Energy Efficiency Simple, Safe Investment

Tim Gasper, PE

Brady Energy Services

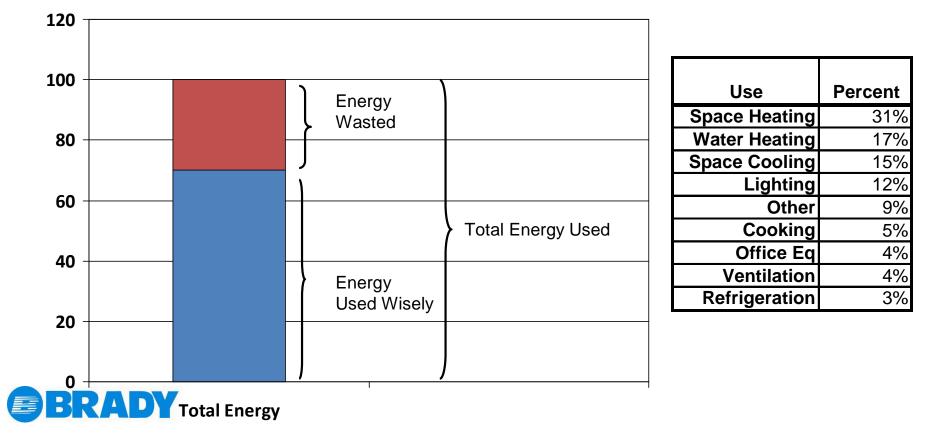
(919) 781-0458

TJGasper@Trane.com

Energy Efficiency in Attractions and Accommodations

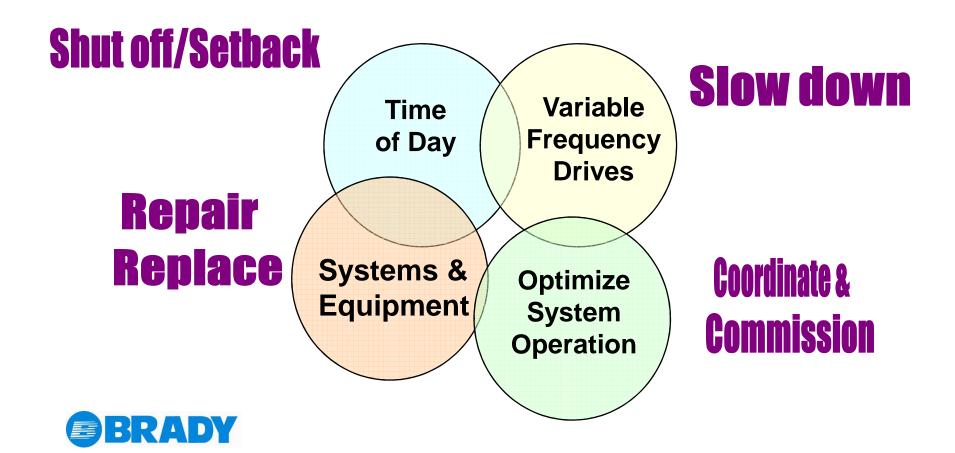
- Energy Costs
 - On average, America's 47,000 hotels spend <u>\$2,196</u>
 - per available room each year on energy
 - Represents about **6%** of **all operating costs**
- Energy Efficiency Benefits
 - Direct energy cost savings
 - 20 % reduction in energy consumption means...
 - Same financial effect as increasing the ADR
 - **\$1.24** in limited-service hotels
 - » \$2.70 in full-service hotels
 - Capital equipment upgrades
 - More reliable = Less maintenance = Less cost and often not considered
 - Enhances guest comfort
 - Demonstrates a commitment to **climate stewardship**
 - Competitive advantage

Energy Efficiency in Attractions and Accommodations


- Energy Costs
 - Where is it going?
 - What choices?
 - Continue to spend?
 - » Do nothing is not an option
 - Invest & reduce?
 - » No & low-cost measures
 - » Capital investments
 - Future Energy Costs?
 - Cost of Delay?

Energy Use

- Energy consumption in EACH Category two components
 - Energy used wisely
 - Energy use wasted


Most Common Energy Wasters

- 1. Scheduling HVAC, Lighting, Kitchen Eq.
- 2. Old Lighting Systems
- 3. Kitchen Hood Systems
- 4. Simultaneous Heating & Cooling
- 5. Poor HVAC Ventilation Control
- 6. Constant Volume Air & Air Mixing Systems
- 7. Constant Volume Pumping & Pump Throttling
- 8. Poor Maintenance
- 9. Poor Chiller & Boiler Plant Control

10. Oversized and Inefficient Equipment

Energy Conservation Measures

Financial Analysis Tools

- Simple Payback SPB
 - Cost/annual savings=years
- Internal Rate of Return
- Net Present Value

