

12 May 2025

John Salguero State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles, CA 90013

RE: Autospool-RWB4_WildFireResponse_2025

Dear John Salguero,

The following pages contain the analytical results for the sample(s) received for your project. The second page of this report lists the individual sample descriptions with the corresponding laboratory number(s). We have also provided a copy of the Chain of Custody document (if received with your sample(s)). Please note that any unused portion of the sample(s) may be responsibly discarded after 30 days from the above report date unless you have requested otherwise.

Thank you for the opportunity to serve your analytical needs. If you have any questions or concerns regarding this report please contact our Client Service Department.

Sincerely,

Autospool Station For Alexandria L. Guerra Special Programs Coordinator

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Lab ID	Matrix	Station Code	Location Code	Sampled	Received
DPH 107B	C5E0127-01	Sample Water	N/A	N/A	05/01/25 09:25	05/01/25 18:28
DPH 108	C5E0127-02	Sample Water	N/A	N/A	05/01/25 10:50	05/01/25 18:28
SMB 1-18	C5E0127-03	Sample Water	N/A	N/A	05/01/25 11:30	05/01/25 18:28
SMB 3-4	C5E0127-04	Sample Water	N/A	N/A	05/01/25 07:45	05/01/25 18:28
DPH-002	C5E0127-05	Sample Water	N/A	N/A	05/01/25 09:00	05/01/25 18:28
DPH 103	C5E0127-06	Sample Water	N/A	N/A	05/01/25 08:55	05/01/25 18:28
SMB 2-4	C5E0127-07	Sample Water	N/A	N/A	05/01/25 08:17	05/01/25 18:28
SMB 2-7	C5E0127-08	Sample Water	N/A	N/A	05/01/25 10:00	05/01/25 18:28
DPH-105B	C5E0127-09	Sample Water	N/A	N/A	05/01/25 11:10	05/01/25 18:28
SMB 1-16	C5E0127-10	Sample Water	N/A	N/A	05/01/25 10:30	05/01/25 18:28
SMB 2-10	C5E0127-11	Sample Water	N/A	N/A	05/01/25 12:00	05/01/25 18:28
SMB 2-10 Duplicate	C5E0127-12	Sample Water	N/A	N/A	05/01/25 12:35	05/01/25 18:28

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

DPH 107B C5E0127-01 (Liquid, Sampled: 05/01/25 09:25)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcocl	k Labora	tories, Ind	c Rivers	side				
Cations										
Calcium	410	1.4	10	mg/L	10	5E02097	05/02/25	05/05/25	EPA 200.7	
Total Hardness	6700		10	"	"	"	u	"	SM 2340B/EPA 200.7	
Magnesium	1400	2.1	10	"	"	"	"	"	EPA 200.7	
Magnesium-Dissolved	1200	0.42	2.0	"	1	5E05172	05/05/25	05/05/25	"	N_Filt, NMint
Anions										
Bicarbonate	110	5.0	5.0	mg/L as CaCO3	1	5E05218	05/05/25	05/05/25	SM 2320B	
Carbonate	ND	5.0	5.0	"	"	"	u	"	"	
Hydroxide	ND	5.0	5.0	"	"	"	"	"	"	
Total Alkalinity	110	5.0	5.0	"	"	"	"	"	"	
Nitrate as N	ND	6.0	10	mg/L	50	5E01110	05/02/25	05/02/25	EPA 300.0	N_RLd
Nitrate/Nitrite as N	ND	0.0024	0.010	"	1	5E02134	05/02/25	05/02/25	EPA 353.2	
Sulfate	2700	46	50	"	100	5E05249	05/06/25	05/06/25	EPA 300.0	
Solids										
Settleable Solids	0.2	0.1	0.1	mL/L	1	5E02083	05/02/25	05/02/25	SM 2540F	
Total Dissolved Solids	37000	500	500	mg/L	50	5E02113	05/02/25	05/02/25	SM 2540C	
Total Suspended Solids	170	1	1	"	2	5E02082	05/02/25	05/02/25	SM 2540D	
Aggregate Organic Compounds										
Total Organic Carbon	2.8		0.70	mg/L	1	5E05188	05/05/25	05/05/25	SM 5310B	
Nutrients										
Ammonia-Nitrogen	0.02	0.008	0.01	mg/L	1	5E07156	05/07/25	05/07/25	SM4500NH3 H G	
Ortho Phosphate Phosphorus	ND		0.050	"	"	5E01121	05/01/25	05/01/25	SM 4500P E	
Phosphorus, Total as P	ND	0.02	0.05	"	"	5E02121	05/02/25	05/05/25	"	Nconf, NMint
Kjeldahl Nitrogen	1.0	0.7	1.0	"	"	5E05199	05/05/25	05/06/25	EPA 351.2	
Total Nitrogen (N)	1.0	0.70	1.0	"	"	[CALC]	"	"	Calculation	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

DPH 107B C5E0127-01 (Liquid, Sampled: 05/01/25 09:25)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Labora	tories, In	c Rivers	side				
Metals and Metalloids										
Aluminum	ND	280	500	ug/L	10	5E02097	05/02/25	05/05/25	EPA 200.7	N_RLm
Aluminum-Dissolved	ND	55	100	"	1	5E05172	05/05/25	05/05/25	"	N_Filt, N_RLm
Arsenic	8.1	2.9	20	"	4	5E02080	05/02/25	05/02/25	EPA 200.8	N_RLm, J
Arsenic-Dissolved	9.9	7.1	20	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm, J
Beryllium	ND		40	"	4	5E02080	05/02/25	05/02/25	"	N_RLm
Beryllium-Dissolved	ND		40	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Cadmium	ND	0.44	4.0	"	4	5E02080	05/02/25	05/02/25	"	N_RLm
Cadmium-Dissolved	ND	0.44	8.0	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Total Chromium	ND	16	80	"	4	5E02080	05/02/25	05/02/25	"	N_RLm
Chromium-Dissolved	ND	16	80	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Hexavalent Chromium	ND		1.0	"	10	5E02088	05/03/25	05/03/25	EPA 218.6	N_RLm
Copper	ND	6.5	40	"	4	5E02080	05/02/25	05/02/25	EPA 200.8	N_RLm
Copper-Dissolved	ND	6.5	40	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Iron	ND	49	500	"	10	5E02097	05/02/25	05/05/25	EPA 200.7	N_RLm
Iron-Dissolved	ND	9.9	100	"	1	5E05172	05/05/25	05/05/25	"	N_Filt
Mercury	ND	0.56	1.0	"	"	5E02074	05/02/25	05/02/25	SM 3112B	
Mercury-Dissolved	ND	0.56	1.0	"	"	"	"	05/02/25	"	N_Filt
Manganese	ND	7.5	40	"	4	5E02080	05/02/25	05/02/25	EPA 200.8	N_RLm
Manganese-Dissolved	ND	7.5	40	"	1	5E02081	05/02/25	05/02/25		N_Filt, N_RLm
Nickel	ND	13	40	"	4	5E02080	05/02/25	05/02/25	"	N_RLm
Nickel-Dissolved	ND	13	40	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Lead	ND	6.2	40	"	4	5E02080	05/02/25	05/02/25	"	N_RLm
Lead-Dissolved	ND	6.2	40	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Selenium	130	6.7	20	"	4	5E02080	05/02/25	05/02/25	"	
Selenium-Dissolved	120	6.7	20	"	1	5E02081	05/02/25	05/02/25	"	N_Filt
Zinc	ND	20	40	"	4	5E02080	05/02/25	05/02/25	"	N_RLm
Zinc-Dissolved	ND	20	40	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200

