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We describe the fission process using a fully microscopic 
approach.



We simulate the time-evolution of the deformations leading to the 
formation of the fragments.



Our theoretical framework leads to Schrodinger-like equation.
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Equation describing the fission dynamics at a microscopic level with quantum effects:

• local complex-valued diffusion equation with real-valued 𝒒-dependent coefficients 𝛾±
1

2, 𝐵 and 𝑉.

• 𝒒: collective degrees of freedom describing the nucleus’ deformation (2-D → 3-D).

• 𝑔(𝒒, 𝑡): nucleus’ probability amplitude to be in 𝒒 at time 𝑡 (complex-valued).



We add an absorption term to limit our description to the area of 
interest.

𝑖ℏ
𝜕𝑔(𝒒, 𝑡)

𝜕𝑡
= −

ℏ2

2
𝛾−

1
2 𝒒 ∇ ⋅ 𝛾

1
2 𝒒 𝐵 𝒒 ∇ + 𝑉 𝒒 − 𝑖𝐴(𝒒) 𝑔(𝒒, 𝑡)

Equation describing the fission dynamics at a microscopic level with quantum effects:

• local complex-valued diffusion equation with real-valued 𝒒-dependent coefficients 𝛾±
1

2, 𝐵 and 𝑉.

• 𝒒: collective degrees of freedom describing the nucleus’ deformation (2-D → 3-D).

• 𝑔(𝒒, 𝑡): nucleus’ probability amplitude to be in 𝒒 at time 𝑡 (complex-valued).



We developed a new MFEM-based solver able to tackle three 
collective degrees of freedom.
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1. We discretize the collective space using the Finite Element Method with MFEM.

2. We developed a high-order (≥ 10) numerical time-discretization scheme.

3. We revamped our approach to predict the fission fragment properties.

https://lc.llnl.gov/gitlab/verriere/felix3D



1. We discretize the collective space using the Finite Element 
Method with MFEM.

Partition space Define basis functions Project the equation

Collective space (infinite size)
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The 𝑔(𝒒, 𝑡) scalar field is smooth:

➔ H1-conformal real basis,

➔ piecewise 𝑝-degree polynomials.

➔ Basis function noted 𝜑𝑖
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➔ Sparse & partially assembled!

Orthogonal projection on the basis 
functions using the scalar product:
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2. We developed a high-order time-discretization scheme.
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• Inverting M is expensive,

• M−1 and U 𝑡  are not sparse,

• Inverting M is not stable.

➔ Only compute the action of U(𝑡).



2. We developed a high-order time-discretization scheme.

𝑖ℏM
𝜕𝐺 𝑡

𝜕𝑡
= K − 𝑖A 𝐺 𝑡

First-order linear differential equation: 
   𝐺 𝑡 = 𝑈 𝑡  𝐺0 

   U 𝑡 = exp −
𝑖𝑡

ℏ
M−1(K − 𝑖A)  

U 𝑡 ≈ ෍

𝑛=0

𝑁
1

𝑛!
−

𝑖𝑡

ℏ
M−1 K − 𝑖A

𝑛

➔ Only valid around 𝑡 = 0.

• Inverting M is expensive,

• M−1 and U 𝑡  are not sparse,

• Inverting M is not stable.

➔ Only compute the action of U(𝑡).

Step 1: Taylor-expand U(𝑡)
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Step 2: Discretize time Step 3: Evaluate action of U(𝑡)
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3. We revamped our approach to predict the fragment properties.
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3. We revamped our approach to predict the fragment properties.

Negative flux
     → negative probability
Double counting
     → probability > 1
Non-physical results.

FORMER APPROACH



3. We revamped our approach to predict the fragment properties.

NOVEL APPROACH



3. We revamped our approach to predict the fragment properties.
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3. We revamped our approach to predict the fragment properties.

Probability 𝜌abs(𝒒) to be absorbed in 𝒒:
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→ Probability of a fragment with 𝑋 particles:

𝑌 𝑋 ≈ න 𝑃 𝑋 𝒒) 𝜌abs 𝒒  d𝒒

𝑋 = 𝐴f, 𝑍f

Partial assembly w/ MFEM
  → ≈ 𝟑𝟎𝟎 kernels loaded at the same time!

Absorption 
area

NOVEL APPROACH



We generated a 3D potential energy surface using a Skyrme 
functional on 240Pu and transformed it into a MFEM mesh.

11,000 points

60,000 points

V(q)

Q40



Finally, we extracted fission fragment mass and charge yields using 
our new pipeline.



Our (very) preliminary results are encouraging: symmetric fission is 
better reproduced, but the mass yields show a bigger deviation.

Δ𝐴f ≈ 4.5 Δ𝑍f ≈ 1.0



These preliminary results are promising, and we are working on 
many further improvements.

• Improve the handling of the potential energy landscape (interpolation).

• Define the initial state from the eigenstates of the extrapolated potential wells.

• Strengthen the order of the time-propagation approach.

• Enable extrapolation of the potential energy landscape.

• Couple Fidelis with particle-number projection in the fragments.

• Study the impact of three degrees of freedom on several fissioning systems.

• Determine fission observables using a Gogny interaction.

• Package the library (CMake, Pybind11, Doxygen, etc).

• …



Thank you
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