

STUDY OF NEUTRON INDUCED FISSION OF ²³⁷Np WITH FALSTAFF AT NFS

FIESTA24, 20-11-2024 **Deby Treasa KATTIKAT MELCOM**

OVERVIEW

- Introduction & Motivation
- FALSTAFF Setup
- E878 Measurement @ NFS
- Preliminary Results
- Conclusions and future perspectives

FALSTAFF Setup

- Dynamic Process
- \Box Viewed as \rightarrow Nuclear shape evolution

Introduction

INTRODUCTION

© Encyclopædia Britannica, Inc.

- Dynamic Process
- \Box Viewed as \rightarrow Nuclear shape evolution
- ❖ Mass and charge of FF

Path: deformation potential, Structure \rightarrow Evolution with E*

- Kinetic Energy Inter fragment distance, Nuclei deformation
- Neutron emission from FF E* sharing between fission fragments
- ❖ Gamma emission from FF Angular momentum

- Dynamic Process
- \neg Viewed as \rightarrow Nuclear shape evolution
- ❖ Mass and charge of FF

Path : deformation potential, Structure \rightarrow Evolution with E*

- Kinetic Energy Inter fragment distance, Nuclei deformation
- Neutron emission from FF E* sharing between fission fragments
- Gamma emission from FF Angular momentum

Interest for applications: Reactor design and lifetime, Waste management, Energy release per fission, Radioprotection, ...

MOTIVATION

- Neutron multiplicity and fission yields:
 - important for reactor simulations
 - needed for model developed for data evaluation (libraries)
- For the development of phenomenological models (Fifrelin, Freya, GEF ...)

Experimental data:

- Evolution with E*
- Improve theoretical models
- Many data in thermal domain, but very few data in the fast energy domain for neutron induced fission of ²³⁷Np.

FALSTAFF SETUP

- To study neutron induced fission:
 - Actinide targets
 - Direct kinematics
- Fission fragment production as a function of excitation energy

FALSTAFF SETUP

- To study neutron induced fission:
 - Actinide targets
 - Direct kinematics
- Fission fragment production as a function of excitation energy
- Pair of Secondary Electron Detectors (Emissive foil + MWPC) for
 - Time of flight ($\sigma(t) = 120 \text{ ps}$)
 - Position ($\sigma(X,Y) = 1.2 \text{ mm}$)
- Axial ionisation chamber
 - Energy $(\sigma(E)/E \sim 1\%)$

FALSTAFF SETUP

- To study neutron induced fission:
 - Actinide targets
 - Direct kinematics
- Fission fragment production as a function of excitation energy
- Pair of Secondary Electron Detectors (Emissive foil + MWPC) for
 - Time of flight ($\sigma(t) = 120 \text{ ps}$)
 - Position ($\sigma(X,Y) = 1.2 \text{ mm}$)
- Axial ionisation chamber
 - Energy $(\sigma(E)/E \sim 1\%)$

Challenges:

- **Experimental mass resolutions**
- Direct Kinematics -> Low energy fragments (energy loss corrections), Charge identification

E878 MEASUREMENT @ NFS

Neutron Beam @ NFS:

FALSTAFF Setup

- Neutron beam production from $d + {}^{9}Be$ reaction
- Neutron energy measured from the **TOF technique**

E878 MEASUREMENT @ NFS

Neutron Beam @ NFS:

- Neutron beam production from $d + {}^{9}Be$ reaction

- Neutron energy measured from the TOF technique

+2 LaBr3 detectors

Energy detector

²³⁷Np Target:

- JRC-Geel (100 % ²³⁷Np)
- Areal density: 204 µg/cm²
- ф 30 mm
- Al backing, 0.25 mm

E878 MEASUREMENT @ NFS

Incident neutron energy spectra:

FALSTAFF Setup

- Time reference : Low energy gamma flash from beam on converter.
- 2 LaBr3 detectors...
- Neutron time of flight spectra (in coincidence with FALSTAFF)
 - → Different TOF diff. combinations between HF, FALSTAFF and LaBr3

+2 LaBr3 detectors

PRELIMINARY RESULTS: TIME OF FLIGHT

10

12

14 16

8 10 12 14 16

Velocity (mm/ns)

10

8

12 14 16 18

Energy detector

Neutron beam

Actinide target

CONCLUSIONS AND PERSPECTIVES

Data analysis of ²³⁷Np (n,f) experiment to identify the mass, energy and charge of fission fragments and comparison with simulation as well as compare the results with E814 measurement of 235 U are ToF detectors under progress.

Development of the second arm (commissioning Spring 2025) to:

- detect both fragments in coincidence
- measure their kinetic energy

FALSTAFF Setup

- identify their mass pre & post evaporation
- provide information on their nuclear charge

- ²³⁵U (n,f) experiment (2 arm) submitted to PAC 2024 (PAC meeting next week).
- Calibration of ionisation chamber with low energy stable beams of fission fragmet types.

CONCLUSIONS AND PERSPECTIVES

Data analysis of ²³⁷Np (n,f) experiment to identify the mass, energy and charge of fission fragments and comparison with simulation as well as compare the results with E814 measurement of 235 U are ToF detectors under progress.

Development of the second arm (commissioning Spring 2025) to:

- detect both fragments in coincidence
- measure their kinetic energy
- identify their mass pre & post evaporation
- provide information on their nuclear charge
- Long measurements with 2 arms of FALSTAFF, using Cf source emitting fragments from both sides.
- ²³⁵U (n,f) experiment (2 arm) submitted to PAC 2024 (PAC meeting next week).
- Calibration of ionisation chamber with low energy stable beams of fission fragmet types.

SUPLEMENTARY SLIDES

Neutrons for science faclity

- Converter/Irradiation room:
 - Charged particles irradiation station
 - Neutrons production:
 - Reactions in Li or Be converting targets.
 - 3 m concrete collimator at 0 deg. with conical inner shape: 1.7 cm radius beam

- Time-of-flight experimental room:
 - 28 m long room
 - Neutron energy measured from the time of flight technique
 - 1 us fligh path → bunch selector 1/100 (5mA → 50uA (3x10¹⁴ d/s)
 - secondary collimation (13 cm → 2 cm beam spot radius)
 - Water beam dump → reduced backscatter neutrons
 - Several setups placed at the same time

NFS

- Neutron from 0.1 MeV to 40 MeV
- 1 ns acelerator deviation :
 - good energy resolution
- High repetition rate :
 - Reduced gamma-flash
 - Low instantaneous flux

NFS offers a great opportunity to study n-induced fission

Charge identification through energy loss profile measurement

Possible to identify fragment nuclear charge using the energy loss profile and neural network

Need data with identified fragment to « settle »

the neural network

→ FALSTAFF@VAMOS experiment (D. Ramos)

FALSTAFF @ VAMOS (test experiment, March 2022, PI D. Ramos)

²³⁸U + C (Be) → fusion-fission main channel

- one fragment fully (Z,A,E) identified in VAMOS
- one fragment slowed down (small IC close to the target)

and detected in FALSTAFF

Additional information

See Indu Jangid poster