Los Angeles CA, 90013

Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

DPH 107B

C5E0127-01 (Liquid, Sampled: 05/01/25 09:25)

Analyte	Result	MDL RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock Labora	tories, In	c Rivers	side				
Volatile Organic Compounds by	y EPA 624.1							N_RLr	n, Nhdsp
1,1,1-Trichloroethane	ND	50	ug/L	100	5E03067	05/03/25	05/03/25	EPA 624.1	
1,1,2,2-Tetrachloroethane	ND	50	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	50	"	"	"	II .	"	n n	
1,2-Dichlorobenzene	ND	50	"	"	"	"	"		
1,2-Dichloroethane	ND	50	"	"	"	"	"	"	
1,2-Dichloropropane	ND	50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	50	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	50	"	"	"	"	"	"	
2-Chloroethylvinyl Ether	ND	500	"	"	"	"	"	"	NCEVE
Acrolein	ND	1000	"	"	"	"	"	"	
Acrylonitrile	ND	1000	"	"	"	"	"	"	
Benzene	ND	50	"	"	"	"	"	"	
Bromodichloromethane	ND	50	"	"	"	"	"	"	
Bromoform	ND	100	"	"	"	II .	"	n	
Bromomethane	ND	50	"	"	"	"	"	"	
Carbon Tetrachloride	ND	50	"	"	"	"	"	"	
Chlorobenzene	ND	50	"	"	"	"	"	"	
Chloroethane	ND	50	"	"	"	"	"	"	
Chloroform	ND	50	"	"	"	"	"		
Chloromethane	ND	50	"	"	"	"	"		
cis-1,3-Dichloropropene	ND	50	"	"	"	"	"		
Dibromochloromethane	ND	50	"	"	"	"	"		
Dichlorodifluoromethane	ND	50	"	"	"	"	"	"	
Ethylbenzene	ND	50	"	"	"	"	"	"	
Methyl tert Butyl Ether	ND	500	"	"		"		"	
Methylene Chloride	ND	300	"	"	"	"		"	
Tetrachloroethene	ND	50	"	"	"	"	"	"	
Toluene	ND	50	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	50	"	"	"	u u	"	II .	
trans-1,3-Dichloropropene	ND	50	"	"			"		
Trichloroethene	ND	50	,,						

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

DPH 107B

C5E0127-01 (Liquid, Sampled: 05/01/25 09:25)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcoc	k Laborat	tories, In	c Rivers	side				
Volatile Organic Compounds by EF	PA 624.1								N_RLr	n, Nhdsp
Trichlorofluoromethane	ND		500	ug/L	100	5E03067	05/03/25	05/03/25	EPA 624.1	
Vinyl Chloride	ND		50	"	"	"	"	"	"	
Xylenes (m+p)	ND		50	"	"	"	"	"	"	
Xylenes (ortho)	ND		50	"	"	"	"	"	"	
Surrogate: 1,2-Dichlorobenzene-d4			103 %	80-	120	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4			104 %	80-	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			95 %	80-	120	"	"	"	"	
Surrogate: Toluene-d8			100 %	80-	120	"	"	"	"	
PFAS by LCMSMS (QSM 5.3 Table	B-15 Complia	ant)								
10:2 Fluorotelomer sulfonate	ND	4.5	6.7	ng/L	1	5E05186	05/05/25	05/06/25	ESB SOP T758	NISr
11-chloroeicosafluoro Boxaundecane-1-sulfonic Acid	ND	1.2	4.2	"	"	"	"	"	"	
2H,2H,3H,3H-Perfluorodecanoic acid (7:3 FTCA)	ND	3.5	6.7	"	"	"	"	u	"	
2H,2H,3H,3H-Perfluorooctanoic acid (5:3 FTCA)	ND	3.5	6.7	"	"	"	"	u	"	
4,4,5,5,6,6,6-Heptafluorohexanoic Acid (3:3 FTCA)	ND	1.9	4.2	"	"	"	"	"	"	
4,8-dioxa-3H-perfluorononanoic Acid (ADONA)	ND	2.4	4.2	"	"	"	"	"	"	
1:2 Fluorotelomer Sulfonate	ND	1.7	4.2	"	"	"	"	"	"	NISr
3:2 Fluorotelomer Sulfonate	ND	1.3	4.2	"	"	"	"	"	"	NISr
3:2 Fluorotelomer Sulfonate	ND	1.1	4.2	"	"	"	II .	"	"	NISr
9-chlorohexadecafluoro-3-oxanone- 1-sulfonic Acid	ND	0.72	4.2	"	"	"	"	u	"	
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.6	4.2	"	"	"	"	u	"	
N-ethyl perfluorooctanesulfonamidoacetic	ND	3.7	6.7	"	"	"	"	"	"	NISr
N-Ethylperfluorooctanesulfonamide EtFOSA)	ND	2.9	6.7	"	"	"	"	u	"	
N-Ethylperfluorooctanesulfonamido ethanol (EtFOSE)	ND	2.8	6.7	"	"	"	"	"	"	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200

Los Angeles CA, 90013

Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

DPH 107B

C5E0127-01 (Liquid, Sampled: 05/01/25 09:25)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Labora	tories, In	c Rivers	side				
PFAS by LCMSMS (QSM 5.3 Table	B-15 Complia	ant)								
N-methyl	ND	2.2	6.7	ng/L	1	5E05186	05/05/25	05/06/25	ESB SOP	
perfluorooctanesulfonamidoacetic									T758	
N-Methylperfluorooctanesulfonamid e (MeFOSA)	ND	4.1	6.7	"	"	"	"	"	"	
N-Methylperfluorooctanesulfonamid pethanol (MeFOSE)	ND	4.0	6.7	"	"	"	W	"	"	
Perfluorobutanesulfonic Acid (PFBS)	ND	2.0	4.2	"	"	"	II	"	"	
Perfluorobutanoic acid (PFBA)	ND	1.8	4.2	"	"	"	u u	"	II .	
Perfluorodecanesulfonic acid (PFDS)	ND	2.4	4.2	"	"	"	u	"	"	
Perfluorodecanoic Acid (PFDA)	ND	1.3	4.2	"	"	"	"	"	"	
Perfluorododecanoic Acid (PFDoDA)	ND	1.8	4.2	"	"	"	II	"	"	
Perfluoroheptanesulfonic acid	ND	1.6	4.2	"	"	"	II	"	"	
Perfluoroheptanoic Acid (PFHpA)	ND	2.7	4.2	"	"	"	"	"	"	
Perfluorohexadecanoic acid	2.3	1.6	4.2	"	"	"	u u	"	"	,
PFHxDA)										
Perfluorohexanesulfonic Acid PFHxS)	ND	1.6	4.2	"	"	"	II	"	"	
Perfluorohexanoic Acid (PFHxA)	ND	3.2	4.2	"	"	"	II .	"	"	
Perfluorononanesulfonic acid (PFNS)	ND	2.4	4.2	"	"	"	"	"	"	
Perfluorononanoic Acid (PFNA)	ND	1.9	4.2	"	"	"	"	"	"	
Perfluorooctadecanoic acid (PFOcDA)	ND	3.5	4.2	"	"	"	"	"	"	
Perfluorooctane Sulfonamide PFOSA)	ND	2.6	6.7	"	"	"	"	"	"	
Perfluorooctanesulfonic Acid PFOS)	ND	1.3	4.2	"	"	"	u	"	"	
Perfluorooctanoic Acid (PFOA)	ND	2.3	4.2	"	"	u	n n	u	"	
Perfluoropentanesulfonate (PFPeS)	ND	2.6	4.2	"	"	u	n n	u	"	
Perfluoropentanoic acid (PFPeA)	ND	0.93	4.2	"	"	u .	"	· ·	"	
Perfluorotetradecanoic Acid PFTeDA)	ND	1.1	4.2	"	"	"	II .	11	"	
Perfluorotridecanoic Acid (PFTrDA)	ND	1.1	4.2	"	"	"	"		"	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

