

Selecting a Pair of Differential and Integral **Experiments that Reduce Uncertainties in Intermediate-Energy Nuclear Data**

E. Christi Thompson

T. Cutler (PI), M. Devlin (PI), M. Grosskopf, D. Neudecker (PI), S. Vander Wiel

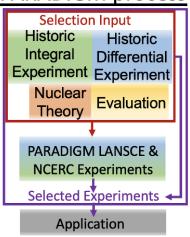
FIESTA November 2024

Objectives

What is the goal?

- Optimally select a pair of candidate LANSCE (differential) and NCERC (integral)
 experiments that would best reduce uncertainties in intermediate energy nuclear data
 (ND).
 - Particular interest in ²³⁹Pu from 1-600keV.
 - Concept of differential and integral data introduced later.
- A key component of understanding ²³⁹Pu ND from the perspective of integral data is fission data (PFNS, $\bar{\nu}$, and fission cross section).
 - Fission observables are key data (among most sensitive) to simulate integral data.
 - We also explore a differential fission experiment.
- Ultimately, this is an example of how to select the best experiments to understand application needs tied to fission.

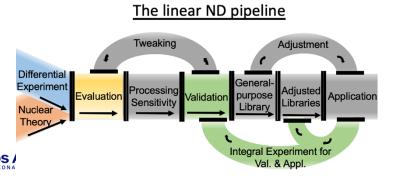
Objectives

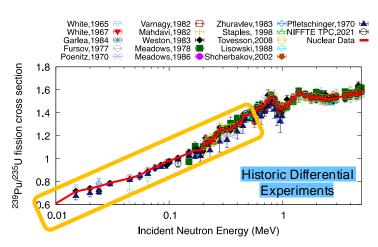

What is the goal?

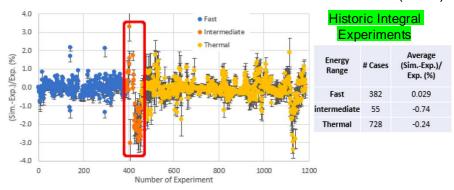
 Optimally select a pair of candidate LANSCE (differential) and NCERC (integral) experiments that would best reduce uncertainties in intermediate energy ND (particularly ²³⁹Pu from 1-600keV).

How will we accomplish this?

- Combine theory model curves with historic differential and integral benchmark experiments to initially constrain ND.
 - Use of historic data avoids repeating existing experiments.
 - Integral experiments are maximally sensitive to ²³⁹Pu fission cross section.
- Compare additional improvements from candidate experiments to what has been attained through adjustments to historic data.


PARADIGM process



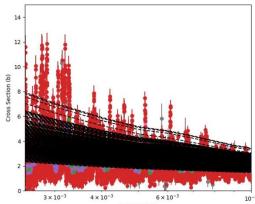

Intermediate-energy ND

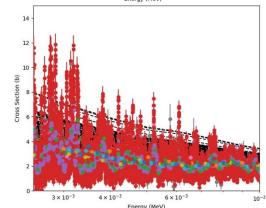
- Intermediate ND are poorly understood due to:
 - Nuclear theory: LANL developing current model to smoothly connect between theories for the various energy ranges.
 - Differential experiments: scarce and uncertain due to low neutron flux.
 - Integral experiments: sensitivities to this range are sparse (only 5% of ICSBEP benchmarks).

Database from Neutron Data Standards (IAEA)

How do we better understand the intermediate energy range?

- We are interested in performing 1-2 **integral** benchmark experiments with supporting **differential** experiment that focus on ²³⁹Pu from 1-600keV.
 - Integral: Candidate experiment designs with ZPPR Pu plates and Cu reflector are investigated by a genetic algorithm and several materials interstitials (including boron) are observed.
 - Optimized to be maximally sensitive to ²³⁹Pu fission cross sections from 1-600 keV.
 - Differential: Candidate experiments focused on reaction channels for ^{239,240}Pu and ^{63,65}Cu and ¹⁰B(n,tot).
- Consider optimistic and conservative (e.g. experiment uncertainties, contaminated beam, increased background) point of view for each candidate experiment.




Nuclear Theory: Sampled curves via Hauser-Feshbach

statistical theory

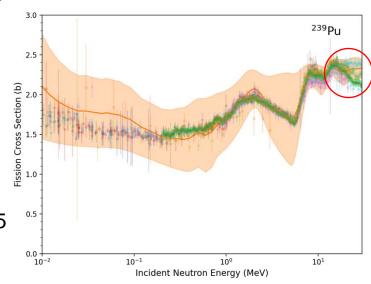
- CoH₃ is used to calculate average cross sections in the unresolved resonance region for ^{239,240}Pu and ^{63,65}Cu.
 - Reactions include total elastic, inelastic, capture, (n,2n), fission cross sections; elastic and inelastic angular distributions.
- Hauser-Feshbach statistical theory cannot provide unresolved resonance region structures.
 - Covariance is too strongly correlated, imposing strict smoothness on cross sections.

Summary of historic differential and integral experiments • Integral: Whisper benchm

 Differential: EXFOR database used for historic experiments.

