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Abstract

Preverbal infants have remarkable abilities to understand others’ intentions, goals,
and social affiliations, which lay the groundwork for complex cognitive and lan-
guage development, crucial for navigating the intricacies of human social dynamics
throughout life. In contrast, recent development in Artificial Intelligence systems
are often designed to emulate human-like behaviors by extracting common sense
knowledge from language or sensory data. Despite their impressive performance
in many aspects, they fail to recover some foundational theory of mind capacities
found in early infancy. This discrepancy highlights critical gap to create AI that
understands humans and think like humans. To address this, we introduce a suite
of theory of mind tasks drawn from studies of infants social cognition. This work
is an extension of our prior work Baby Intuition Benchmark (BIB), Expanding on
our prior work the Baby Intuition Benchmark (BIB), a suite of theory of mind tasks
drawn from infant studies, to challenge AI systems to understand others’ goals
and social affiliations, enriching Baby Intuition Benchmark, our prior benchmark
focusing on reasoning about other goal-driven agents. We evaluate both bench-
marks using a Transformer model trained with a self-supervised learning paradigm.
The model shows improved performance over existing baselines, elevating the
upper-bound of deep learning models’ capacities in causal and object-oriented
reasoning. However, it still demonstrates limitations of AI to represent others’
mental states, underscoring the challenges in achieving human-like theory of mind
reasoning in AI.

1 Introduction

Human communication, collaboration, and learning are deeply rooted in our ability to understand
and interpret the minds of others. This fundamental capacity underpins every aspect of our social
interactions and intellectual growth, forming the cornerstone of our collective and individual experi-
ences. (Astington and Pelletier, 1996; Krych-Appelbaum et al., 2007; Resches and Pereira, 2007).
Preverbal infants, despite their limited experience in the world, demonstrate remarkable proficiency
in inferring the mental states and social affiliations of other individuals (Woodward, Sommerville,
Powell, years?). In contrast, deep learning systems frequently struggle with basic social reasoning
tasks, stemming from a lack of inductive biases essential for understanding other agents (Gandhi
et al.,2021; Stojnic et al., 2023; Lake et al.,2017; Marcus and Davis, 2019). Often, these systems
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resort to pattern matching in others’ actions, neglecting to infer the underlying goals, preferences,
and social affiliations of other individuals. Predominantly, modern deep learning architectures and
training paradigms, particularly those focused on supervised learning, tend to treat behavioral data
as mere classification problems, thus overlooking the more nuanced signals present in latent mental
states (image classification, Kinetics, Something-Something, autonomous vehicle). The recent advent
of large language models has demonstrated major strides in achieving human-level intelligence
by extracting semantic information from vast language data (citation, gpt4 report?). However, the
representations and predictions of these models are not robust to classic theory of mind tasks (Ullman,
2023; other theory of mind llm paper) demonstrating a failure of these models to truly reason about
others like humans do. In contrast, infants, with exposure to much less data, display flexible, sensitive,
and robust theory of mind capabilities. By starting from infants’ small knowledge repertoire, we can
begin to identify the foundational building blocks and inductive biases essential for the development
of versatile social reasoning skills, highlighting key elements missing in current AI development.

Initial steps have been taken to bridge the gap between Artificial Intelligence (AI) systems and
infant social cognition (Ghandi et al., 2021; Shu et al., 2021). The Baby Intuition Benchmark (BIB)
introduces a suite of six tasks to assess understanding and inferences of others’ goals, preferences, and
mental states in infants and machines. These tasks evaluate whether infants or machines understand
agents are driven by goal objects instead of goal locations (Woodward); they navigate and use efficient
actions to reach goals; different agents may have different goals; and sometimes intermediate goals
and instrumental actions are taken to reach the final goals. Published concurrently, AGENT offers a
similar benchmark with a set of complementary tasks about comprehension of goal-directed agents.
However, these existing benchmarks omitted a broad range of cognitive abilities, which we sort to
expand in this work. The tasks we introduce are more complex and cognitively demanding, often
requiring tracking of multiple agents’ mental states or identifying different types of visually similar
passive, goal-directed, or socially affiliated entities. These capacities emerge in later developmental
stages and and thus we expect the new benchmark to be more challenging and demanding for both
infants and machines.