DPH 107B

C5E0127-01 (Liquid, Sampled: 05/01/25 09:25)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notos
Allalyte	Resuit	MIDE	KL	Units	Dilution	Datcii	Frepareu	Analyzeu	Metriou	Notes
		Babcock	Laborat	tories, In	c Rivers	side				
PFAS by LCMSMS (QSM 5.3 Table	B-15 Complia	ant)								
Perfluoroundecanoic Acid (PFUnA)	ND	0.77	4.2	ng/L	1	5E05186	05/05/25	05/06/25	ESB SOP T758	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

DPH 108 C5E0127-02 (Liquid, Sampled: 05/01/25 10:50)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcocl	k Labora	tories, Inc	c Rivers	side				
Cations										
Calcium	400	1.4	10	mg/L	10	5E02097	05/02/25	05/05/25	EPA 200.7	
Total Hardness	6600		10	"	"	u	"	"	SM 2340B/EPA 200.7	
Magnesium	1300	2.1	10	"	"	"	u u	"	EPA 200.7	
Magnesium-Dissolved	1200	0.42	2.0	"	1	5E05172	05/05/25	05/05/25	"	N_Filt
Anions										
Bicarbonate	120	5.0	5.0	mg/L as CaCO3	1	5E05218	05/05/25	05/05/25	SM 2320B	
Carbonate	ND	5.0	5.0	"	"	"	II .	"	"	
Hydroxide	ND	5.0	5.0	"	"	"	"	"	"	
Total Alkalinity	120	5.0	5.0	"	"	"	II .	"	"	
Nitrate as N	ND	6.0	10	mg/L	50	5E01110	05/02/25	05/02/25	EPA 300.0	N_RLd
Nitrate/Nitrite as N	ND	0.0024	0.010	"	1	5E02134	05/02/25	05/02/25	EPA 353.2	
Sulfate	2800	23	25	"	50	5E01110	05/02/25	05/02/25	EPA 300.0	
Solids										
Settleable Solids	0.7	0.09	0.09	mL/L	0.94	5E02083	05/02/25	05/02/25	SM 2540F	NRPDo
Total Dissolved Solids	36000	500	500	mg/L	50	5E02113	05/02/25	05/02/25	SM 2540C	
Total Suspended Solids	380	2	2	"	4	5E02082	05/02/25	05/02/25	SM 2540D	
Aggregate Organic Compounds										
Total Organic Carbon	2.2		0.70	mg/L	1	5E05188	05/05/25	05/05/25	SM 5310B	
Nutrients										
Ammonia-Nitrogen	0.008	0.008	0.01	mg/L	1	5E07156	05/07/25	05/07/25	SM4500NH3 H G	J
Ortho Phosphate Phosphorus	ND		0.050	"	"	5E01121	05/01/25	05/01/25	SM 4500P E	
Phosphorus, Total as P	0.04	0.02	0.05	"	"	5E02121	05/02/25	05/05/25	"	J
Kjeldahl Nitrogen	0.8	0.7	1.0	"	"	5E05199	05/05/25	05/06/25	EPA 351.2	N_RLm, J
Total Nitrogen (N)	0.85	0.70	1.0	"	"	[CALC]	"	"	Calculation	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

DPH 108 C5E0127-02 (Liquid, Sampled: 05/01/25 10:50)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Labora	tories, In	c Rivers	side				
Metals and Metalloids										
Aluminum	ND	280	500	ug/L	10	5E02097	05/02/25	05/05/25	EPA 200.7	N_RLm
Aluminum-Dissolved	ND	55	100	"	1	5E05172	05/05/25	05/05/25	"	N_Filt, N_RLm
Arsenic	8.0	2.9	20	"	4	5E02080	05/02/25	05/02/25	EPA 200.8	N_RLm, c
Arsenic-Dissolved	9.5	7.1	20	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm, J
Beryllium	ND		40	"	4	5E02080	05/02/25	05/02/25	"	N_RLm
Beryllium-Dissolved	ND		40	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Cadmium	ND	0.44	4.0	"	4	5E02080	05/02/25	05/02/25	"	N_RLm
Cadmium-Dissolved	ND	0.44	8.0	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Total Chromium	ND	16	80	"	4	5E02080	05/02/25	05/02/25	"	N_RLn
Chromium-Dissolved	ND	16	80	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Hexavalent Chromium	ND		1.0	"	10	5E02088	05/03/25	05/03/25	EPA 218.6	N_RLm
Copper	ND	6.5	40	"	4	5E02080	05/02/25	05/02/25	EPA 200.8	N_RLn
Copper-Dissolved	ND	6.5	40	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Iron	61	49	500	"	10	5E02097	05/02/25	05/05/25	EPA 200.7	N_RLm,
Iron-Dissolved	ND	9.9	100	"	1	5E05172	05/05/25	05/05/25	"	N_Fil
Mercury	ND	0.56	1.0	"	"	5E02074	05/02/25	05/02/25	SM 3112B	
Mercury-Dissolved	ND	0.56	1.0	"	"	"	"	05/02/25	"	N_Fil
Manganese	ND	7.5	40	"	4	5E02080	05/02/25	05/02/25	EPA 200.8	N_RLm
Manganese-Dissolved	ND	7.5	40	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Nickel	ND	13	40	"	4	5E02080	05/02/25	05/02/25	"	N_RLn
Nickel-Dissolved	ND	13	40	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLn
Lead	ND	6.2	40	"	4	5E02080	05/02/25	05/02/25	"	N_RLn
Lead-Dissolved	ND	6.2	40	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Selenium	130	6.7	20	"	4	5E02080	05/02/25	05/02/25	"	
Selenium-Dissolved	120	6.7	20	"	1	5E02081	05/02/25	05/02/25	"	N_Fil
Zinc	ND	20	40	"	4	5E02080	05/02/25	05/02/25	"	N_RLm
Zinc-Dissolved	ND	20	40	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013

Project Number: Wildfire Response 2025 Project Manager: John Salguero

Project: RWB4_WildFireResponse_2025

Reported: 05/12/25 22:24

DPH 108 C5E0127-02 (Liquid, Sampled: 05/01/25 10:50)

Analyte	Result	MDL RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock Labora	tories, In	c Rivers	side				
Volatile Organic Compounds by	y EPA 624.1							N_RLr	n, Nhdsp
1,1,1-Trichloroethane	ND	50	ug/L	100	5E03067	05/03/25	05/03/25	EPA 624.1	
1,1,2,2-Tetrachloroethane	ND	50	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	50	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	50	"	"	"	"	"	n n	
1,2-Dichloroethane	ND	50	"	"	"	u u	"	n .	
1,2-Dichloropropane	ND	50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	50	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	50	"	"	"	"	"	"	
2-Chloroethylvinyl Ether	ND	500	"	"	"	"	"	"	NCEVE
Acrolein	ND	1000	"	"	"	"	"	"	
Acrylonitrile	ND	1000	"	"	"	"	"	"	
Benzene	ND	50	"	"	"	"	"	"	
Bromodichloromethane	ND	50	"	"	"	"	"	"	
Bromoform	ND	100	"	"	"	"	"	"	
Bromomethane	ND	50	"	"	"	"	"	"	
Carbon Tetrachloride	ND	50	"	"	"	"	"	"	
Chlorobenzene	ND	50	"	"	"	"	"	"	
Chloroethane	ND	50	"	·	"	"	"	"	
Chloroform	ND	50	"	"	"	"	"	"	
Chloromethane	ND	50	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	50	"	"	"	"	"	"	
Dibromochloromethane	ND	50	"	"	"	"	"	n	
Dichlorodifluoromethane	ND	50	"	"	"	"	"	"	
Ethylbenzene	ND	50	"	"	"	"	"	"	
Methyl tert Butyl Ether	ND	500	"	"	"	"	"	II .	
Methylene Chloride	ND	300	"	"	"	"	"	"	
Tetrachloroethene	ND	50	"	"	"	"	"	"	
Toluene	ND	50	"			"	"	"	
trans-1,2-Dichloroethene	ND	50			"	"	"	"	
trans-1,3-Dichloropropene	ND	50		"	"	"	"	"	
Trichloroethene	ND	50	"	"	"			"	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

