labels correspond
to each image. We choose P = 10 in this work. Next, we
pick top-P samples for each class to create P × C pairs of
images and pseudo-labels.

Ideally, if the model is trained well and P is less than the
minimum number of samples among all classes, each image
should only correspond to one pseudo-label. However, due
to the imperfect model and class imbalance, we should
expect to see some images correspond to multiple pseudo-
labels. To keep the quality of the pseudo-label, we set
P = 200, 300, 400, 500 for the total four iterations. The
more we train the model with pseudo-labels, the higher the
quality of the pseudo-labels generated by the model will be.

For the self-training of the pseudo-label iterations, we fine-
tune the current best model with selected pseudo-labels and
the labeled training dataset first, and we further finetune the
model with only the labeled training dataset. For both fine-
tune processes, we train the linear classifier from random
weights. The self-training with pseudo-label iterations gives
us a 5% boost on the top-1 accuracy which adds to a total
of 52.38% top-1 accuracy on the validation dataset.

3.3. Consistency Regularization of Semi-supervised
Learning

We apply FixMatch (Sohn et al., 2020), a semi-supervised
learning method to further improve the robustness of the
network. FixMatch generates label distributions from both
a weakly-augmented version and a strongly-augmented ver-
sion of the same image. It uses the class with the highest
prediction probability from the weakly-augmented version
as the pseudo-label and minimizes the cross entropy be-
tween the pseudo-label and the prediction from the strongly-
augmented version. During the training of FixMatch, we
take samples both from the labeled and unlabeled dataset.
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We use α(·),A(·) as the weakly and strongly transformation.
For the samples from the labeled training dataset, we use a
standard cross-entropy loss `s. pb is the ground-truth label,
ub is the sampled image, and pm(y|α(xb)) is the prediction
of weakly-augmented version of the image.

`s =
1

B

B∑
b=1

H(pb, pm(y|α(xb))) (3)

`u =
1

µB

µB∑
b=1

1(max(qb) ≥ r)H(q̂b, pm(y|A(ub))) (4)

For the unlabeled sample, we use the cross-entropy loss
`u. qb = pm(y|α(ub)) is the predicted class distribution
of the weakly-augmented version of the unlabeled image.
We use q̂b = argmax(qb) as the pseudo-label from the
weakly-augmented image.

We combine `s, `u into one loss `s + λu`u as the final loss
where λu is the positive hyper-parameter ratio between these
two losses. We train the network from the current best model
for 40 epochs with learning rate set to 0.01 and exponential
moving average with decay 0.999. Neesterov Momentum
optimizer with momentum 0.9 and cosine annealing learn-
ing rate scheduler is applied. In addition, we use RandAug-
ment with a random magnitude as the strong augmentation
and random horizontal flip as the weak augmentation. The
labeled dataset consists of the labeled training dataset and
(K = 10, P = 16) pseudo-labels from Sec. 3.2; the unla-
beled dataset includes all N − (P × C) unlabeled images.
We obtain 54.46% top-1 accuracy on the validation dataset
after training with the semi-supervising approach FixMatch.

3.4. Active Learning

In order to compile a request for additional (0.25%) labels,
we combine uncertainty sampling and diversity sampling.
Our diversity sampling method makes use of cluster-based
sampling. We use K-Means clustering with cosine similarity.
We select the clustering number as 200 because from our ob-
servation, there are in total of 800 categories in the dataset,
many of which are similar to each other. Although some
categories do not have repetitive categories, categories that
belong to a higher level category should also be grouped.
We use the embedding trained in the unsupervised learning
process as the feature of each sample and apply the K-means
algorithm. After grouping 512,000 samples into 200 clus-
ters, we select 64 samples based on the uncertainty sampling
method: Margin of Confidence sampling, an approach that
utilizes the difference between the two most confident pre-
dictions, is chosen as the uncertainty sampling method. We
use FixMatch to finetune the current best model with labeled
training dataset and the additional extra label (0.75% data)
to obtain 56.07% top-1 accuracy on the validation dataset.

Table 1. Effect of multi-scale test-time augmentation on the valida-
tion dataset.

LABELED DATA TOP-1 W/O. TTA TOP-1 W. TTA

0.5% DATA 54.56% 56.02%
0.75% DATA 56.07% 57.54%

Table 2. Ablation Study on the validation dataset

MODEL TOP-1

UNSUPERVISED LEARNING 46.57%
PSEUDO-LABEL ITERATIONS 52.38%
SEMI-SUPERVISED LEARNING 54.46%
ACTIVE LEARNING 56.07%
TEST-TIME AUGMENTATION 57.54%

3.5. Test-time Augmentation

As the last step, we use multi-scale inference test-time aug-
mentation to boost the performance of the network. We
average the prediction distribution of the three scales of
model inference, (96× 96), (144× 144), and (192× 192),
to obtain the final prediction. The effect of the test-time
augmentation is analyzed in Tab. 1.

4. Evaluation
4.1. Ablation Study

Tab. 2 shows the Top-1 accuracy of each step. The largest
improvement comes from self-training with pseudo-label
iterations. Since the active learning task is based on a sub-
optimal model with only 18% accuracy in order to meet the
label request deadline, it does not improve the model by
a large margin. We also show the Top-1 accuracy of our
method on the test dataset in Tab. 3 which outperforms the
runner-up team by 6.5%.