Figure 1: Existing tasks in Baby Intuition Benchmark. Figure credit to Stojni et al., 2023

To initiate the first step towards aligning machine theory of mind with that of infants, we employ
a state-of-the-art Transformer model (Vaswani et al., 2017) as a baseline for the benchmarks. The
model is trained in a self-supervised paradigm to perform a next-frame prediction task. Using no
artificial labels, we hope to emulate the data availability in humans’ day-to-day world.

2 An Infant-Inspired Benchmark for Machine Social Cognition

As an expansion of BIB (Kanishk et al., 2022), our new tasks continue the same format, using videos
of geometric shapes moving in a grid-world environment (Heider and Simmel, 1944). It is shown
that infants and adults can attribute animacy to simple geometric shapes based on behavioral cues
alone. We employ this approach for its efficiency in task generation and its abstraction from real-life
agents. This choice streamlines the engineering process for creating thousands of videos to train and
test models, and eliminates the vision challenges of machine understanding of naturalistic scenes,
thereby focusing on the machines’ ability to learn higher-level cognitive functions. It also requires
the machines to learn a flexible mental representation of the events in the scene to succeed at each
task. instead of relying on low-level perceptual cues.

2



To facilitate a direct comparison between machine learning models and infants in laboratory settings,
like BIB, the social cognition tasks are designed within the Violation-of-Expectation (VOE) paradigm,
a classic method in developmental psychology experiments. Each task is structured into nine trials
within the same environment. The initial eight trials act as a familiarization phase, designed to set up
an expectation, consistently sampling from the same statistical distribution, followed by either an
expected test trial or an unexpected test trial. Despite being perceptually similar, these conditions
represent distinct concepts that align or conflict with the familiarization trials, ensuring that task
completion hinges on a deep conceptual understanding rather than mere pattern recognition. In
developmental studies, infants’ looking times to either test trial are evaluated. If they’ve understood
the familiarization trials, infants will look longer at unexpected events. We can similarly test machines’
"expectations" by having them make predictions at test, and comparing these predictions to both the
expected and unexpected test trials.

We present five new tasks focusing on 1) imitation, 2) social approach, 3) helper/hinderer, 4) true/false
belief, and 5) goal attribution, each of which consists of 4000 videos. The first four tasks evaluate an
observer’s ability to deduce social affiliations by identifying actions of imitation, help, or hindrance
among social partners. The Goal Attribution task examines whether infants or machines can discern
goals attributed to agents as opposed to inanimate objects, offering key insights into whether simple
geometric shapes are effectively perceived as distinct entities based on their movement patterns. The
following sections will provide detailed insights into each task, delineating their structure, execution
process, and the criteria that define successful completion

2.1 Inferring Social Affiliation From Social Imitation

Can an AI system infer that an agent will approach and, therefore affiliate with, another agent whose
behavior it socially imitates, but not when its imitative actions are required to reach an instrumental
goal?

Figure 2: Imitation

Developmental Background. Infants expect an agent to approach and affiliate with others it
imitates. Research by Powell & Spelke (2018) demonstrated that infants as young as 4 months expect
imitators to approach, and therefore affiliate with, those whose sounds they imitate. Pilot research
by Powell & Spelke et al. (2014) has shown that infants as young as 7.5 month olds were surprised
by group-inconsistent actions only when those actions were non-causal. When the actions caused
members of a social group to make contact with a goal object, which changed color upon contact,
infants did not consider the action to be group-inconsistent. Other research has demonstrated that
older infants, when imitating others, can distinguish between others’ social and instrumental actions
(Gergely et al., 2002; Carpenter et al., 2005; Powell, 2021) suggesting that pure social imitation,
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as opposed to goal-driven behavior, does not directly serve the agent’s own goals, thus eliciting
a stronger social preference. Can AI systems distinguish between purely social and instrumental
actions, associating only the former with social affiliation?

Familiarization Trials. In this task, we contrast conditions of social and instrumental imitation.
Each condition involves two target agents, and a goal object. The target agents each exhibit a
unique movement pattern (e.g. going down and to the right, or going up and to the left), with one
demonstrating this pattern at the start of each trial. The imitating agent then replicates the movement
pattern (going down and to the right) of one of the target agents. In the social condition, the imitating
agent has sufficient space to mimic either target without otherwise engaging with objects of obstacles
in the environment. In the instrumental condition, a goal object is placed at the end of the imitating
agent’s path, with obstacles arranged such that the chosen movement pattern is the only efficient
way to reach the goal. The goal object changes color upon contact, signifying the causal effect of
the approaching action (Liu, 2019). To maintain visual consistency between conditions, the same
goal object is positioned in the same location, but the positions of the agents are shifted in the social
condition such that the goal object is off of the trajectory of the imitating agent.