DPH 108 C5E0127-02 (Liquid, Sampled: 05/01/25 10:50)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcoc	k Labora	tories, In	c Rivers	side				
Volatile Organic Compounds by EF	PA 624.1								N_RLr	n, Nhdsp
Trichlorofluoromethane	ND		500	ug/L	100	5E03067	05/03/25	05/03/25	EPA 624.1	
Vinyl Chloride	ND		50	"	"	"	"	"	"	
Xylenes (m+p)	ND		50	"	"	"	"	"	"	
Xylenes (ortho)	ND		50	"	"	"	"	"	"	
Surrogate: 1,2-Dichlorobenzene-d4			104 %	80-	120	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4			108 %	80-	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			93 %	80-	120	"	"	"	"	
Surrogate: Toluene-d8			99 %	80-	120	"	"	"	"	
PFAS by LCMSMS (QSM 5.3 Table	B-15 Complia	ant)								
10:2 Fluorotelomer sulfonate	ND	4.7	7.0	ng/L	1	5E05186	05/05/25	05/06/25	ESB SOP T758	NISn
11-chloroeicosafluoro 3oxaundecane-1-sulfonic Acid	ND	1.2	4.4	"	"	"	"	"	"	
2H,2H,3H,3H-Perfluorodecanoic acid (7:3 FTCA)	ND	3.7	7.0	"	"	"	"	"	"	
2H,2H,3H,3H-Perfluorooctanoic acid (5:3 FTCA)	ND	3.6	7.0	"	"	"	"	"	"	
4,4,5,5,6,6,6-Heptafluorohexanoic Acid (3:3 FTCA)	ND	2.0	4.4	"	"	"	"	II	"	
4,8-dioxa-3H-perfluorononanoic Acid (ADONA)	ND	2.5	4.4	"	"	"	"	"	"	
4:2 Fluorotelomer Sulfonate	ND	1.7	4.4	"	"	"	"	"	"	
6:2 Fluorotelomer Sulfonate	ND	1.3	4.4	"	"	"	"	"	"	NISm
8:2 Fluorotelomer Sulfonate	ND	1.1	4.4	"	"	"	"	"	"	NISm
9-chlorohexadecafluoro-3-oxanone- 1-sulfonic Acid	ND	0.75	4.4	"	"	"	"	II	"	
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.7	4.4	"	"	"	"	II	"	
N-ethyl perfluorooctanesulfonamidoacetic	ND	3.8	7.0	"	"	"	"	"	"	
N-Ethylperfluorooctanesulfonamide (EtFOSA)	ND	3.0	7.0	"	"	"	"	"	"	
N-Ethylperfluorooctanesulfonamido ethanol (EtFOSE)	ND	2.9	7.0	"	II .	"	"	"	"	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

DPH 108 C5E0127-02 (Liquid, Sampled: 05/01/25 10:50)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Labora	tories, In	c Rivers	side		-		
PFAS by LCMSMS (QSM 5.3 Table I	B-15 Compli	ant)								
N-methyl perfluorooctanesulfonamidoacetic	ND	2.3	7.0	ng/L	1	5E05186	05/05/25	05/06/25	ESB SOP T758	
N-Methylperfluorooctanesulfonamid e (MeFOSA)	ND	4.3	7.0	"	W	"	W	u	"	
N-Methylperfluorooctanesulfonamid oethanol (MeFOSE)	ND	4.2	7.0	"	"	"	"	"	п	
Perfluorobutanesulfonic Acid (PFBS)	ND	2.1	4.4	"	"	II	II	II	u	
Perfluorobutanoic acid (PFBA)	ND	1.8	4.4	"	"	"	"	"	"	
Perfluorodecanesulfonic acid (PFDS)	ND	2.4	4.4	"	"	"	W .	ıı	u.	
Perfluorodecanoic Acid (PFDA)	ND	1.3	4.4	"	"	"	"	"	"	
Perfluorododecanoic Acid (PFDoDA)	ND	1.8	4.4	"	"	II	II	II	u	
Perfluoroheptanesulfonic acid (PFHpS)	ND	1.7	4.4	"	"	"	"	"	"	
Perfluoroheptanoic Acid (PFHpA)	ND	2.8	4.4	"	"	"	"	"	"	
Perfluorohexadecanoic acid (PFHxDA)	ND	1.7	4.4	"	"	"	"	"	"	
Perfluorohexanesulfonic Acid (PFHxS)	ND	1.7	4.4	"	"	"	"	u u	"	
Perfluorohexanoic Acid (PFHxA)	ND	3.3	4.4	"	"	"	"	"	"	
Perfluorononanesulfonic acid (PFNS)	ND	2.5	4.4	"	"	"	"	"	"	
Perfluorononanoic Acid (PFNA)	ND	1.9	4.4	"	"	"	"	II .	"	
Perfluorooctadecanoic acid (PFOcDA)	ND	3.6	4.4	"	"	"	"	"	"	
Perfluorooctane Sulfonamide (PFOSA)	ND	2.7	7.0	"	"	"	"	"	"	
Perfluorooctanesulfonic Acid (PFOS)	1.6	1.3	4.4	"	"	"	"	u	"	J
Perfluorooctanoic Acid (PFOA)	ND	2.4	4.4	"	"	"	"	"	"	
Perfluoropentanesulfonate (PFPeS)	ND	2.7	4.4	"	"	"	"	"	"	
Perfluoropentanoic acid (PFPeA)	ND	0.96	4.4	"	"	"	"	"	"	
Perfluorotetradecanoic Acid (PFTeDA)	ND	1.1	4.4	"	W	II	II	II	II	
Perfluorotridecanoic Acid (PFTrDA)	ND	1.1	4.4	"	"	"	"	"	"	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

DPH 108

C5E0127-02 (Liquid, Sampled: 05/01/25 10:50)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notos
Allalyte	Resuit	MDL	KL	Units	Dilution	Daten	Frepareu	Analyzeu	Metriou	Notes
		Babcock	Laborat	tories, In	c Rivers	side				
PFAS by LCMSMS (QSM 5.3 Table	B-15 Complia	ant)								
Perfluoroundecanoic Acid (PFUnA)	ND	0.80	4.4	ng/L	1	5E05186	05/05/25	05/06/25	ESB SOP T758	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

