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We describe the fission process using a fully microscopic

approach.
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We simulate the time-evolution of the deformations leading to the
formation of the fragments.
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Our theoretical framework leads to Schrodinger-like equation.
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Equation describing the fission dynamics at a microscopic level with quantum effects:

1
local complex-valued diffusion equation with real-valued q-dependent coefficients yii, B and V.

ih

q: collective degrees of freedom describing the nucleus’ deformation (2-D - 3-D).
g(q, t): nucleus’ probability amplitude to be in g at time t (complex-valued).



We add an absorption term to limit our description to the area of
interest.
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Equation describing the fission dynamics at a microscopic level with quantum effects:

1
* local complex-valued diffusion equation with real-valued gq-dependent coefficients yii, B and V.

* q: collective degrees of freedom describing the nucleus’ deformation (2-D - 3-D).
* g(q,t): nucleus’ probability amplitude to be in q at time t (complex-valued).



We developed a new MFEM-based solver able to tackle three
collective degrees of freedom.
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1. We discretize the collective space using the Finite Element Method with MFEM.

2. We developed a high-order (= 10) numerical time-discretization scheme.

3. We revamped our approach to predict the fission fragment properties.

https://Ic.linl.gov/gitlab/verriere/felix3D



1. We discretize the collective space using the Finite Element
Method with MFEM.
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2. We developed a high-order time-discretization scheme.

d0G(t)
ihM——— = (K —iA)G(t)
dt
First-order linear differential equation: * Inverting M is expensive,
G(t) = U(t) Gy « M™!and U(t) are not sparse, =>» Only compute the action of U(t).

ity . _ .
U(t) = exp (—gM YK - lA)) * Inverting M is not stable.



2. We developed a high-order time-discretization scheme.

First-order linear differential equation:

G(t) =U(t) Gy

U(t) = exp (—%M‘l(K — iA))
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* Inverting M is expensive,
° 1\/[_1
* Inverting M is not stable.

and U(t) are not sparse,

=> Only compute the action of U(t).

Step 1: Taylor-expand U(t)

n=0

=>» Only valid around t = 0.
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Step 2: Discretize time
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Step 3: Evaluate action of U(t)
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Determine F™G by recurrence:
FOG =G
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3. We revamped our approach to predict the fragment properties.
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3. We revamped our approach to predict the fragment properties.
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3. We revamped our approach to predict the fragment properties.
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3. We revamped our approach to predict the fragment properties.

Asymmetry (b*?)
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We generated a 3D potential energy surface using a Skyrme
functional on #*°Pu and transformed it into a MFEM mesh.
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Finally, we extracted fission fragment mass and charge yields using
our new pipeline.
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Our (very) preliminary results are encouraging: symmetric fission is
better reproduced, but the mass yields show a bigger deviation.
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These preliminary results are promising, and we are working on
many further improvements.

* |Improve the handling of the potential energy landscape (interpolation).

* Define the initial state from the eigenstates of the extrapolated potential wells.
* Strengthen the order of the time-propagation approach.

* Enable extrapolation of the potential energy landscape.

* Couple Fidelis with particle-number projection in the fragments.

e Study the impact of three degrees of freedom on several fissioning systems.

* Determine fission observables using a Gogny interaction.

e Package the library (CMake, Pybind11, Doxygen, etc).




Thank you

B Lawrence Livermore
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