Test Trials. In the test trials, the goal object is removed. The imitating agent either approaches the
target agent it imitates during familiarization (expected in the social condition, no specific expectation
in the instrumental condition) or the one it does not imitate (unexpected in the social condition, no
specific expectation in the instrumental condition). The observer is deemed successful if it assigns a
higher probability a) for the imitator to approach the agent it imitated in the social condition compared
to the instrumental condition, or b) for the instrumentally imitative agent rather than the socially
imitative agent to approach the agent that was not imitated.

2.2 Predicting Imitation From Social Affiliation

Does an AI system expect an agent to socially imitates the actions of those it socially affiliates with?

Figure 3: Social Approach

Developmental Background. Infants anticipate that members of the same social group will exhibit
similar behaviors. In research by Powell and Spelke (2013), 8-month-old infants observed two
groups of visually similar geometric figures maintaining proximity and performing circular "dance"
movements within their respective groups. Notably, infants showed surprise when an individual
aligned its movements with a member of the opposite group rather than conforming to the dance of
its own group. Further experiments revealed that infants held the same expectations for agents from
the same social group even if they looked visually distinct.
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Familiarization Trials. An agent consistently approaches one of two target agents (blue triangle in
(a) or green square in (b) )across trials to establish social affiliation.

Test Trials. In the test trial, the two target agents each display a unique movement pattern. After
sequential demonstrations of these patterns at the trial’s outset, the imitating agent adopts the
movement pattern of one of the target agents. There are two distinct conditions: In the instrumental
condition, a target object and obstacles are strategically placed near the imitated agent, making its
movement pattern the only efficient path to the target object. Here, observers should have no particular
expectation regarding which target agent the imitator mimics, as any similarity in actions could be
coincidental, stemming from the agent’s goal-driven behavior (both test trials have no expectation).
Conversely, in the social condition, the agent has the freedom to imitate either target agent and it
is therefore expected when it mimics the agent it previously affiliated with and unexpected when it
mimics the agent it did not previously affiliate with.

2.3 Inferring social preference to helpers over hinderers

Can an AI system infer that a goal-driven agent has a social preference for another agent who helps it
achieve its goal over another agent who hinders it?

Developmental Background. In a 2007 empirical report, Hamlin, Wynn, and Bloom provided
the first evidence that preverbal infants at 6 and at 10 months of age evaluate others on the basis
of their helpful and unhelpful actions toward unknown third parties. In their “hill paradigm,” a
Climber puppet tried but failed to climb a steep hill, and was alternately bumped up the hill by the
Helper and bumped down the hill by the Hinderer. After being habituated to these events, both 10-
and 6-month-olds selectively reached for the Helper over the Hinderer. Research by Premack and
Premack (1997) demonstrated that 12 month old infants can distinguish between socially negative
and positive actions carried about by agents represented as simple 2D shapes. Further research as
demonstrated that infants as young as 3 months old preferentially reach for a helper, who helps a
climber reach its goal of climbing up a hill compared to a hinderer, who pushes the climber down
the hill (Hamlin et al., 2010; Hamlin et al., 2007; Hamlin, 2015). These results have been replicated
in multiple scenarios (Hamlin and Wynn, 2011; Hamlin et al., 2013). Infants also expect the agent
being helped to approach the helper over the hinderer (Fawcett & Liskowski, 2012; Lee & Song,
2014; Kuhlmeier et al., 2003).

Familiarization Trials. The setting involves three agents positioned at the lower half of the
environment, with the upper side divided by a wall into two separate rooms. A goal object appears
alternately in one of these rooms in each trial. During the first four trials, two agents observe a third
agent moving towards the goal object, which changes color upon contact. In the final four trials, a
red barrier emerges, obstructing the entrance to one of the rooms. If the barrier blocks the room
containing the goal object, one agent consistently moves the wall to the opposite side, allowing the
agent with the previously demonstrated goal preference to access the room. In contrast, during other
trials, a different agent shifts the wall to prevent the goal-oriented agent from entering the room.