SMB 1-18 C5E0127-03 (Liquid, Sampled: 05/01/25 11:30)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcocl	k Labora	tories, Inc	c Rivers	side				
Cations										
Calcium	390	7.2	50	mg/L	50	5E02097	05/02/25	05/05/25	EPA 200.7	
Total Hardness	5900		50	"	"	"	"	"	SM 2340B/EPA 200.7	
Magnesium	1200	10	50	"	"	"	"	"	EPA 200.7	
Magnesium-Dissolved	1100	2.1	10	"	1	5E06168	05/06/25	05/06/25	"	N_Filt, NMin
Anions										
Bicarbonate	140	5.0	5.0	mg/L as CaCO3	1	5E05218	05/05/25	05/05/25	SM 2320B	
Carbonate	ND	5.0	5.0	"	"	"	"	"	"	
Hydroxide	ND	5.0	5.0	"	"	"	"	"	"	
Total Alkalinity	140	5.0	5.0	"	"	"	"	"	"	
Nitrate as N	ND	6.0	10	mg/L	50	5E01110	05/02/25	05/02/25	EPA 300.0	N_RLc
Nitrate/Nitrite as N	0.032	0.0024	0.010	"	1	5E02134	05/02/25	05/02/25	EPA 353.2	
Sulfate	2600	23	25	"	50	5E01110	05/02/25	05/02/25	EPA 300.0	
Solids										
Settleable Solids	0.7	0.09	0.09	mL/L	0.948	5E02083	05/02/25	05/02/25	SM 2540F	
Total Dissolved Solids	34000	500	500	mg/L	50	5E02113	05/02/25	05/02/25	SM 2540C	
Total Suspended Solids	37	2	2	"	4	5E02082	05/02/25	05/02/25	SM 2540D	
Aggregate Organic Compounds										
Total Organic Carbon	3.7		0.70	mg/L	1	5E05188	05/05/25	05/05/25	SM 5310B	
Nutrients										
Ammonia-Nitrogen	0.03	0.008	0.01	mg/L	1	5E07156	05/07/25	05/07/25	SM4500NH3 H G	
Ortho Phosphate Phosphorus	ND		0.050	"	"	5E01122	05/02/25	05/02/25	SM 4500P E	
Phosphorus, Total as P	0.09	0.02	0.05	"	"	5E02121	05/02/25	05/05/25	"	
Kjeldahl Nitrogen	2.8	1.8	2.5	"	"	5E05199	05/05/25	05/06/25	EPA 351.2	
Total Nitrogen (N)	2.8	1.8	2.5	"	"	[CALC]	"	"	Calculation	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

SMB 1-18 C5E0127-03 (Liquid, Sampled: 05/01/25 11:30)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Laborat	tories, In	c Rivers	side				
Metals and Metalloids										
Aluminum	ND	1400	2500	ug/L	50	5E02097	05/02/25	05/05/25	EPA 200.7	N_RLm
Aluminum-Dissolved	470	280	500	"	1	5E06168	05/06/25	05/06/25	"	N_Filt, NMint, 、
Arsenic	8.5	2.9	20	"	4	5E02080	05/02/25	05/02/25	EPA 200.8	N_RLm, J
Arsenic-Dissolved	9.5	7.1	20	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm, J
Beryllium	ND		40	"	4	5E02080	05/02/25	05/02/25	"	N_RLm
Beryllium-Dissolved	ND		40	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Cadmium	ND	0.44	4.0	"	4	5E02080	05/02/25	05/02/25	"	N_RLm
Cadmium-Dissolved	ND	0.44	8.0	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Total Chromium	ND	16	80	"	4	5E02080	05/02/25	05/02/25	"	N_RLm
Chromium-Dissolved	ND	16	80	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Hexavalent Chromium	ND		1.0	"	10	5E02088	05/03/25	05/03/25	EPA 218.6	N_RLm
Copper	ND	6.5	40	"	4	5E02080	05/02/25	05/02/25	EPA 200.8	N_RLm
Copper-Dissolved	ND	6.5	40	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Iron	430	250	2500	"	50	5E02097	05/02/25	05/05/25	EPA 200.7	N_RLm, 、
Iron-Dissolved	ND	49	500	"	1	5E06168	05/06/25	05/06/25	"	N_Filt, N_RLm, NMin
Mercury	ND	0.56	1.0	"	"	5E02074	05/02/25	05/02/25	SM 3112B	
Mercury-Dissolved	ND	0.56	1.0	"	"	"	"	05/02/25	u u	N_Fil
Manganese	80	7.5	40	"	4	5E02080	05/02/25	05/02/25	EPA 200.8	
Manganese-Dissolved	79	7.5	40	"	1	5E02081	05/02/25	05/02/25	"	N_Fil
Nickel	ND	13	40	"	4	5E02080	05/02/25	05/02/25	"	N_RLm
Nickel-Dissolved	ND	13	40	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Lead	ND	6.2	40	"	4	5E02080	05/02/25	05/02/25	"	N_RLm
Lead-Dissolved	ND	6.2	40	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Selenium	120	6.7	20	"	4	5E02080	05/02/25	05/02/25	"	
Selenium-Dissolved	100	6.7	20	"	1	5E02081	05/02/25	05/02/25	"	N_Fil
Zinc	ND	20	40	"	4	5E02080	05/02/25	05/02/25	"	N_RLm

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

SMB 1-18 C5E0127-03 (Liquid, Sampled: 05/01/25 11:30)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock I	Laborat	tories, In	c Rivers	side				
Metals and Metalloids										
Zinc-Dissolved	ND	20	40	ug/L	1	5E02081	05/02/25	05/02/25	EPA 200.8	N_Filt, N_RLm
Volatile Organic Compounds b	y EPA 624.1									N_RLm
1,1,1-Trichloroethane	ND		50	ug/L	100	5E03067	05/03/25	05/03/25	EPA 624.1	
1,1,2,2-Tetrachloroethane	ND		50	"	"	"	"	"	u .	
1,1,2-Trichloroethane	ND		50	"	"	"	"	"	"	
1,1-Dichloroethane	ND		50	"	"	"	"	"	u .	
1,1-Dichloroethene	ND		50	"	"	"	"	"	u .	
1,2-Dichlorobenzene	ND		50	"	"	"	"	"	u .	
1,2-Dichloroethane	ND		50	"	"	"	"	"	u .	
1,2-Dichloropropane	ND		50	"	"	"	"	"	u .	
1,3-Dichlorobenzene	ND		50	"	"	"	"	"	u .	
1,4-Dichlorobenzene	ND		50	"	"	"	"	"	"	
2-Chloroethylvinyl Ether	ND		500	"	"	"	"	"	"	NCEVE
Acrolein	ND		1000	"	"	"	"	"	"	
Acrylonitrile	ND		1000	"	"	"	"	"	"	
Benzene	ND		50	"	"	"	"	"	"	
Bromodichloromethane	ND		50	"	"	"	"	"	"	
Bromoform	ND		100	"	"	"	"	"	"	
Bromomethane	ND		50	"	"	"	"	"	"	
Carbon Tetrachloride	ND		50	"	"	"	"	"	"	
Chlorobenzene	ND		50	"	"	"	"	"	u .	
Chloroethane	ND		50	"	"	"	"	"	"	
Chloroform	ND		50	"	"	"	"	"	"	
Chloromethane	ND		50	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND		50	"	"	"	"	"	"	
Dibromochloromethane	ND		50	"	"	"	"	"	"	
Dichlorodifluoromethane	ND		50	"	"	"	"	"	"	
Ethylbenzene	ND		50	"	"	"	"	"		
Methyl tert Butyl Ether	ND		500	"	"	"	"	"		
Methylene Chloride	ND		300	"	u u	"	"	"	II .	
Tetrachloroethene	ND		50	"	"	"	"	"	u u	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

