

universite PARIS-SACLAY

Fission yield measurements at GANIL with VAMOS and PISTA

FIESTA 2024, Los Alamos, NM

P. Morfouace^{1,2}

¹CEA,DAM,DIF ²Université Paris-Saclay, LMCE

What can be done at GANIL with VAMOS

- Inverse kinematics using a beam of ²³⁸U around Coulomb barrier
 - ✓ Access to fissioning system heavier than ²³⁸U
- Transfer-induced fission reaction
 - ✓ Selection of the fissioning system
 - Measurement of the excitation energy event by event
- Gamma-ray spectrometer
 - Probe the excitation energy sharing between the fission fragments
 - Evaluate the excitation probability of the target-like nuclei

²³⁸U @ 6

MeV/u

VAMOS

- Direct and complete isotopic fission fragment yields Y(A,Z)
- Precise center-of-mass fission fragment velocities

VAMOS second arm

- ✓ Total kinetic energies
- ✓ 2v measurement

PISTA

- Characterization of the fissioning system
- ✓ A, Z
- √ (E_{|ab'|ab}) -> E*

Fission yields

We want to measure the evolution of the fission yields as a function of the excitation energy of the fissioning system

- Shell effect damping with E*
- Excitation energy <=> incident neutron energy (E* = S_n+E_n)
- Open questions about some fission yields from the neutron-induced fission of ²³⁹Pu.

<u>cea</u>

Evolution of fission yields with E_n

Chadwick et al. Nuclear Data Sheets 111 (2010)2923-2964

- Still open questions between different measurements.
- Measurement with fast neutrons
 - ✓ Activation -> Need to precisely know the neutron flux and seperate alpha from fission
 - ✓ Gamma spectroscopy => Need precise knowledge of the efficiency
 - Systematic error propagation : difficult
- New precise measurement recently at TUNL and HIGS (see A. Tonchev and R. Malone)
- New experimental program in collaboration with GANIL started in 2020/2021 to develop a new silicon array called PISTA
 - ✓ Use of inverse kinematics and transfer reaction
 - ✓ Development of a new detector array to characterize the fissioning properly with the required precision in mass A, charge Z and excitation energy E* (Major step forward)

<u>cea</u>

Fission studies at GANIL with VAMOS

- Inverse kinematics using a beam of ²³⁸U and a ¹²C target
 - ✓ Access to fissioning system heavier than ²³⁸U
- Transfer reaction around Coulomb barrier inducing the fission to access ²³⁶U and ²⁴⁰Pu fissioning systems.
- The ejectile identification allows us to properly characterize the fissioning system.
- VAMOS spectrometer
 - ✓ Identification in mass and charge of the fission fragments
- Excitation energy measured event by event => Development of PISTA

Major upgrade : PISTA

PISTA: 8 telescopes in a petal shape

- ΔE first stage
 - 100 um thick
 - 91 horizontal strips
 - Dynamic range : 0-60 MeV
- E second stage
 - 1 mm thick
 - 57 vertical strips
 - Dynamic range : 0-200 MeV

<u>cea</u>

Major upgrade: PISTA

What's new with PISTA (compared to SPIDER)?

- ✓ Angular coverage : 30-60 deg
- ✓ Better identification of the ejectile
- ✓ High granularity means better resolution in E* (FMHW = 700 keV)
- ✓ Dedicated electronics capable of sustaining higher count rate.
- ✓ Overall, a much better characterization of the fissioning system (A,Z,E*)

FIESTA 2024, Los Alamos

Major upgrade: PISTA

PISTA analysis done by Lucas Bégué-Guillou

cea

First PISTA experiment in 2023: Focus on 240Pu

PISTA analysis done by Lucas Bégué-Guillou

→ See POSTER

PISTA analysis done by Lucas Bégué-Guillou → See POSTER

Selection of the fissioning system: ²⁴⁰Pu

> ▲ Excitation energy distribution of the ²⁴⁰Pu fissioning system

FIESTA 2024. Los Alamos

Fission probability

From the events

- ✓ in coincidence between VAMOS and PISTA
- and PISTA alone
- we can reconstruct the fission probability

PISTA analysis done by Lucas Bégué-Guillou

<u>cea</u>

Fission yields with VAMOS

- Mass distribution
 - \checkmark Typical resolution of △A/A=0.8%

Cea FIEST

Fission yields with VAMOS

Mass distribution

- \checkmark Typical resolution of △A/A=0.8%
- For a given excitation energy range (bin of 1 MeV) we get the mass yield using a multi-gaussian fit.

<u>cea</u> FIE

Fission yields with VAMOS

Mass distribution

- \checkmark Typical resolution of △A/A=0.8%
- For a given excitation energy range (bin of 1 MeV) we get the mass yield using a multi-gaussian fit.
- Same work for different excitation energy
 - → Yield evolution

<u>cea</u> FIES

Fission yields

- Charge distribution
 - Determined by ΔE/E in the VAMOS ionization chamber
 - ✓ Typical resolution of $\Delta Z/Z=1.5\%$

FIESTA 2024, Los Alamos

Fission yields

- Global odd even staggering
 - Multi gaussian fit per bin of 1 MeV in excitation energy
 - $\delta_{eo} = (\Sigma Y_e \Sigma Y_o)/(\Sigma Y_e + \Sigma Y_o)$
 - \sim Decrease of δ_{eo} with excitation energy until the second chance of fission.

Second chance of fission

FIESTA 2024, Los Alamos

Conclusion

- First analysis of the data from VAMOS and PISTA are very encouraging
 - \checkmark PISTA allows a better characterization of the fissioning system (A_{CN},Z_{CN},E*).
 - VAMOS provide a good resolution in both charge and mass of the fission fragments.
 - \checkmark For ²⁴⁰Pu the excitation range is about 6 < E* < 16 soit **0** < **E**_n < **10 MeV**
- We are able to compare the mass yield evolution with the latest results from TUNL
 - We will be able to compare all masses in a systematic way
 - Check the effect of the incoming channel for different energy!
 - Measure of the charge to probe shell effects and odd-even effect with excitation energy.

• Other systems will also be investigated such as 242 Pu (Théodore Efremov thesis) populated from α transfer

giving $^8Be \rightarrow 2\alpha$

- Channel strongly populated
- \sim The high granularity of PISTA makes it very efficient to detect the 2α events.

17

cea

Thank you