Fully Microscopic Description of Fission with Three Degrees of Freedom

Third edition of the FIESTA School & Workshop

11/19/2024

Marc Verriere, Nicolas Schunck

We describe the fission process using a fully microscopic approach.

We simulate the time-evolution of the deformations leading to the formation of the fragments.

Our theoretical framework leads to Schrodinger-like equation.

Equation describing the fission dynamics at a microscopic level with quantum effects:

- local **complex-valued** diffusion equation with real-valued q-dependent coefficients $\gamma^{\pm \frac{1}{2}}$, B and V.
- q: collective degrees of freedom describing the nucleus' deformation (2-D \rightarrow 3-D).
- g(q, t): nucleus' probability amplitude to be in q at time t (complex-valued).

We add an absorption term to limit our description to the area of interest.

$$i\hbar \frac{\partial g(\boldsymbol{q},t)}{\partial t} = \left[-\frac{\hbar^2}{2} \gamma^{-\frac{1}{2}}(\boldsymbol{q}) \nabla \cdot \gamma^{\frac{1}{2}}(\boldsymbol{q}) B(\boldsymbol{q}) \nabla + V(\boldsymbol{q}) - iA(\boldsymbol{q}) \right] g(\boldsymbol{q},t)$$

Equation describing the fission dynamics at a microscopic level with quantum effects:

- local **complex-valued** diffusion equation with real-valued q-dependent coefficients $\gamma^{\pm \frac{1}{2}}$, B and V.
- q: collective degrees of freedom describing the nucleus' deformation (2-D \rightarrow 3-D).
- g(q, t): nucleus' probability amplitude to be in q at time t (complex-valued).

We developed a new MFEM-based solver able to tackle three collective degrees of freedom.

$$i\hbar \frac{\partial g(\boldsymbol{q},t)}{\partial t} = \left[-\frac{\hbar^2}{2} \gamma^{-\frac{1}{2}}(\boldsymbol{q}) \nabla \cdot \gamma^{\frac{1}{2}}(\boldsymbol{q}) B(\boldsymbol{q}) \nabla + V(\boldsymbol{q}) - iA(\boldsymbol{q}) \right] g(\boldsymbol{q},t)$$

1. We discretize the collective space using the Finite Element Method with MFEM.

2. We developed a high-order (≥ 10) numerical time-discretization scheme.

1. We discretize the collective space using the Finite Element Method with MFEM.

$$i\hbar \frac{\partial g(\boldsymbol{q},t)}{\partial t} = \left[-\frac{\hbar^2}{2} \gamma^{-\frac{1}{2}}(\boldsymbol{q}) \nabla \cdot \gamma^{\frac{1}{2}}(\boldsymbol{q}) B(\boldsymbol{q}) \nabla + V(\boldsymbol{q}) - iA(\boldsymbol{q}) \right] g(\boldsymbol{q},t)$$

Partition space

Collective space (infinite size)

Q_{21}	Q_{22}	Q_{25}	Q_{26}	Q_{37}	Q_{38}	Q_{41}	Q_{42}
Q_{20}	Q_{23}	Q_{24}	Q_{27}	Q_{36}	Q_{39}	Q_{40}	Q_{43}
Q_{19}	Q_{18}	Q_{29}	Q_{28}	Q_{35}	Q_{34}	Q_{45}	Q_{44}
Q_{16}	Q_{17}	Q_{30}	Q_{31}	Q_{32}	Q_{33}	Q_{46}	Q_{47}
Q_{15}	Q_{12}	Q_{11}	Q_{10}	Q_{53}	Q_{52}	Q_{51}	Q_{48}
Q_{14}	Q_{13}	Q_8	Q_9	Q_{54}	Q_{55}	Q_{50}	Q_{49}
Q_1	Q_2	Q_7	Q_6	Q_{57}	Q_{56}	Q_{61}	Q_{62}
Q_0	Q_3	Q_4	Q_5	Q_{58}	Q_{59}	Q_{60}	Q_{63}

Define basis functions

The g(q, t) scalar field is smooth:

- → H1-conformal real basis,
- \rightarrow piecewise p-degree polynomials.
- \rightarrow Basis function noted φ_i

Project the equation

Orthogonal projection on the basis functions using the scalar product:

$$(\phi, \psi) = \int \phi^*(\boldsymbol{q}) \psi(\boldsymbol{q}) \, \gamma^{\frac{1}{2}}(\boldsymbol{q}) \, d\boldsymbol{q}$$

$$i\hbar M \frac{\partial G(t)}{\partial t} = (D + V - iA)G(t)$$

$$M_{ij} = \left(\varphi_i, \gamma^{\frac{1}{2}} \varphi_j\right),$$

$$V_{ij} = \left(\varphi_i, \gamma^{\frac{1}{2}} V \varphi_j\right),$$

$$A_{ij} = \left(\varphi_i, \gamma^{\frac{1}{2}} A \varphi_j\right),$$

$$= (\nabla \varphi_i, \Lambda \nabla \varphi_j) + \partial \mathcal{B}$$

 $D_{ij} = (\varphi_i, -\nabla \cdot \Lambda \nabla \varphi_i)$

→ Sparse & partially assembled!