SMB 1-18 C5E0127-03 (Liquid, Sampled: 05/01/25 11:30)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcocl	k Laborat	tories, In	c Rivers	side				
Volatile Organic Compounds by EF	PA 624.1									N_RLn
Toluene	ND		50	ug/L	100	5E03067	05/03/25	05/03/25	EPA 624.1	
trans-1,2-Dichloroethene	ND		50	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND		50	"	"	"	"	II .	"	
Trichloroethene	ND		50	"	"	"	"	"	"	
Trichlorofluoromethane	ND		500	"	"	"	"	"	u .	
Vinyl Chloride	ND		50	"	"	"	"	· ·	II .	
Xylenes (m+p)	ND		50	"	"	"	"	"	II .	
Xylenes (ortho)	ND		50	"	"	"	"	"	II .	
Surrogate: 1,2-Dichlorobenzene-d4			104 %	80-	120	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4			105 %	80-	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			96 %	80-	120	"	"	"	"	
Surrogate: Toluene-d8			100 %	80-	120	"	"	"	"	
0:2 Fluorotelomer sulfonate	ND	4.7	6.9	ng/L	1	5E05186	05/05/25	05/06/25	ESB SOP T758	NIS
11-chloroeicosafluoro	ND	1.2	4.3	"	"	"	"	п	T758	
3oxaundecane-1-sulfonic Acid				"	,,			,,	,,	
2H,2H,3H,3H-Perfluorodecanoic acid (7:3 FTCA)	ND	3.6	6.9							
2H,2H,3H,3H-Perfluorooctanoic acid (5:3 FTCA)	ND	3.5	6.9	"	"	"	"	"	"	
4,4,5,5,6,6,6-Heptafluorohexanoic Acid (3:3 FTCA)	ND	2.0	4.3	"	"	"	"	"	"	
	ND	2.5	4.3	"	"	"	"	"	"	
4,8-dioxa-3H-perfluorononanoic Acid (ADONA)	ND	2.0								
4,8-dioxa-3H-perfluorononanoic	ND	1.7	4.3	"	"	"	"	"		NIS
1,8-dioxa-3H-perfluorononanoic Acid (ADONA)				"	"	"	"	"	"	NIS:
4,8-dioxa-3H-perfluorononanoic Acid (ADONA) 4:2 Fluorotelomer Sulfonate	ND	1.7	4.3			" "		" "	n n	
1,8-dioxa-3H-perfluorononanoic Acid (ADONA) 1:2 Fluorotelomer Sulfonate 3:2 Fluorotelomer Sulfonate 3:2 Fluorotelomer Sulfonate 0-chlorohexadecafluoro-3-oxanone-	ND ND	1.7 1.3	4.3 4.3	"	"	" "	u u	u	n	NIS
4,8-dioxa-3H-perfluorononanoic Acid (ADONA) 4:2 Fluorotelomer Sulfonate 5:2 Fluorotelomer Sulfonate	ND ND ND	1.7 1.3 1.1	4.3 4.3 4.3	"	"		"	u	11	NIS

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

SMB 1-18 C5E0127-03 (Liquid, Sampled: 05/01/25 11:30)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Labora	tories, In	c Rivers	side				
PFAS by LCMSMS (QSM 5.3 Table I	B-15 Complia	ınt)								
N-Ethylperfluorooctanesulfonamide (EtFOSA)	ND	2.9	6.9	ng/L	1	5E05186	05/05/25	05/06/25	ESB SOP T758	
N-Ethylperfluorooctanesulfonamido ethanol (EtFOSE)	ND	2.8	6.9	"	"	"	II	"	"	
N-methyl perfluorooctanesulfonamidoacetic	ND	2.2	6.9	"	"	"	II	"	"	NISm
N-Methylperfluorooctanesulfonamid e (MeFOSA)	ND	4.2	6.9	"	"	"	II	"	u	
N-Methylperfluorooctanesulfonamid oethanol (MeFOSE)	ND	4.1	6.9	"	"	"	II	"	"	
Perfluorobutanesulfonic Acid (PFBS)	ND	2.1	4.3	"	"	"	II	"	II	
Perfluorobutanoic acid (PFBA)	3.0	1.8	4.3	"	"	"	II .	"	"	J
Perfluorodecanesulfonic acid (PFDS)	ND	2.4	4.3	"	"	"	"	"	"	
Perfluorodecanoic Acid (PFDA)	ND	1.3	4.3	"	"	"	"	"	"	
Perfluorododecanoic Acid (PFDoDA)	ND	1.8	4.3	"	"	"	"	"	"	
Perfluoroheptanesulfonic acid (PFHpS)	ND	1.6	4.3	"	"	"	II	"	"	
Perfluoroheptanoic Acid (PFHpA)	ND	2.8	4.3	"	"	"	II .	"	"	
Perfluorohexadecanoic acid (PFHxDA)	ND	1.6	4.3	"	"	"	"	"	"	
Perfluorohexanesulfonic Acid (PFHxS)	ND	1.6	4.3	"	"	"	II	"	"	
Perfluorohexanoic Acid (PFHxA)	ND	3.3	4.3	"	"	"	"	"	"	
Perfluorononanesulfonic acid (PFNS)	ND	2.5	4.3	"	"	"	"	"	"	
Perfluorononanoic Acid (PFNA)	ND	1.9	4.3	"	"	"	"	"	"	
Perfluorooctadecanoic acid (PFOcDA)	ND	3.5	4.3	"	"	"	u	"	"	
Perfluorooctane Sulfonamide (PFOSA)	ND	2.7	6.9	"	"	"	u	"	"	
Perfluorooctanesulfonic Acid (PFOS)	2.5	1.3	4.3	"	"	"	u	"	"	J
Perfluorooctanoic Acid (PFOA)	ND	2.3	4.3	"	"	"	u u	"	u .	
Perfluoropentanesulfonate (PFPeS)	ND	2.7	4.3	"	"	"	"	"	"	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

SMB 1-18

C5E0127-03 (Liquid, Sampled: 05/01/25 11:30)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Labora	tories, Ir	c River	side				
PFAS by LCMSMS (QSM 5.3 Table	B-15 Complia	ant)								
Perfluoropentanoic acid (PFPeA)	1.7	0.95	4.3	ng/L	1	5E05186	05/05/25	05/06/25	ESB SOP T758	J
Perfluorotetradecanoic Acid (PFTeDA)	ND	1.1	4.3	"	"	"	"	"	"	
Perfluorotridecanoic Acid (PFTrDA)	ND	1.1	4.3	"	"	"	"	"	"	
Perfluoroundecanoic Acid (PFUnA)	ND	0.79	4.3	"				"	"	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

