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We are applying machine learning to accelerate progress in
understanding fission physics.

The big questions we are after:

e Whatis the physical root cause for experimental discrepancies?
e What experiment can we perform to reduce scatter in experimental database?

Benefit of answering questions:

e More targeted experiments reducing spread in an experimental data. This
accelerates progress in understanding fission physics.

e Reduced uncertainties and better means for nuclear data that in turns lead to more
reliable application simulation and better model fitting.



Background: Neutron Data Standards introduced unrecognized
sources of uncertainties to account for discrepancies in data.
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The ugly: unc. based on the spread of data
covering up our missing understanding
physics root causes of discrepancies.

The bad: large unc. on quantities depending

239py/235 fission cross section

1 10 H
Incident Neutron Energy (MeV) on standards with no way forward to reduce
Carlson, NDS 148 (2018); Capote, NDS 163 (2020). unc. if defined based on the spread of data.

The solution: We (AIACHNE and standards) try to uncover physics root causes
., driving discrepancies and either reject data with justification or correct them.
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AIACHNE created a ML capability to explore discrepancies
in past 2°2Cf(sf) PFNS exp. & measures new data.
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To that end, we used a ML capability to pin-point measurement features likely
@ related to bias and choose most impactful experiments based on MCNP studies.



The problem at hand: Experimental 2°2Cf PFNS have a wide
systematic scatter of data at low and high energies.

Cf-252 PFNS Data Discrepancies at low E,; understood:
—— Mannhart (1989) . . M
* Expermenta Daa caused by incorrect resolution of SLi
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resonance for detector response.

Discrepancies at high Eout not understood:
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Root cause of discrepancies must be tied to set-up issue or
analysis technique encoded in measurement features.
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Here, we analyze features
related to neutron and fission

detectors.
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Correction Features
ShadowBarBackground
BackgroundCorrected
RandomCoincidenceBackground
GammaBackground

AlphaBackground
WrapAroundBackground
MultipleScatteringSampleBackingCorrected
MultipleScatteringSurroundingCorrected
AttenuationSampleBackingCorrected
AttenuationSurroundingCorrected
FissionDetectionEfficiencyCorrected
NeutronDetectionEfficiencyCorrected
NeutronDetectionResponseCorrected

SampleDecayCorrected

FissionFragmentAbsorptioninSampleCorrected

SignalPulsePileupCorrected

DeadtimeCorrected

AngularDistributionFissionFragmentsCorrected

ImpuritiesCorrected

Hardware Features
FissionDetector1_raw
FissionDetector1_caseA
FissionDetector1_caseB
FissionDetector1_caseC
FissionParticleDetected
FissionFragmentDetectorEfficiency
FissionDetectorGas_raw
FissionDetectorGas_caseA
AngularAcceptanceofFFDetector
NeutronDetector_raw
NeutronDetector_caseA
AngularCoverageofNeutronDetector
Ne nDetectorSizeCM
DetectorStructuralMaterialAu

NeutronDetectorStructuralMaterialAl

Method Features
RandomCoincidence
BackgroundGeneral
BackgroundAlpha
GammaBackground

MSinSample

MSinSurrounding
FissionDetectorEfficiencyMethod
FFAbsorptionAngularDistributionMethod
NeturonDetectorResponseMethod
NeturonDetectorEfficiencyMethod

DeadtimeDeterminationMethod

This is a filtered list of feature categories!!!

These metadata are retrieved from EXFOR in a by-hand process.



AIACHNE is using a sparse Bayesian model to identify
potential sources of bias in 2°2Cf PFNS data.

We are extending the Bayesian model Cf-252 PFNS Data
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The algorithm deals well with a large number of
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'9 correlated features compared to experimental data.



Validation example: does the algorithm correctly identify
expected bias due to °Li peak? — Yes, it does!

Neutron Detector: °Li
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Advantage of algorithm: Enables to more quantitatively identify bias in exp.

data as a function of energy to be included in evaluation algorithm.
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Another example: High-E bias identified across several
feature groups, less obvious but experimentally explainable.

Fission Detection Efficiency Correction Method: Calculated/Measured

Effect at high energies was
attributed to many features.
Detailed expert discussion and
analysis of data pointed to fission
detection (angular dependence
of fission fragments).

The algorithm finds features

related to bias experts might
have otherwise overlooked.

The algorithm results require
expert interpretation.
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ML results also list in several categories Kornilov data.

Fission fragment detection efficiency

Bias in Kornilov data related to: - 16 .
o o > - M.ostly Kornilov data along
« Fission fragment efficiency, 3., Wwith Maerten data.
: " [lid
« Various uncorrected %w . -;..5.'“’,. l
. STIT & o ¥
background, = i !
- ® Active Data
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components,
In essence, the algorithm told
us to go and look more at the

data. ©
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It is key for experts to take a second look at ML results.
We are doing that via exp. and simulations.
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« Boldeman SLi bias: will be explored
via CoGNAC 222Cf PFNS
experiment by K. Kelly.

 Kornilov bias: AIACHNE team

Neutron Energy from Time of Flight (MeV
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= Mannhart Eval.

& Kornilov-combined
6 ® Chalupka
Maerten 0 deg
Maerten 60 deg

identify issue (neutron detector
response extrapolation) and
removed biased run from data set.

 Maerten bias: will simulate fission
fragment angular distribution for
correction.
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1.42MeV)

PFNS/ Maxwellian(T

New evaluation reduces fLi peak but more work needed at

high outgoing energies correcting data.
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Research reported in this
Summary: Sparse Bayesian model pointed us publication was supported by the

successfully to what drives discrepancies U.S. Department of Energy,
Office of Science, Office of

between experimental data. \
P Nuclear Physics, under the

Nuclear Data InterAgency
Working Group Research

Lesson learned:
Program.

o You can only progress in improving physics
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systematic discrepancies in exp. databases!

o Interplay between expert judgment and ML
results can be key to tease out more
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understanding of physics information than
each on their own.
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