Nuclide	Reactions
²³⁹ Pu	PFNS, $\bar{\nu}$, (n,f), (n,tot), (n,g), (n,el), (n,inl) cs
²⁴⁰ Pu	PFNS, \bar{v} , (n,f), (n,tot), (n,g), (n,el), (n,inl) cs
⁶³ Cu	(n,tot), (n,g), (n,p) (n,el), (n,inl) cs
⁶⁵ Cu	(n,tot), (n,g), (n,el), (n,inl) cs

Detailed UQ is undertaken for each experiment by experts to correctly judge impact of candidate experiment vis-a-vis existing data.



 Integral: Whisper benchmark suite of ~1100
 ICSBEP models and 30 experiments performed at NCERC used for historic experiments.

Series	Name
HEU-MET-FAST	028-001, 047-001, 048-011 059-002, 072-001, 072-003, 073-001, 084-002, 084-004, 084-006, 084-007, 084-017, 085-001, 085-002, 100-002, 102-001, 104-001
HEU-MET-INTER	006-001—004, 011-001—005
PU-MET-MIXED	002-001, 002-003, 003-001, 003-003
PU-MET-INTER	003-001, 004-001
PU-MET-FAST	001-001, 006-001, 024-001, 027-001, 032-001, 038-001, 047-001
PU-SOL-THERM	011-001, 011-005, 011-008
PU-COMP-MIXED	002-005, 002-006
Other	euclid-3x2-crit, euclid-8x1-crit

Challenges of the data

- Discrepancies from missing model structure and between experiments:
 - Theory curves do not capture true resonance structure.
 - Differential data often do not agree with one another within their reported uncertainties.
- High dimensional data over different energy grids:
 - Theory/ENDF/B-VIII.0: 12,200+ values spanning 15 nuclides.
 - Differential: 8,400+ observables spanning 122 experiments.
 - Integral: 46 experiments with sensitivities to 12,200+ ND inputs.

Notation for model

Initial ND quantities

- σ = initial uncertain ND.
- σ_{init} = mean from theory curves and ENDF/B-VIII.0.
- V_{init} = covariance from theory curves and ENDF/B-VIII.0.

Notation for model

Initial ND quantities

- σ = initial uncertain ND.
- σ_{init} = mean from theory curves and ENDF/B-VIII.0.
- V_{init} = covariance from theory curves and ENDF/B-VIII.0.

Differential ND quantities

- y_{diff} = differential observations.
- Δ = differential covariance.
- L = linear interpolation matrix from the evaluation grid to observed data.

Added Gaussian process (GP) to V_{init} and Δ to combat missing model structure and between experiment discrepancies.

Notation for model

Initial ND quantities

- σ = initial uncertain ND.
- σ_{init} = mean from theory curves and ENDF/B-VIII.0.
- V_{init} = covariance from theory curves and ENDF/B-VIII.0.

Differential ND quantities

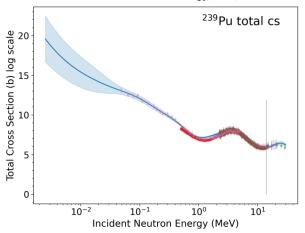
- y_{diff} = differential observations.
- Δ = differential covariance.
- L = linear interpolation matrix from the evaluation grid to observed data.

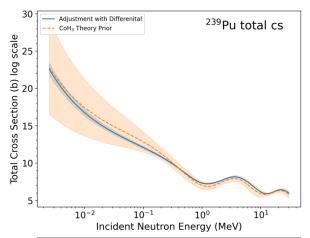
Added Gaussian process (GP) to V_{init} and Δ to combat missing model structure and between experiment discrepancies.

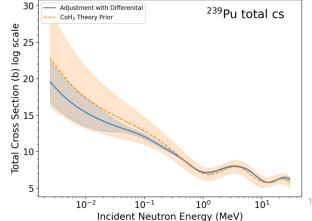
Integral ND quantities

- y_e = set of experimentally measured values of integral benchmarks.
- y_c = set of calculated values of integral benchmarks.
- *S* = response sensitivity matrix with respect to ND inputs.

Three sources of input represent multivariate Gaussian distributions and are assumed to be independent.




Impact of GPs on adjustment


No GPs on initial or differential covariances

With GPs on initial and differential covariances

Generalized least squares (GLS) model to initially constrain ND

Step 1: Adjust to historic differential data

We update the initial ND quantities as

$$\sigma_{diff} = \sigma_{init} + V_{init}L^{T}(LV_{init}L^{T} + \Delta)^{-1}(y_{diff} - L\sigma_{init})$$

$$V_{diff} = V_{init} - V_{init}L^{T}(LV_{init}L^{T} + \Delta)^{-1}LV_{init}$$

Step 2: Calibrate to historic integral benchmark experiments

We update the differential adjusted ND quantities using

$$(\boldsymbol{y}_e - \boldsymbol{y}_c) \sim N(0, \boldsymbol{S} \boldsymbol{V}_{diff} \boldsymbol{S}^T + \boldsymbol{\Sigma}_e)$$

to obtain

$$\sigma_{post} = \sigma_{diff} + V_{diff} S (S^T V_{diff} S + \Sigma_e)^{-1} (y_e - y_c)$$

$$V_{post} = V_{diff} - V_{diff} S (S^T V_{diff} S + \Sigma_e)^{-1} S^T V_{diff}$$