SMB 3-4 C5E0127-04 (Liquid, Sampled: 05/01/25 07:45)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcocl	k Labora	tories, Ind	c Rivers	side				
Cations										
Calcium	420	7.2	50	mg/L	50	5E02097	05/02/25	05/05/25	EPA 200.7	
Total Hardness	6600		50	"	"	u .	"	"	SM 2340B/EPA 200.7	
Magnesium	1300	10	50	"	"	"	"	"	EPA 200.7	
Magnesium-Dissolved	1200	0.42	2.0	"	1	5E05172	05/05/25	05/05/25	"	N_Fil
Anions										
Bicarbonate	120	5.0	5.0	mg/L as CaCO3	1	5E05218	05/05/25	05/05/25	SM 2320B	
Carbonate	ND	5.0	5.0	"	"	"	H .	"	II .	
Hydroxide	ND	5.0	5.0	"	"	"	"	"	"	
Total Alkalinity	120	5.0	5.0	"	"	"	"	"	"	
Nitrate as N	ND	6.0	10	mg/L	50	5E01110	05/02/25	05/02/25	EPA 300.0	N_RLc
Nitrate/Nitrite as N	ND	0.0024	0.010	"	1	5E02134	05/02/25	05/02/25	EPA 353.2	
Sulfate	2800	23	25	"	50	5E01110	05/02/25	05/02/25	EPA 300.0	
Solids										
Settleable Solids	0.6	0.1	0.1	mL/L	1	5E02145	05/02/25	05/02/25	SM 2540F	NRPDo
Total Dissolved Solids	37000	500	500	mg/L	50	5E02113	05/02/25	05/02/25	SM 2540C	
Total Suspended Solids	300	10	10	"	20	5E04177	05/04/25	05/04/25	SM 2540D	N_nol-
Aggregate Organic Compounds										
Total Organic Carbon	2.4		0.70	mg/L	1	5E05188	05/05/25	05/05/25	SM 5310B	
Nutrients										
Ammonia-Nitrogen	0.01	0.008	0.01	mg/L	1	5E07156	05/07/25	05/07/25	SM4500NH3 H G	
Ortho Phosphate Phosphorus	ND		0.050	"	"	5E01121	05/01/25	05/01/25	SM 4500P E	
Phosphorus, Total as P	0.04	0.02	0.05	"	"	5E02121	05/02/25	05/05/25	"	
Kjeldahl Nitrogen	1.1	0.9	1.2	"	"	5E05199	05/05/25	05/06/25	EPA 351.2	N_RLm, J
Total Nitrogen (N)	1.1	0.88	1.3	"		[CALC]	"		Calculation	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

SMB 3-4 C5E0127-04 (Liquid, Sampled: 05/01/25 07:45)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Labora	tories, In	c Rivers	side				
Metals and Metalloids										
Aluminum	ND	1400	2500	ug/L	50	5E02097	05/02/25	05/05/25	EPA 200.7	N_RLn
Aluminum-Dissolved	ND	55	100	"	1	5E05172	05/05/25	05/05/25	"	N_Filt, N_RLm
Arsenic	9.0	2.9	20	"	4	5E02080	05/02/25	05/02/25	EPA 200.8	N_RLm, 、
Arsenic-Dissolved	9.8	7.1	20	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm, 、
Beryllium	ND		40	"	4	5E02080	05/02/25	05/02/25	"	N_RLn
Beryllium-Dissolved	ND		40	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Cadmium	ND	0.44	4.0	"	4	5E02080	05/02/25	05/02/25	"	N_RLn
Cadmium-Dissolved	ND	0.44	8.0	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Total Chromium	ND	16	80	"	4	5E02080	05/02/25	05/02/25	"	N_RLn
Chromium-Dissolved	ND	16	80	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Hexavalent Chromium	ND		1.0	"	10	5E02088	05/03/25	05/03/25	EPA 218.6	N_RLm
Copper	ND	6.5	40	"	4	5E02080	05/02/25	05/02/25	EPA 200.8	N_RLn
Copper-Dissolved	ND	6.5	40	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Iron	ND	250	2500	"	50	5E02097	05/02/25	05/05/25	EPA 200.7	N_RLm
Iron-Dissolved	ND	9.9	100	"	1	5E05172	05/05/25	05/05/25	"	N_Fil
Mercury	ND	0.56	1.0	"	"	5E02074	05/02/25	05/02/25	SM 3112B	
Mercury-Dissolved	ND	0.56	1.0		"	"	"	05/02/25	"	N_Fil
Manganese Disashad	ND	7.5 7.5	40		4	5E02080	05/02/25	05/02/25	EPA 200.8	N_RLm
Manganese-Dissolved	ND		40		1	5E02081	05/02/25	05/02/25		N_Filt, N_RLm
Nickel	ND	13	40	"	4	5E02080	05/02/25	05/02/25	"	N_RLn
Nickel-Dissolved	ND	13	40	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Lead	ND	6.2	40	"	4	5E02080	05/02/25	05/02/25	"	N_RLn
Lead-Dissolved	ND	6.2	40	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Selenium	120	6.7	20	"	4	5E02080	05/02/25	05/02/25	"	
Selenium-Dissolved	120	6.7	20	"	1	5E02081	05/02/25	05/02/25	"	N_Fil
Zinc	ND	20	40	"	4	5E02080	05/02/25	05/02/25	"	N_RLn
Zinc-Dissolved	ND	20	40	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013

Project Number: Wildfire Response 2025 Project Manager: John Salguero

Project: RWB4_WildFireResponse_2025

Reported: 05/12/25 22:24

SMB 3-4 C5E0127-04 (Liquid, Sampled: 05/01/25 07:45)

Analyte	Result	MDL RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock Labora	tories, In	c River	side				
Volatile Organic Compounds b	y EPA 624.1								N_RLm
1,1,1-Trichloroethane	ND	50	ug/L	100	5E03067	05/03/25	05/03/25	EPA 624.1	
1,1,2,2-Tetrachloroethane	ND	50	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	50	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	50	"	"	u	u u	"	"	
1,2-Dichloroethane	ND	50	"	"	u	u u	"	"	
1,2-Dichloropropane	ND	50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	50	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	50	"	"	"	"	"	"	
2-Chloroethylvinyl Ether	ND	500	"	"	"	"	"	"	NCEVE
Acrolein	ND	1000	"	"	"	"	"	"	
Acrylonitrile	ND	1000	"	"	"	"	"	"	
Benzene	ND	50	"	"	"	"	"	"	
Bromodichloromethane	ND	50	"	"	"	"	"	"	
Bromoform	ND	100	"	"	"	"	"	"	
Bromomethane	ND	50	"	"	u u	u u	"	"	
Carbon Tetrachloride	ND	50	"	"	"	"	"	II .	
Chlorobenzene	ND	50	"	"	"	"	"	II .	
Chloroethane	ND	50	"	"	"	"	"	n .	
Chloroform	ND	50	"	"	"	"	"	n .	
Chloromethane	ND	50	"	"	"	"	"	n .	
cis-1,3-Dichloropropene	ND	50	"	"	"	"	"	n .	
Dibromochloromethane	ND	50	"	"	"	"	"	n .	
Dichlorodifluoromethane	ND	50	"	"	"	"	"	n .	
Ethylbenzene	ND	50	"	"	"	"	"	n .	
Methyl tert Butyl Ether	ND	500	"	"	"	"	"	"	
Methylene Chloride	ND	300	"	"	"	"	"	"	
Tetrachloroethene	ND	50	"	"	"	"	"	"	
Toluene	ND	50		"	"	"	"	"	
trans-1,2-Dichloroethene	ND	50		"	"	"	"	"	
trans-1,3-Dichloropropene	ND	50	"	"			"	"	
Trichloroethene	ND	50	,,		"	"	"	"	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

