Fully Microscopic Description of Fission with Three Degrees of Freedom Third edition of the FIESTA School & Workshop 11/19/2024 Marc Verriere, Nicolas Schunck We describe the fission process using a fully microscopic approach. We simulate the time-evolution of the deformations leading to the formation of the fragments. ## Our theoretical framework leads to Schrodinger-like equation. Equation describing the fission dynamics at a microscopic level with quantum effects: - local **complex-valued** diffusion equation with real-valued q-dependent coefficients $\gamma^{\pm \frac{1}{2}}$, B and V. - q: collective degrees of freedom describing the nucleus' deformation (2-D \rightarrow 3-D). - g(q, t): nucleus' probability amplitude to be in q at time t (complex-valued). ## We add an absorption term to limit our description to the area of interest. $$i\hbar \frac{\partial g(\boldsymbol{q},t)}{\partial t} = \left[-\frac{\hbar^2}{2} \gamma^{-\frac{1}{2}}(\boldsymbol{q}) \nabla \cdot \gamma^{\frac{1}{2}}(\boldsymbol{q}) B(\boldsymbol{q}) \nabla + V(\boldsymbol{q}) - iA(\boldsymbol{q}) \right] g(\boldsymbol{q},t)$$ Equation describing the fission dynamics at a microscopic level with quantum effects: - local **complex-valued** diffusion equation with real-valued q-dependent coefficients $\gamma^{\pm \frac{1}{2}}$, B and V. - q: collective degrees of freedom describing the nucleus' deformation (2-D \rightarrow 3-D). - g(q, t): nucleus' probability amplitude to be in q at time t (complex-valued). ## We developed a new MFEM-based solver able to tackle three collective degrees of freedom. $$i\hbar \frac{\partial g(\boldsymbol{q},t)}{\partial t} = \left[-\frac{\hbar^2}{2} \gamma^{-\frac{1}{2}}(\boldsymbol{q}) \nabla \cdot \gamma^{\frac{1}{2}}(\boldsymbol{q}) B(\boldsymbol{q}) \nabla + V(\boldsymbol{q}) - iA(\boldsymbol{q}) \right] g(\boldsymbol{q},t)$$ 1. We discretize the collective space using the Finite Element Method with MFEM. 2. We developed a high-order (≥ 10) numerical time-discretization scheme. ## 1. We discretize the collective space using the Finite Element Method with MFEM. $$i\hbar \frac{\partial g(\boldsymbol{q},t)}{\partial t} = \left[-\frac{\hbar^2}{2} \gamma^{-\frac{1}{2}}(\boldsymbol{q}) \nabla \cdot \gamma^{\frac{1}{2}}(\boldsymbol{q}) B(\boldsymbol{q}) \nabla + V(\boldsymbol{q}) - iA(\boldsymbol{q}) \right] g(\boldsymbol{q},t)$$ #### **Partition space** #### Collective space (infinite size) | Q_{21} | Q_{22} | Q_{25} | Q_{26} | Q_{37} | Q_{38} | Q_{41} | Q_{42} | |----------|----------|----------|----------|----------|----------|----------|----------| | Q_{20} | Q_{23} | Q_{24} | Q_{27} | Q_{36} | Q_{39} | Q_{40} | Q_{43} | | Q_{19} | Q_{18} | Q_{29} | Q_{28} | Q_{35} | Q_{34} | Q_{45} | Q_{44} | | Q_{16} | Q_{17} | Q_{30} | Q_{31} | Q_{32} | Q_{33} | Q_{46} | Q_{47} | | Q_{15} | Q_{12} | Q_{11} | Q_{10} | Q_{53} | Q_{52} | Q_{51} | Q_{48} | | Q_{14} | Q_{13} | Q_8 | Q_9 | Q_{54} | Q_{55} | Q_{50} | Q_{49} | | Q_1 | Q_2 | Q_7 | Q_6 | Q_{57} | Q_{56} | Q_{61} | Q_{62} | | Q_0 | Q_3 | Q_4 | Q_5 | Q_{58} | Q_{59} | Q_{60} | Q_{63} | #### **Define basis functions** The g(q, t) scalar field is smooth: - → H1-conformal real basis, - \rightarrow piecewise p-degree polynomials. - \rightarrow Basis function noted φ_i #### **Project the equation** Orthogonal projection on the basis functions using the scalar product: $$(\phi, \psi) = \int \phi^*(\boldsymbol{q}) \psi(\boldsymbol{q}) \, \gamma^{\frac{1}{2}}(\boldsymbol{q}) \, d\boldsymbol{q}$$ $$i\hbar M \frac{\partial G(t)}{\partial t} = (D + V - iA)G(t)$$ $$M_{ij} = \left(\varphi_i, \gamma^{\frac{1}{2}} \varphi_j\right),$$ $$V_{ij} = \left(\varphi_i, \gamma^{\frac{1}{2}} V \varphi_j\right),$$ $$A_{ij} = \left(\varphi_i, \gamma^{\frac{1}{2}} A \varphi_j\right),$$ $$= (\nabla \varphi_i, \Lambda \nabla \varphi_j) + \partial \mathcal{B}$$ $D_{ij} = (\varphi_i, -\nabla \cdot \Lambda \nabla \varphi_i)$ → Sparse & partially assembled! ## 2. We developed a high-order time-discretization scheme. $$i\hbar M \frac{\partial G(t)}{\partial t} = (K - iA)G(t)$$ First-order linear differential equation: $$G(t) = U(t) G_0$$ $$U(t) = \exp\left(-\frac{it}{\hbar} M^{-1} (K - iA)\right)$$ - Inverting M is **expensive**, - M^{-1} and U(t) are **not sparse**, - Inverting M is **not stable**. \rightarrow Only compute the action of U(t). ## 2. We developed a high-order time-discretization scheme. $$i\hbar M \frac{\partial G(t)}{\partial t} = (K - iA)G(t)$$ First-order linear differential equation: $$G(t) = U(t) G_0$$ $$U(t) = \exp\left(-\frac{it}{\hbar} M^{-1} (K - iA)\right)$$ - Inverting M is expensive, - M^{-1} and U(t) are **not sparse**, - Inverting M is **not stable**. \rightarrow Only compute the action of U(t). #### Step 1: Taylor-expand U(t) $$U(t) \approx \sum_{n=0}^{N} \frac{1}{n!} \left(-\frac{it}{\hbar} M^{-1} (K - iA) \right)^{n}$$ \rightarrow Only valid around t = 0. #### **Step 2: Discretize time** $$t = \delta t + \dots + \delta t$$ $$U(t) = U(\delta t) \dots U(\delta t)$$ $$U(\delta t) \approx \sum_{n=0}^{N} \frac{1}{n!} \left(-\frac{i\delta t}{\hbar} M^{-1} (K - iA) \right)^{n}$$ #### Step 3: Evaluate action of U(t) $$U(\delta t)G \approx \sum_{n=0}^{N} \frac{1}{n!} F^{n}G$$ $$F = -\frac{i\delta t}{\hbar} M^{-1} (K - iA)$$ $$U(\delta t) \approx \sum_{n=0}^{N} \frac{1}{n!} \left(-\frac{i\delta t}{\hbar} M^{-1} (K - iA) \right)^{n}$$ Determine $F^{n}G$ by recurrence: $$F^{0}G = G$$ $$M(F^{n+1}G) = -\frac{i\delta t}{\hbar} (K - iA) (F^{n}G)$$ Probability $\rho_{\rm abs}(\boldsymbol{q})$ to be absorbed in \boldsymbol{q} : $$\rho_{\text{abs}}(\boldsymbol{q}) = \left(1 - e^{-\frac{\delta t}{\hbar}A(\boldsymbol{q})}\right) |g(\boldsymbol{q}, t)|^2 \gamma^{\frac{1}{2}}(\boldsymbol{q})$$ Probability to measure a fragment with N particles at a given q: $$P(X \mid \mathbf{q}) \approx \int_{X-\frac{1}{2}}^{X+\frac{1}{2}} e^{-\frac{1(x-\bar{X}(\mathbf{q}))^2}{2\sigma_X^2}} \frac{\mathrm{d}x}{\sqrt{2\pi\sigma_X^2}}$$ \rightarrow Probability of a fragment with X particles: $$Y(X) \approx \int P(X \mid \boldsymbol{q}) \, \rho_{abs}(\boldsymbol{q}) \, d\boldsymbol{q}$$ $$X = A_{\rm f}, Z_{\rm f}$$ Partial assembly w/ MFEM \rightarrow \approx 300 kernels loaded at the same time! We generated a 3D potential energy surface using a Skyrme functional on ²⁴⁰Pu and transformed it into a MFEM mesh. ## Finally, we extracted fission fragment mass and charge yields using our new pipeline. ## Our (very) preliminary results are encouraging: symmetric fission is better reproduced, but the mass yields show a bigger deviation. ## These preliminary results are promising, and we are working on many further improvements. - Improve the handling of the potential energy landscape (interpolation). - Define the initial state from the eigenstates of the extrapolated potential wells. - Strengthen the order of the time-propagation approach. - Enable extrapolation of the potential energy landscape. - Couple Fidelis with particle-number projection in the fragments. - Study the impact of three degrees of freedom on several fissioning systems. - Determine fission observables using a Gogny interaction. - Package the library (CMake, Pybind11, Doxygen, etc). • ... ## Thank you