2. We developed a high-order time-discretization scheme.

$$i\hbar M \frac{\partial G(t)}{\partial t} = (K - iA)G(t)$$

First-order linear differential equation:

$$G(t) = U(t) G_0$$

$$U(t) = \exp\left(-\frac{it}{\hbar} M^{-1} (K - iA)\right)$$

- Inverting M is **expensive**,
- M^{-1} and U(t) are **not sparse**,
- Inverting M is **not stable**.

 \rightarrow Only compute the action of U(t).

2. We developed a high-order time-discretization scheme.

$$i\hbar M \frac{\partial G(t)}{\partial t} = (K - iA)G(t)$$

First-order linear differential equation:

$$G(t) = U(t) G_0$$

$$U(t) = \exp\left(-\frac{it}{\hbar} M^{-1} (K - iA)\right)$$

- Inverting M is expensive,
- M^{-1} and U(t) are **not sparse**,
- Inverting M is **not stable**.

 \rightarrow Only compute the action of U(t).

Step 1: Taylor-expand U(t)

$$U(t) \approx \sum_{n=0}^{N} \frac{1}{n!} \left(-\frac{it}{\hbar} M^{-1} (K - iA) \right)^{n}$$

 \rightarrow Only valid around t = 0.

Step 2: Discretize time

$$t = \delta t + \dots + \delta t$$

$$U(t) = U(\delta t) \dots U(\delta t)$$

$$U(\delta t) \approx \sum_{n=0}^{N} \frac{1}{n!} \left(-\frac{i\delta t}{\hbar} M^{-1} (K - iA) \right)^{n}$$

Step 3: Evaluate action of U(t)

$$U(\delta t)G \approx \sum_{n=0}^{N} \frac{1}{n!} F^{n}G$$
$$F = -\frac{i\delta t}{\hbar} M^{-1} (K - iA)$$

$$U(\delta t) \approx \sum_{n=0}^{N} \frac{1}{n!} \left(-\frac{i\delta t}{\hbar} M^{-1} (K - iA) \right)^{n}$$
Determine $F^{n}G$ by recurrence:
$$F^{0}G = G$$

$$M(F^{n+1}G) = -\frac{i\delta t}{\hbar} (K - iA) (F^{n}G)$$

Probability $\rho_{\rm abs}(\boldsymbol{q})$ to be absorbed in \boldsymbol{q} :

$$\rho_{\text{abs}}(\boldsymbol{q}) = \left(1 - e^{-\frac{\delta t}{\hbar}A(\boldsymbol{q})}\right) |g(\boldsymbol{q}, t)|^2 \gamma^{\frac{1}{2}}(\boldsymbol{q})$$

Probability to measure a fragment with N particles at a given q:

$$P(X \mid \mathbf{q}) \approx \int_{X-\frac{1}{2}}^{X+\frac{1}{2}} e^{-\frac{1(x-\bar{X}(\mathbf{q}))^2}{2\sigma_X^2}} \frac{\mathrm{d}x}{\sqrt{2\pi\sigma_X^2}}$$

 \rightarrow Probability of a fragment with X particles:

$$Y(X) \approx \int P(X \mid \boldsymbol{q}) \, \rho_{abs}(\boldsymbol{q}) \, d\boldsymbol{q}$$

$$X = A_{\rm f}, Z_{\rm f}$$

Partial assembly w/ MFEM

 \rightarrow \approx 300 kernels loaded at the same time!

We generated a 3D potential energy surface using a Skyrme functional on ²⁴⁰Pu and transformed it into a MFEM mesh.

Finally, we extracted fission fragment mass and charge yields using our new pipeline.

Our (very) preliminary results are encouraging: symmetric fission is better reproduced, but the mass yields show a bigger deviation.

These preliminary results are promising, and we are working on many further improvements.

- Improve the handling of the potential energy landscape (interpolation).
- Define the initial state from the eigenstates of the extrapolated potential wells.
- Strengthen the order of the time-propagation approach.
- Enable extrapolation of the potential energy landscape.
- Couple Fidelis with particle-number projection in the fragments.
- Study the impact of three degrees of freedom on several fissioning systems.
- Determine fission observables using a Gogny interaction.
- Package the library (CMake, Pybind11, Doxygen, etc).

• ...

Thank you