Initial ND σ_{init}, V_{init}

Updated ND with differential

Updated ND with integral σ_{post} , V_{post}

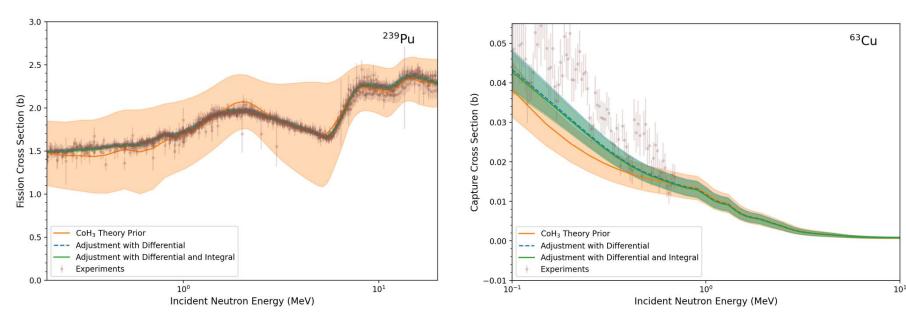
Experiment selection

Step 3: Use D-optimality criterion to guide experiment selection

- A D-optimal set of experiments will best reduce the uncertainty volume in the intermediate range after adjustment to all reliable historic experiments.
- Further update $V_{post} \rightarrow V_{cand}$ by running Steps 1-2 with uncertainties for a pair of candidate experiments.
- Subset V_{post} and V_{cand} to only include isotopes appearing in the candidate integral experiments (PARADIGM isotopes) from 1-600keV.
- For each pair of candidate integral and differential experiments, compute

$$D_{cand} = \log \det V_{post} - \log \det V_{cand}$$

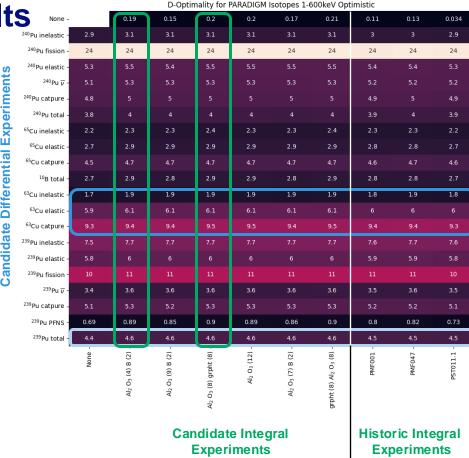
Updated ND with integral σ_{post} , V_{post}



Further updated ND with candidate differential and integral

 σ_{cand}, V_{cand}

Comparison with differential experiments overlayed



Adjustments are mostly driven by differential data with minor influence from integral data.

D-optimality (D-opt) results

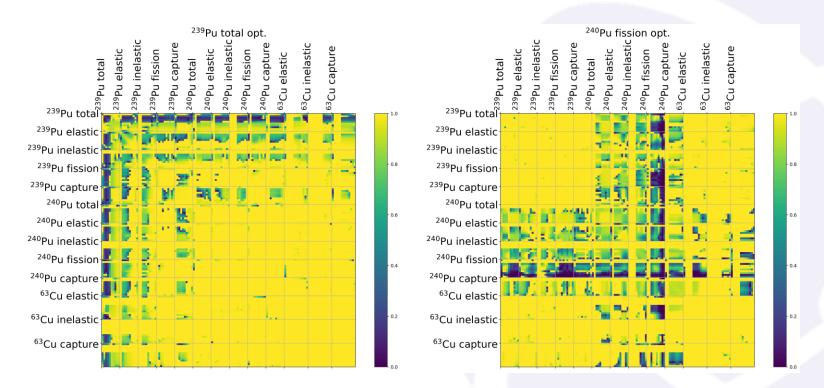
- The higher the D-opt, the more impact from candidate experiments.
- Differential candidates are the big drivers of D-opt relative to integral candidates with minor and nearly equal improvements.
 - Several direct measurements vs single indirect measurement.
- Final decision for combination of experiments based on Dopt and feasibility constraints.

Conclusion and future work in developing modeling capabilities

- Combined theory with historic differential and integral data to constrain ND.
 - We can better understand fission data with combined knowledge from all parts of the ND pipeline.
- Steer experimental design by selecting a pair of experiments that best reduce intermediate ND using D-opt criterion.
- Additions to modeling capabilities:
 - Incorporate flux distribution for response sensitivity matrix.
 - Theory model curves to include resonance features.
 - Modify model to Bayesian framework to handle disagreements between differential experiments.
 - Include more integral responses into adjustment.

Acknowledgments

Research reported in this publication was supported by the U.S. Department of Energy LDRD program at Los Alamos National Laboratory.


Thank you for your attention!

Backup slides

Covariance Improvements Concentrate on the Isotope Selected for the Differential Experiment - ²³⁹Pu vs ²⁴⁰Pu

