Fission processes in astrophysics

Rebecca Surman University of Notre Dame

FIESTA 2024 22 Nov 2024

r-process nucleosynthesis

proton number Z

neutron number N

r-process astrophysical sites

Binary neutron star mergers

(also neutron starblack hole mergers?)

Exotic supernovae (?)

r-process observables: abundance patterns

Arnould+2007, Hotokezaka+2018

r-process elements in metal-poor stars

solar system r-process residuals

consistent r-process pattern: evidence for fission cycling?

Holmbeck, Sprouse, Mumpower, Vassh, Surman, Beers, Kawano 2019

connecting fission properties to r-process observables

 Can we exploit knowledge of fission and fissioning isotopes to interpret r-process observables?

• What can we learn about the fission properties of neutron-rich actinides from *r*-process observables?

connecting fission properties to *r*-process observables

 Can we exploit knowledge of fission and fissioning isotopes to interpret r-process observables?

• What can we learn about the fission properties of neutron-rich actinides from *r*-process observables?

r-process observables: electromagnetic signatures

kilonova SSS17a bolometric light curve

NSM evidence for specific elements

College of Science

AT2017gfo

M1 line + continuum

[Te III] 2.10μm

[Te I] 2.10µm

NSM evidence for specific elements

Did the GW170817 merger produce actinides?

Zhu, Wollaeger, Vassh, Surman, Sprouse, Mumpower, Möller, McLaughlin, Korobkin, Jaffke, Holmbeck, Fryer, Even, Couture, Barnes, ApJL 2018

Did the GW170817 merger produce actinides?

Subsequent KNe show similar late time behavior

²⁵⁴Cf: dependence on nuclear inputs

Zhu, Lund, Barnes, Sprouse, Vassh, McLaughlin, Mumpower, Surman 2021

Gamma rays from a nearby event

Korobkin, Hungerford, Fryer, Mumpower, Misch, Sprouse, Lippuner, Surman, Couture, Bloser, Shirazi, Evan, Vestrand, Miller 2020

also Hotokezaka+2016; Li 2019; Wu+2019; Ruiz-Lapuente, Korobkin 2020

Gamma rays from fission

Wang, Vassh, Sprouse, Mumpower, Vogt, Randrup, Surman, ApJL 2020

Wang, Vassh+ in preparation 2024

connecting fission properties to *r*-process observables

• Can we exploit knowledge of fission and fissioning isotopes to interpret *r*-process observables?

 What can we learn about the fission properties of neutron-rich actinides from r-process observables?

Fission yield signatures

Neutron Number (N)

Vassh, Mumpower, McLaughlin, Sprouse, Surman 2020

Fission yield signatures

Fission yield signatures

Roederer, Vassh, Holmbeck, Mumpower, Surman, Cowan, Beers, Ezzeddine, Frebel, Hansen, Placco, Sakari, *Science* 2023

summary

The origin of the heaviest elements in the *r*-process of nucleosynthesis has been one of the greatest mysteries in nuclear astrophysics for decades.

Despite considerable progress in the past several years, including the first direct detection of an *r*-process event, the *r*-process site(s) has not been definitively determined.

An understanding of fission is crucial for the interpretation of *r*-process observables such as abundance patterns and light curves.

Additionally, as other nuclear physics uncertainties are reduced, details of fission properties of neutron-rich actinides may be extractable from *r*-process data.

Mumpower, Surman, McLaughlin, Aprahamian, JPPNP 2016

acknowledgements

University of Notre Dame

Jonathan Cabrera Garcia

Lauren Harewood

Ashabari Majumdar

Pranav Nalamwar

Mengke Li

Yukiya Saito

Ani Aprahamian

Tim Beers

Maxime Brodeur

Facility for Rare Isotope Beams

Erin Good

Sean Liddick

Artemis Spyrou

King's College (UK)
John Fllis

IHEP Beijing Xilu Wang

University of Illinois

Haille Perkins
Brian Fields

North Carolina State University

Zhenghai Liu Kelsey Lund

Atul Kedia

Yonglin Zhu

Gail McLaughlin

Ian Roederer

Livermore National Laboratory

Erika Holmbeck

Jutta Escher

Nicholas Schunck

Ramona Vogt

University of North Carolina

Evan Ney

Jon Engel

Argonne National Laboratory

Jason Clark

Rodney Orford

Guy Savard

students postdocs

Los Alamos National Laboratory

Trevor Sprouse

Chris Fryer

Toshihiko Kawano

Matthew Mumpower

TRIUMF National Laboratory

Nicole Vassh

Iris Dillmann

Reiner Krucken

University of Tennessee/ORNL

Mitch Allmond

Raph Hix

Robert Grzywacz

Krzysztof Rykaczewski

MIT

Anna Frebel

