

Prompt fission neutron

multiplicity measurement Needs, evolution of experimental techniques Julien TAIEB DPTA/SPN

Neutron emission in fission

Fission energetics

From K.H Schmidt et al

Fission Fragments excitation energy

- Depends on the path to scission
- Relates to the shape of Fission fragments at scission
- Relax very quickly into excitation energy

- Related to dissipation from saddle to scission
- Increase with compound nucleus E*
- Is shared between both fragments

Complex to estimate very accurately

Fission Fragments deexcitation process

2 Needs for accurate neutron multiplicity estimate

Importance of neutron multiplicities for applications

High resolution measurements started in the 50's

- Lots of high-quality data from various experimental techniques (USA, USSR, Europe)
 - See Neudecker et al EPJN 9, 30 (2023) and references within
- Prompt or total neutron multiplicity measurements
- Delayed neutrons measured with different experimental approaches
 - Neutron emission after beta emission .. Different time scale (seconds to minutes)
 - Not discussed here
- Experimental approaches related to the fission "context"
 - Some techniques are suitable for spontaneous fission measurements only
 - Most are designed for neutron induced fission experiments

Mn-bath approaches

Experimental approach used for spontaneous fission nubar measurements

- Activation measurement
- 2-step method
 - Spontaneous fission rate with a fission detector
 - Activation of ⁵⁵Mn from fission neutrons
- Sample immersed into a Mn salt bath
- The salt is pumped out toward a gamma detector
 - ⁵⁶Mn production is counted
 - Proportional to the neutron count in the bath
- Exotic approach independent from classical
 - Uncorrelated data

Direct neutron detection techniques

Suitable for both spontaneous and neutron-induced fission measurements

- Monoenergetic neutron beam make it though the whole set up
- Fission are induced and tagged, neutron are detected within a coincidence window

Most efficient way to detect neutrons is to slow them down

 Neutron energy reduced from MeV to sub-eV through elastic scattering in hydrogen rich material

After slowing-down, neutron induces a radiative capture in a suitable material

Here : slowing down in Polyethylene blocks

Capture in ³He counters (exotic)

Largely independant from experiment with liquid scintillators

Direct neutron detection techniques (2)

s (2)

Most experiments use loaded liquid scintillator tanks

- Monoenergetic neutron beam make it though the whole set up
- Fissions are induced in a FC, neutron are detected within
 - a well chosen coincidence window
- The liquid scintillator acts as a moderator
 - Organic scintillators are hydrogen-rich
- The neutrons are eventually captured in a doping material
 - Dissolved in the scintillator
 - High capture cross-sections
 - Large Q-value => gamma multiplicity and energy
- Efficiency evaluated from a ²⁵²Cf(sf) run

Diven et al Phys Rev 101-3 1012 (1956)

Doping element choice

- Cadmium and gadolinium are classical choices
- 8 to 9 MeV gammas emitted by the neutron capture

- Incredibly efficieent detector
 - The neutron capture in Gd is clearly seen by photomultipliers
 - Typically 80 to 90% efficiency (fission neutrons)
- Neutron capture kinematics is relatively slow
 - Onset of capture : 3-5 us
 - Total capture time as long as 40 to 100 us
 - Doping type and concentration dependent
- Counting time is of 10s of us
 - Noise sensitive detector
 - All low energy neutron coming into the detector are measured
 - Refined background substraction technique needed

Doped-Liquid scintillator method

- Background minimization techniques
 - Low neutron beam intensity (background prop to the beam intensity)
- Stack of actinide targets to ensure a reasonable fission rate
 - Beam energy possibly degraded along the fission detector
- Caveat: actinide fission neutrons can be different from ²⁵²Cf(sf) neutrons
 - PFNS
 - Angular distribution (anisotopy and experimental cuts)
- Detection efficiency corrections
 - Small effects (sub percent)
- New neutron detector derived from that approach: SCONE
 - Solid state scintillator
 - No vessel

PFNS measurement based experimental approach

From our PFNS experiments, we infer the nubar

- Largely different approch
- Partially independent from classical experiments
- No slowing down
- Neutrons detected "as emitted"
- Double differential distribution evaluated
 - \bullet d²N/dEd θ
 - Explicit integration (vs implicit)
- Require the maximum energy and angular coverage
 - Driving force for the development of the vendeta array
 - Efficient in 100 keV to 14 MeV range
 - 12 polar angle from very forward to very backward
 - Very small energetic and angular extrapolation
 FIESTA Workshop Julien Taieb

PFNS measurement based experimental approach

- No slowing down
 - Short counting gate duration (200ns)
- No sensitivity to thermal neutrons
 - Very limited background (few percents)
 - Monitored online
- Much lower detection efficiency
- Not suitable for very exotic fissioning nuclide
 - 10s of mg needed
- Strong neutron source needed (WNR)
- Efficiency calibration from a ²⁵²Cf chamber
 - Data fully correlated to the ²⁵²Cf nubar

Data for ²³⁹Pu(n,f)

- Data from the CEA Chi-Nu detector run in 2017
- Consistent data over [1;20 MeV]
- In agreement with previous measurements
 - Usually lower uncertainty
- Low uncertainty below 15 MeV
 - Statistics is lacking above
- Above 20 MeV, lower limit only
 - Some preequilibrium neutrons not accounted for
- Published excluding the ²⁵²Cf(sf) nubar uncertainty

- The ²⁵²Cf run provides us with a detector efficiency for all 72 neutron detectors
 - Some neutrons are scattered and bounce back to the detectors
 - We evaluate an "effective" efficiency
- How does this affect the nubar measurement
- Source of uncertainty: PFNS difference between 252Cf(sf) and studied actinide
- Full monte-Carlo simulation based on GEANT 4
 - Realistic geometry
 - Realistic spectra used (from the PFNS data) for all energy bins
- Impact evaluated for ²³⁵U nubar, including the experimental cuts
 - Maximum deviation of 0.2% at 6 MeV, lower than 0.1% below 5.5 MeV

- New experimental approach for measuring nubar based on the PFNS measurement developed
- We profit from the high intensity neutron beam from WNR
- And the recent VENDETA array
- We could provide high accuracy results over the whole energy range
- Data largely independent from previous measurement
 - Excluding the ²⁵²Cf nubar normalisation
- ²³⁹Pu data (ChiNu detector array) published
- ²³⁵U data (ChiNu detector array) final, to be published
- ²³⁸U data (1st VENDETA experiment) to be finalized

Conclusion

FIESTA Workshop - Julien Taieb