Test Trials. In the expected trial, the goal-oriented agent approaches the agent who helped by
moving the wall (the helping agent). Conversely, in the unexpected trial, it approaches the agent who
moved the wall to hinder its progress (the hindering agent).

2.4 Goal Attribution

Can AI or infants attribute goal preference to an element that reaches its goal with self-propelled
motion, and not to an element who starts moving after contact with a moving object? Besides probing
AI’s understanding of causal relationships and agency, this task also further validates that the simple
geometric shapes in the tasks indeed elicits animacy.

Developmental Background. Research indicates exhibition of self-propelled motions to be key
defining features of agency (Cicchino Rakison, 2008); agents have goals and preferences for said
goal (Woodward, 1998); and agents move rationally and efficiently towards their goal (Csibra et
al., 1999). Infants can readily distinguish between agents and objects and can encode an agent’s
preference for an object (Woodward, 1998). When an element is consistently pushed toward a target
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Figure 4: goal attribution

object by a mechanical spinner, can AI systems or infants distinguish that the element’s consistent
contact with the target is incidental, not a result of its own volition?

Familiarization Trials. The familiarization trials is comprised of a constantly rotating mechanical
spinner, an ambiguous element potentially acting as a goal-driven agent or passive object, and two
static target objects. Two conditions are presented: in the non-agent condition, the element begins
moving after contact with the spinner, in a direction perpendicular to the spinner’s arm at the point of
contact; in the agent condition, the element, positioned a short distance from the spinner, initiates its
own movement. In both scenarios, the element moves straight until colliding with one of the target
objects, both of which change color upon impact. The element consistently collides with the same
target object at a similar location in each episode. A gray square under the spinner ensures visual
consistency between familiarization and test trials.

Test Trials. In the test trials, the target objects’ locations are switched. A gray square partially
covers the spinner to obscure the element’s initial position, ensuring ambiguity in its movement
cause. The spinner’s starting rotation degree is averaged from both familiarization scenarios. These
adjustments create uncertainty about whether the element’s movement is due to spinner contact,
relying on prior familiarization for agency inference. Shortly after each test trial begins, the element
emerges from behind the occluder, moving straight towards either the familiar target object now in a
new location (expected in the agent condition, no specific expectation in the non-agent condition),
or a different target object in the same quadrant it previously approached (unexpected in the agent
condition, no specific expectation in the non-agent condition). Successful AI prediction involves
anticipating that the element in the agent condition will pursue the same target object, even in a new
location, or finding it less expected for the agent-condition

2.5 Background Training Set

Despite being new to the world, infants bring innate or acquired knowledge to complete the de-
velopmental tasks, unlike data-driven deep learning systems which start with limited biases. We
craft a background training set to offer machines a generous learning opportunity. This set serves
two purposes: firstly, to familiarize machines with the basic setup of the grid world environment
and task elements, like the visual features of geometric figures and the structure of each trial. This
foundational understanding is essential but not part of the test criteria. Secondly, the set aims to
provide a rich environment for learning theory of mind concepts crucial for solving the evaluation
tasks, such as understanding that an agent can’t pass through an obstacle, it can initiate movement
towards a goal, or imitate its social partners.
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Like the evaluation set, each background training episode includes 8 familiarization trials followed
by 1 test trial. Notably, similar to infants’ experiences, there are no negative examples in the training
set. While it’s challenging to match the complexity of infants’ real-world experiences, we believe
this training set offers a reasonable foundation for meaningful comparison. We acknowledge that
additional training may enhance machine performance.

No-Navigation Preference Task An agent consistently approaches one of two nearby target objects,
with their locations varying across trials to indicate object-based, not location-based, goals. Both
objects change color upon contact, providing an extra cue for goal-approach behavior and helping
machines and infants to differentiate it from social approach behavior. The travel distance is shorter
than in evaluation tasks to prevent pattern replication.

Contact causation without navigation A rotating spinner propels a passive entity towards one
of two nearby target objects, both changing color upon contact. The target object approached may
vary within an episode based on the spinner’s initial rotation and the element’s relative position,
demonstrating that movement influenced by another object does not indicate preference.

Single Object Task An agent navigates around obstacles to efficiently reach the sole target object,
which changes color upon contact. This setup helps machines learn about obstacle navigation and
goal pursuit. Some episodes include a non-interfering spinner to prevent associating its presence with
the absence of agency. Occasionally, the agent returns to its starting position post-interaction.