Payback

Focus on

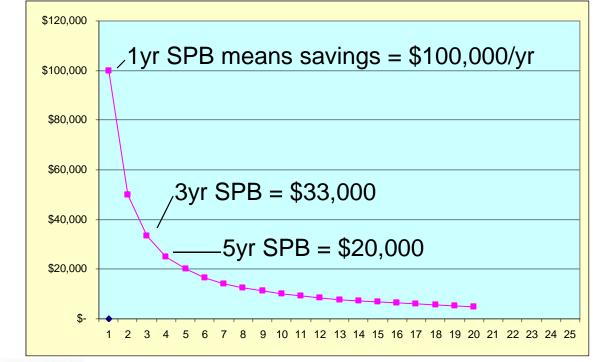
- "Continue to Waste" or "Invest & Save"
 - Annualized measure costs compared to annual savings
- TEPA Thermal Energy Purchase Agreement
 - System owned/operated/maintained by 3rd party
 - Buy the BTUs
- Off Balance Sheet Off Credit
 - Efficiency Measures owned/operated/maintained by 3rd party

Focus on Cash Flow

Financial Considerations

- Investment <u>Risks</u>
 - Risk of results falling short of *expectations*
 - Risk of results falling short of <u>other investments</u>
- If focus only on Investment & Payback
 - Energy management <u>stop & go process</u>
 - Back to square one if measure(s) rejected
 - Continue to *waste dollars*
 - Instead of *saving dollars*

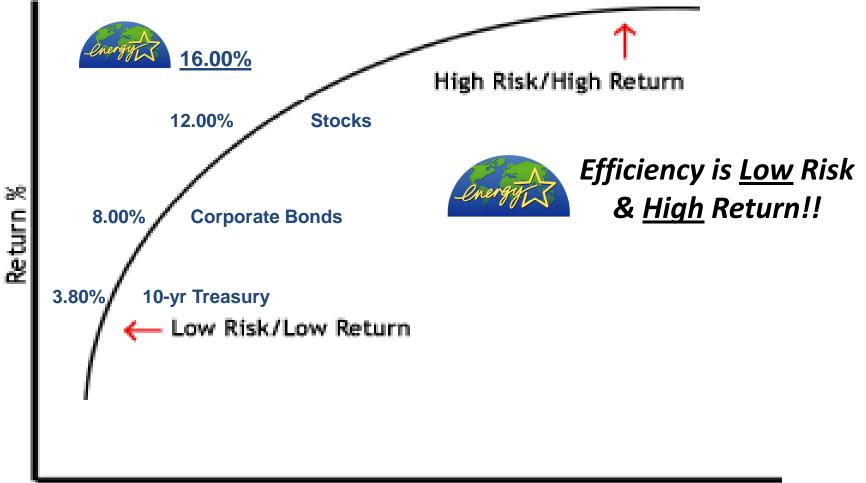
How Much Does the Measure Cost?


- Why make the measure justify itself so quickly?
 - Long life measure will often be rejected
- How much does the measure *cost per year*?
 - Compare Annual Cost to Annual Benefits

i = cost of capital and discount rate for future cash flowsn = economic life of project

Example – Annualized Cost of Measure

- Cost of Measure = \$100,000
- SPB=Cost/Savings=Years


Retrofit Example

- Cost of Measure = \$100,000
- Cost of Capital (=discount rate) = 10%

Ene Energy \$ SPB	ergy Before 50,000 8.0	\$ 38		avings 12,500	% Savin 2	gs 5.00%	
Asset Life Annualized Cost	20 \$11,745.96(-					
	Year	0	1	2	3	4	5
Cost Basis if SPB	Method	\$	100,000	\$50,000	\$33,333	\$25,000	\$20,000
Cost Basis if Ann	nualized	(\$11,746)	(\$11,746)	(\$11,746)	(\$11,746)	(\$11,746)
Annual Savings w/	Inflation (\$1	00,000) \$	12,500	\$13,000	\$13,520	\$14,061	\$14,623
Net Cumulative	Savings Savings	\$ \$	754 754	\$ 1,254 \$ 2,008	\$ 1,774 \$ 3,782	\$ 2,315 \$ 6,097	\$ 2,877 \$ 8,974
	•	,885.22					
	IRR	16%					
20-yrTotal Cumulative Net	Savings \$ 1	137,307					

Investment Risks & Returns

Risk % (Standard Deviation)

