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Applying Machine Learning to Explore What Drives 
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We are applying machine learning to accelerate progress in 
understanding fission physics.

The big questions we are after: 

• What is the physical root cause for experimental discrepancies?
• What experiment can we perform to reduce scatter in experimental database?

Benefit of answering questions:

• More targeted experiments reducing spread in an experimental data. This 
accelerates progress in understanding fission physics.

• Reduced uncertainties and better means for nuclear data that in turns lead to more 
reliable application simulation and better model fitting.
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Background: Neutron Data Standards introduced  unrecognized 
sources of uncertainties to account for discrepancies in data.

The good: we are quantifying obviously 
missing uncertainties in data.

The ugly: unc. based on the spread of data 
covering up our missing understanding 
physics root causes of discrepancies.

The bad: large unc. on quantities depending 
on standards with no way forward to reduce 
unc. if defined based on the spread of data.
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The solution: We (AIACHNE and standards) try to uncover physics root causes 
driving discrepancies and either reject data with justification or correct them.
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AIACHNE created a ML capability to explore discrepancies 
in past  252Cf(sf)  PFNS exp. & measures new data.

To that end, we used a ML capability to pin-point measurement features likely 
related to bias and choose most impactful experiments based on MCNP studies. 
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The problem at hand: Experimental 252Cf PFNS have a wide 
systematic scatter of data at low and high energies.

Discrepancies at low Eout understood:
caused by incorrect resolution of 6Li 
resonance for detector response.
Discrepancies at high Eout not understood:

• Background?

• Time resolution?

• Fission fragment issues?

• Neutron detector response?
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Root cause of discrepancies must be tied to set-up issue or 
analysis technique encoded in measurement features.

Here, we analyze features 
related to neutron and fission 
detectors.

This is a filtered list of feature categories!!!

These metadata are retrieved from EXFOR in a by-hand process.
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AIACHNE is using a sparse Bayesian model to identify 
potential sources of bias in 252Cf PFNS data.

We are extending the Bayesian model 
with an energy-dependent, 
multiplicative bias. Sparsity ensures no 
bias for most energies but the term is 
active when the data indicate the need. 
A horseshoe prior reduces the number 
of potential biases.

𝒚 = 𝑫𝝈 % 𝒆𝜹 + 𝜺
𝜹 = 𝑩𝜸 = relative bias
𝐁 = bias basis matrix
𝜸 = bias coefficients
& = element-wise product

The algorithm deals well with a large number of
correlated features compared to experimental data.
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Neutron Detector: 6Li

Advantage of algorithm: Enables to more quantitatively identify bias in exp. 
data as a function of energy to be included in evaluation algorithm.

Validation example: does the algorithm correctly identify 
expected bias due to 6Li peak? – Yes, it does!

Study is
documented in 
paper: N. Walton, 
LA-UR-24-29607 
(2024), submitted.
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Fission Detection Efficiency Correction Method: Calculated/Stapre

~30% of 
samples

~10% of 
samples

Another example: High-E bias identified across several 
feature groups, less obvious but experimentally explainable.

Fission Detection Efficiency Correction Method: Calculated/Measured

Effect at high energies was 
attributed to many features. 
Detailed expert discussion and 
analysis of data pointed to fission 
detection (angular dependence 
of fission fragments).

The algorithm finds features 
related to bias experts might 
have otherwise overlooked. 
The algorithm results require 
expert interpretation.
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ML results also list in several categories Kornilov data. 

Bias in Kornilov data related to:
• Fission fragment efficiency,
• Various uncorrected 

background,
• Neutron detector

components, 
• ...
In essence, the algorithm told 
us to go and look more at the 
data. J

Mostly Kornilov data along 
with Maerten data.

Fission fragment detection efficiency
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It is key for experts to take a second look at ML results. 
We are doing that via exp. and simulations.

• Boldeman 6Li bias: will be explored 
via CoGNAC 252Cf PFNS 
experiment by K. Kelly.

• Kornilov bias: AIACHNE team 
worked with Tom Massey to 
identify issue (neutron detector 
response extrapolation) and 
removed biased run from data set.

• Maerten bias: will simulate fission 
fragment angular distribution for 
correction.
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New evaluation reduces 6Li peak but more work needed at 
high outgoing energies correcting data. 
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Thank you for listening!

Summary: Sparse Bayesian model pointed us 
successfully to what drives discrepancies 
between experimental data.

Lesson learned:

o You can only progress in improving physics 
understanding if you question what is causing 
systematic discrepancies in exp. databases! 

o Interplay between expert judgment and ML 
results can be key to tease out more 
understanding of physics information than 
each on their own.