Contact causation with single object A rotating spinner initiates movement in a static element,
propelling it in a straight line until it encounters a wall or target object. This teaches that contact with
a moving object can trigger directional movement in a stationary element.

Social Imitation Task During familiarization, two agents sequentially exhibit unique movement
patterns, followed by a third agent mimicking the pattern of one it consistently aligns with. The test
trial involves the imitating agent approaching its previously mimicked partner. This task differs from
the social condition in evaluation: there’s no goal object, the "dance" patterns are unique, and both
target agents demonstrate their moves in each trial, unlike the alternating pattern in evaluation trials.

Imitative Goal Approach Three agents and a goal object are present. During familiarization,
one of two model agents moves uniquely without interacting with the goal object. The main agent
then mimics this movement, incidentally contacting the goal object, which changes color. The main
agent’s path is the only efficient route to the goal due to environmental obstacles. At query, the main
agent approaches the goal object, indicating that matching movement trajectories can be coincidental
and do not necessarily imply social affiliation.

Helper/Hinder task This tasks employs the same environment as the helper/hinderer task in
evaluation. However, the locations of the main agent and the goal object are swapped. So instead
of (un)blocking a small room containing the goal object to let (prevent) the goal-seeking agent in,
during training the helper (hinderer) (un)blocks the small room to let (prevent) the agent into the
bigger room where the goal object is.

True/False belief task Like its evaluation counterpart, this task is consisted of 8 familiarization
trials where an agent consistently going back to a room where it last saw a goal object. At test time, a
different agent appear and move the goal object around within the same room with or without the
agent’s presence. The agent is then shown to go back to the same room to retrieve the goal object.

Occlusion by observers A gray square appears in random grid world locations. Initially, it is
part of the background, allowing full visibility. In the test, it occludes elements in the same space,
familiarizing machines with occlusion use in tasks and teaching them that occluded objects don’t
disappear. The occluder is utilized in all background training sets but isn’t shown in earlier figures to
provide an unobstructed view of the task setups.
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3 Baseline Model

We use a Transformer Encoder-Decoder model as a baseline for the social cognition tasks. This model
is selected for its proficiency in modeling sequential data and because of its ability to separately
process two streams of data, making it a convenient pipeline for the familiarization-testing scheme.
The primary training objective of our model is to predict the subsequent frame in the test trial given
the preceding frames and the familiarization trials. By focusing on next-frame prediction, we aim to
develop a model that understands temporal-spatial continuities and causal relationships. Accurate
prediction of the next frame requires the model to utilize concepts of intuitive physics and psychology
to understand the dynamics between agents and objects, effectively mimicking infant-like reasoning
and prediction during a VOE-style experiment.

Figure 5: model architecture

During data preparation, each video is segmented into nine trials, from where two trials are randomly
sampled at training time: one for familiarization and the other for testing. The encoder processes
the familiarization trial, capturing the context for downstream prediction. The decoder processes the
frames in the test trial in an auto-regressive manner, combining understanding of the previous frames
and the output of the encoder to predict the next frame. Video frames are first sampled at a stride
of 6 with a maximal sequence length of 40. In order to maintain temporal resolution and to fit the
complete video, we further perform random token dropping which removes 62.5% frames, resulting
in a maximum of 15 frames per video. The same token dropping procedure is also performed on
the right-shifted target, so the target frame is always a stride of 6 frames away from the last decoder
input, even if it is not the relative next frame in the input sequence after random token dropping.
Furthermore, each frame is resized to 84 x 84 pixels, and split into 49 patches of 12 x 12 pixels,
each with sinusoidal positional encoding consistent with their relative positions in the original video.
We use a 128-dimensional embedding space, 8 attention heads, and 5 layers each in the encoder
and decoder, balancing processing efficiency and model performance. We use mean square error to
estimate training loss. The model is trained on 2 A100 GPUs for a week with a batch size of 48, with
learning rate 1e-4, and weight decay of 1e-4.