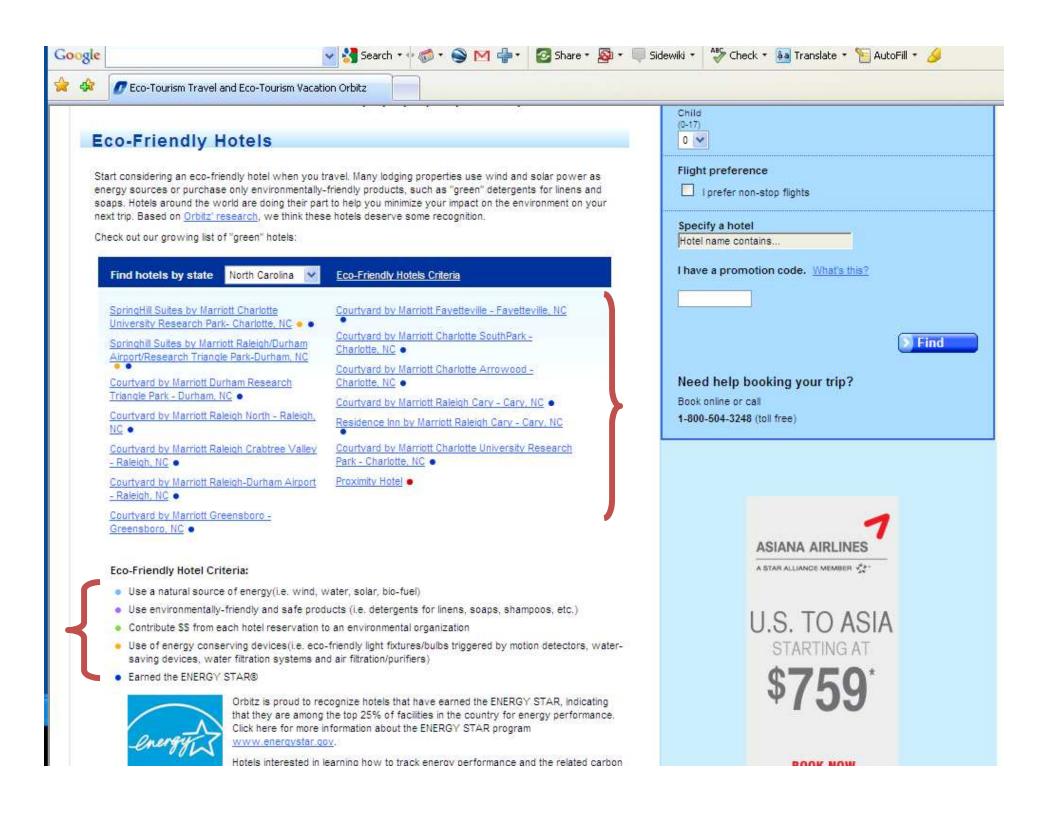
S&P 500 - 2000 - 2010

- Negative return for decade
- Are there better investments safer too?
- Consistent with risk/return?

Typical Array of Choices

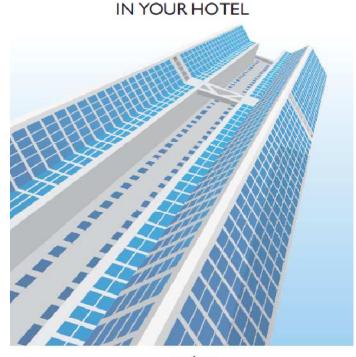
<u>Upgrade</u>	<u>Cost</u>	<u>SPB-Yrs.</u>	
Chiller Upgrade	\$1,250,000	15	
Boiler Upgrade	\$550 <i>,</i> 000	8	
Insulation	\$225 <i>,</i> 000	10	
Doors	\$400,000	20	
Windows	\$1,200,000	20	
Other HVAC	\$350,000	25	
Total	\$3,975,000	14.8	
Total Controls Upgrade	\$3,975,000 \$350,000	14.8 2	
Controls Upgrade	\$350,000	2	


Good Strategy - Consider Bundling Fast & Slow Paybacks



Financial Considerations - Summary

- Efficiency Investments?
 - Invest or *keep paying*
- Consider using Annualized Cost
 - Pay a 20-yr asset in 3-yrs?
- Bundle your projects
 - Fast & slow paybacks
- Consider investment <u>Risk & Return</u>
 Efficiency is a SAFE Investment!!
- Invest or Waste mentality



Energy Management Guide

www.emt-india.net/ECBC/ECBC-Guidebooks/guidebook-Hotel.pdf

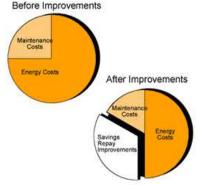
Simple, organized, useful

- Initiate an Energy Management Program
- Determine Efficiency Targets
- Conduct Energy Assessments
- Identify Energy Savings Opportunities
- Calculating Costs and Paybacks
- Implement Measures
- Monitor Performance

ENERGY MANAGEMENT

FS C

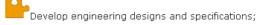
Resources & Info


What is Energy Performance Contracting?

Here's how it works:

RESOURCES & INFO

- What is PC?
- 5 Steps to Success
- PC Activities by State
- State Programs
- Federal Programs
- Financing
- Legislation
- Documents
- Links


You enter into an agreement with a private energy service company (ESCO). The ESCO will identify and evaluate energy-saving opportunities and then recommend a package of improvements to be paid for through savings. The ESCO will guarantee that savings meet or exceed annual payments to cover all project costs-usually over a contract term of seven to 10 years. If savings don't materialize, the ESCO pays the difference, not you. To ensure savings, the ESCO offers staff training and long-term maintenance services.

Many types of building improvements can be funded through your existing budgetsnew lighting technologies, boilers and chillers, energy management controls and swimming pool covers, to name a few.

A gualified ESCO can help you put the pieces together:

http://www.energyservicescoalition.org/resources/whatis.htm

Arrange for financing:

Train your staff and provide ongoing maintenance services; and

Guarantee that savings will cover all project costs.