4.2. Effect of the Amount of Pseudo-label

In order to choose a suitable set of pseudo-labels, we ap-
ply the following procedure: our best model generates the
top K = 10 most probable labels for each sample. For
each label, P number of samples with highest probabilities
are selected from the pool of 10× 512, 000 samples gener-
ated from the above-mentioned method. We argue that the
less duplicates labels there are i.e. an image being sampled
to more than one label, the more confident the classifica-
tion is. We conduct this experiments with the best model.
When P = 300, there are 22 cases of duplicate labels,
making up less than 0.01% of all selected samples; when
P = 400, 500, and 625, the number of duplicate labels
rise to 845(00.27%), 8, 043(2.02%), and 44, 570(8.91%),
respectively. Hence we conclude that P ∈ [300, 400] is a
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Table 3. Top-1 accuracy on the test dataset.

MODEL TOP-1 (%)

0.5% DATA 55.08%
0.75% DATA 57.19%

Table 4. Ablation Study of Pseudo-label Iterations on validation.

ITERATION P TOP-1

1 200 47.91%
2 300 47.98%
3 400 51.53%
4 500 52.38%

good borderline for choosing pseudo-labels. In the early
training stage with pseudo-labels, we use a smaller P num-
ber since the model is not confident, and we increase P
to include more pseudo-labels incrementally at each train-
ing iteration. The result of training at each iteration with
incremental P value is shown in Tab. 4

4.3. Learning Rate Searching

Considering that the linear classifier is prone to overfit-
ting, we test the performances of different combinations of
backbone and classifier learning rates besides the chosen
(0.05, 0.05) during the training process. The result is shown
in Tab. 5. Increasing the classifier learning rate will lead to
longer convergence time whereas a lower classifier learning
rate leads to local convergence at an early stage of training.
We conclude that the original choice is optimal. The use of
weight decay does not show a significant improvement.

4.4. Feature Map Visualization

Given the input dog image, we visualize feature maps of the
last layer within each residual block of ResNet-50 across
different models in Fig. 1. As the model becomes more
advanced, the feature maps are sparser implying more reg-
ularization. This is especially true when the model flows
to higher layers, where global features are captured are
captured from the perspective of semantics. We observe
that feature maps of advanced models are more focused on
key parts of the dog e.g. smooth hair, small head, and legs,
whereas feature maps from Barlow Twins have activations
all over the entire image region. This indicates that the
inclusion of pseudo-labels and FixMatch is conducive to
attaining clearer and more distinctive features, which the
baseline model has difficulty achieving.

Table 5. Top-1 accuracy with combinations of different backbone
and classifier learning rates, weight decay = 1.5 when applicable.

LR-BACKBONE LR-CLASSIFIER TOP-1 TOP-1
W/O. WD W. WD

0.03 0.05 48.59% 48.63%
0.01 0.03 48.46% 48.60%
0.01 0.05 48.11% 48.04%
0.005 0.01 48.27% 48.73%
0.005 0.03 47.76% 47.89%
0.005 0.05 47.36% 47.26%
0.003 0.005 47.46% 47.25%
0.003 0.01 47.95% 47.86%
0.003 0.03 47.29% 47.37%
0.003 0.05 46.74% 46.48%
0.001 0.003 44.55% 44.98%
0.001 0.005 45.98% 46.09%
0.001 0.01 46.78% 46.71%
0.001 0.03 46.16% 46.40%
0.001 0.05 45.61% 45.59%

Figure 1. Feature map visualization. A randomly chosen subset
of features from different models (Row 1-3) are selected from
the last layer within each residual block {2, 3, 4, 5} of ResNet-50.
(Col 2-5) . Notice the feature grid becomes sparser as the model
becomes more advanced compared to the Barlow Twins baseline.

4.5. Analysis of Successful and Failed classifications

We observe the top 625 images with highest probabilities
by our model for all 800 classes and manually assign ac-
curacy scores based on human impression. In Fig. 2, we
demonstrate the classification results of two classes with
the highest accuracy and two with the lowest. Classes of
category that are rich in the dataset, such as all the classes
with specific dog breeds, share high accuracy. On the other
hand, classes whose key features occupy a small proportion
of pixels in the samples often have lower accuracy. We
also notice low accuracy caused by class imbalance in the
dataset, which is evident by a drastic increase in error rate
among images with lower probability ratings. For example
in the sewing machine class, the model achieves high accu-
racy in the best 100 predictions but its performance quickly
decreases after the top 400 marks.



Submission and Formatting Instructions for ICML 2021

Figure 2. Examples of images collected by our procedure to
demonstrate correct and incorrect labeling

5. Conclusion
In this report, we present a semi-supervised learning method
that won the final competition of the Deep Learning Course
SP21 edition at NYU. Our approach utilizes unsupervised
learning, pseudo-label iterations, semi-supervised learning,
and active learning jointly, achieving a 55.80% accuracy
when trained with 0.5% labeled data and 57.19% with ad-
ditional 0.25% labels. This promising result validates the
effectiveness of the SOTA methods from different machine
learning research areas and shows the importance to com-
bine diverse methods in order to solve practical problems.
For future work, the method we propose can be simplified
and combined into a unified semi-supervised architecture by
introducing novel loss functions and self-training iterations.
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