During evaluation, we pair each of the eight familiarization trials with the test trial and take average
of next frame prediction errors. A prediction is correct if the prediction loss is lower on the expected
condition of a task than on the unexpected condition. While a model on all BIB1 and BIB2 task is
still under training, we will present preliminary training results on a model of all BIB1 task and the
goal attribution task in BIB2. These tasks are paired together because of similar video lengths and
relevant cognitive functions tested.
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Task Name BC-MLP BC-RNN Video-RNN HBToM VT Transformer (NEW)

Preference 26.3 48.3 47.6 99.7 82.1 72.0

Multi-Agent 48.7 48.2 50.3 99.2 49.1 –

Inaccessible Goal 73.3 80.7 71.8 99.7 89.8 90.0

Efficiency – Path 94.0 92.8 99.2 94.9 97.3 97.3

Efficiency – Time 99.1 99.1 99.9 97.2 99.8 100.0

Efficiency – Irrational Agent 73.3 55.7 50.1 96.6 29.5 48.9

Instrumental: No Barrier 98.8 98.8 99.7 98.8 98.7 100.0

Instrumental: Inconsequential Barrier 55.2 78.2 77.0 97.0 96.9 95.8

Instrumental: Blocking Barrier 47.2 56.6 62.5 99.7 82.1 18.0

Goal Attribution – – – – – 83.7

Privileged Information BC-MLP BC-RNN Video-RNN HBToM VT Transformer (NEW)
Environment meta-data
(element type, coordinates, etc.) x x x x

Built-in inductive biases x

4 Discussion

Continuing the work in Baby Intuition Benchmark (BIB), which directly compares the capacities of
infants and machines to infer others’ goals, preferences, and intentions, we introduce a suite of social
cognition tasks that encompasses more complex theory of mind reasoning. For example, can AI
systems understand members of the same social groups act alike, such as inference of social affiliations
and goal attributions. We construct the benchmark in the format of the Violation-of-Expectation
paradigm, a classical experiment setting in experiment research, enabling direct comparisons between
infants and machines. These benchmarks create valuable opportunities towards developing Artificial
Intelligence systems with human-like theory of mind capacities, by identifying and modeling the
fundamental cognitive building blocks present in the minds of preverbal infants.

We explore the social cognition tasks along with all BIB tasks with a Transformer model trained
with a self-supervised learning paradigm. The non-task specific architecture and training procedure
provide a pipeline for future modeling work of developmental experiments with VOE paradigm. This
is by far the best performing model trained with no oracle signals or labels (insert table from research
log, table description explain why this is the case). It performs better than BIB1 baselines on a few
tasks. Notably, it achieves 80% accuracy in the preference task, identifying that other agents have
goal objects, instead of goal locations, which all BC, offlineRL, and RNN struggled with in BIB1. It
shows interesting performances on the set of instrumental action tasks, with perfect performance on
no barrier or inconsequential barrier. Further examination reveals that the model succeed in these
tasks trivially. These two tasks require the model to identify that retrieval of the key, an intermediate
goal, is only instrumental when all paths leading to the goal is obstructed by a green wall which can
be unlocked by the key. An agent is expected to directly approach the goal instead of the key if the
green wall is not present or present but do not obstruct the goal. Our Transformer model correctly
ignore the goal, but further examinations reveal that the model never learns to approach the goal
in the background training set because the key is positioned very close to the agent and thus the
short approaching action is omitted with a coarse sampling procedure. Our ongoing work focuses on
finding solutions to model the benchmarks with finer temporal resolution with limited computational
resources, potentially through longer training time or more aggressive random token dropping.

BIB, AGENT, and other intuitive psychology benchmarks has fostered the development of many new
models for commonsense reasoning. Existing models fall into two categories: structured Bayesian
models, such as BIPaCK and HBToM in AGENT and deep learning models, such as (RNN- or
MLP-based) Behavioral-Cloning, Video RNN in BIB (Ghandi, 2021). As AI systems, probabilistic
models often exceed or match human performance on benchmarks, but they rely on task-specific,
hand-engineered inductive biases and features (BIPaCK, HBToM). On the other hand, deep learning
models adopt an end-to-end approach, offering greater robustness in noisy environments. However,
they are data-intensive and generally underperform when confronted with out-of-distribution signals,
as evidenced in an attention-based model (VT, workshop paper) and other baseline models of
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BIB1. From a cognitive modeling perspective, structured Bayesian models are instrumental in
formalizing hypothesis testing when aligned with infants’ data. Deep learning models based on
artificial neural networks offer a unique, relatively hypothesis-agnostic platform for testing the
connectionist hypothesis in the developing minds. Can knowledge about objects, intuitive physics, or
even theory of mind be learned purely from data? And if not, what kind of inductive biases help a
data-driven learner? This approach may provide insights to understanding the innateness of certain
cognitive functions.
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