SMB 3-4 C5E0127-04 (Liquid, Sampled: 05/01/25 07:45)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcoc	k Labora	tories, In	c Rivers	side				
Volatile Organic Compounds by EF	PA 624.1									N_RLm
Trichlorofluoromethane	ND		500	ug/L	100	5E03067	05/03/25	05/03/25	EPA 624.1	
Vinyl Chloride	ND		50	"	"	"	II .	"	"	
Xylenes (m+p)	ND		50	"	"	"	II .	"	"	
Xylenes (ortho)	ND		50	"	"	"	"	"	"	
Surrogate: 1,2-Dichlorobenzene-d4			103 %	80-	120	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4			105 %	80-	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			95 %	80-	120	"	"	"	"	
Surrogate: Toluene-d8			101 %	80-	120	"	"	"	"	
PFAS by LCMSMS (QSM 5.3 Table	B-15 Complia	ant)								
10:2 Fluorotelomer sulfonate	ND	4.6	6.8	ng/L	1	5E05186	05/05/25	05/06/25	ESB SOP T758	NISm
11-chloroeicosafluoro 3oxaundecane-1-sulfonic Acid	ND	1.2	4.3	"	"	"	u	"	"	
2H,2H,3H,3H-Perfluorodecanoic acid (7:3 FTCA)	ND	3.6	6.8	"	"	"	u	"	"	
2H,2H,3H,3H-Perfluorooctanoic acid (5:3 FTCA)	ND	3.5	6.8	"	"	u.	u	"	"	
4,4,5,5,6,6,6-Heptafluorohexanoic Acid (3:3 FTCA)	ND	2.0	4.3	"	"	"	"	"	"	
4,8-dioxa-3H-perfluorononanoic Acid (ADONA)	ND	2.5	4.3	"	"	"	II	"	"	
4:2 Fluorotelomer Sulfonate	ND	1.7	4.3	"	"	"	"	"	"	
6:2 Fluorotelomer Sulfonate	ND	1.3	4.3	"	"	"	"	"	"	NISm
3:2 Fluorotelomer Sulfonate	ND	1.1	4.3	"	"	"	"	"	"	NISm
9-chlorohexadecafluoro-3-oxanone- 1-sulfonic Acid	ND	0.73	4.3	"	"	"	"	"	"	
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.6	4.3	"	"	"	"	"	"	
N-ethyl perfluorooctanesulfonamidoacetic	ND	3.7	6.8	"	u	"	u	"	"	
N-Ethylperfluorooctanesulfonamide (EtFOSA)	ND	2.9	6.8	"	"	"	"	"	"	
N-Ethylperfluorooctanesulfonamido ethanol (EtFOSE)	ND	2.8	6.8	"	"	"	"	"	"	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

SMB 3-4 C5E0127-04 (Liquid, Sampled: 05/01/25 07:45)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Labora	tories, In	c Rivers	side				
PFAS by LCMSMS (QSM 5.3 Table	B-15 Complia	ant)								
N-methyl perfluorooctanesulfonamidoacetic	ND	2.2	6.8	ng/L	1	5E05186	05/05/25	05/06/25	ESB SOP T758	
N-Methylperfluorooctanesulfonamid e (MeFOSA)	ND	4.2	6.8	"	"	"	u	"	ıı	
N-Methylperfluorooctanesulfonamid pethanol (MeFOSE)	ND	4.1	6.8	"	"	"	"	"	"	
Perfluorobutanesulfonic Acid (PFBS)	ND	2.0	4.3	"	"	"	"	"	"	
Perfluorobutanoic acid (PFBA)	ND	1.8	4.3	"	"	"	"	"	"	
Perfluorodecanesulfonic acid (PFDS)	ND	2.4	4.3	"	"	"	n	"	ıı	
Perfluorodecanoic Acid (PFDA)	ND	1.3	4.3	"	"	"	"	"	"	
Perfluorododecanoic Acid (PFDoDA)	ND	1.8	4.3	"	"	"	"	"	"	
Perfluoroheptanesulfonic acid (PFHpS)	ND	1.6	4.3	"	"	"	"	"	"	
Perfluoroheptanoic Acid (PFHpA)	ND	2.7	4.3	"	"	"	"	"	"	
Perfluorohexadecanoic acid (PFHxDA)	ND	1.6	4.3	"	"	"	"	"	"	
Perfluorohexanesulfonic Acid (PFHxS)	ND	1.6	4.3	"	"	u.	u	"	"	
Perfluorohexanoic Acid (PFHxA)	ND	3.2	4.3	"	"	"	"	"	11	
Perfluorononanesulfonic acid (PFNS)	ND	2.5	4.3	"	"	"	u	"	"	
Perfluorononanoic Acid (PFNA)	ND	1.9	4.3	"	"	"	II .	"	11	
Perfluorooctadecanoic acid (PFOcDA)	ND	3.5	4.3	"	"	"	u	"	"	
Perfluorooctane Sulfonamide (PFOSA)	ND	2.6	6.8	"	"	"	u	"	"	
Perfluorooctanesulfonic Acid (PFOS)	ND	1.3	4.3	"	"	"	"	II	"	
Perfluorooctanoic Acid (PFOA)	ND	2.3	4.3	"	"	"	II .	"	11	
Perfluoropentanesulfonate (PFPeS)	ND	2.6	4.3	"	"	"	II .	"	11	
Perfluoropentanoic acid (PFPeA)	ND	0.94	4.3	"	"	"	"	"	n n	
Perfluorotetradecanoic Acid (PFTeDA)	ND	1.1	4.3	"	"	"	"	"	"	
Perfluorotridecanoic Acid (PFTrDA)	ND	1.1	4.3	"	"	u u	"	"	n n	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

SMB 3-4

C5E0127-04 (Liquid, Sampled: 05/01/25 07:45)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Laborat	tories, In	ıc Rivers	side				
PFAS by LCMSMS (QSM 5.3 Table	B-15 Complia	ant)								
Perfluoroundecanoic Acid (PFUnA)	ND	0.78	4.3	ng/L	1	5E05186	05/05/25	05/06/25	ESB SOP T758	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

DPH-002 C5E0127-05 (Liquid, Sampled: 05/01/25 09:00)

Analyte Result MDL Units Dilution Batch Prepared Analyzed Method Notes Babcock Laboratories, Inc. - Riverside **Cations** Calcium 390 3.6 25 mg/L 25 5E02097 05/02/25 05/05/25 EPA 200.7 6300 25 **Total Hardness** SM 2340B/EPA 200.7 5.2 25 Magnesium 1300 EPA 200.7 Magnesium-Dissolved 1100 0.42 2.0 1 5E05172 05/05/25 05/05/25 N_Filt **Anions** Bicarbonate 130 5.0 5.0 mg/L as 1 5E05218 05/05/25 05/05/25 SM 2320B CaCO3 Carbonate ND 5.0 5.0 Hydroxide ND 5.0 5.0 **Total Alkalinity** 130 5.0 5.0 ND Nitrate as N 6.0 10 mg/L 50 5E01110 05/02/25 05/02/25 N_RLd EPA 300.0 Nitrate/Nitrite as N 0.022 0.0024 0.010 1 5E02134 05/02/25 05/02/25 EPA 353.2 Sulfate 2600 23 25 50 5E01110 05/02/25 05/02/25 EPA 300.0 Solids **Settleable Solids** 0.1 0.1 0.1 mL/L 1 5E02145 05/02/25 05/02/25 SM 2540F **Total Dissolved Solids** 35000 500 500 mg/L 50 5F02113 05/02/25 05/02/25 SM 2540C **Total Suspended Solids** 220 0.7 0.7 1.33333 5E02082 05/02/25 05/02/25 SM 2540D **Aggregate Organic Compounds Total Organic Carbon** 1.9 0.70 mg/L 1 5E05188 05/05/25 05/05/25 SM 5310B **Nutrients** 0.02 0.008 5E07156 Ammonia-Nitrogen 0.01 mg/L 05/07/25 05/07/25 SM4500NH3 1 HG**Ortho Phosphate Phosphorus** 0.050 0.050 5E01121 05/01/25 05/01/25 SM 4500P E Phosphorus, Total as P 0.05 0.02 0.05 5E02121 05/02/25 05/05/25 Kjeldahl Nitrogen 1.8 0.9 1.2 5E05199 05/05/25 05/06/25 EPA 351.2 Total Nitrogen (N) 1.8 0.88 1.3 [CALC] Calculation

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

DPH-002

C5E0127-05 (Liquid, Sampled: 05/01/25 09:00)

Aluminum-Dissolved ND 55 100 " 1 5E05172 05/05/25 05/05/25 05/05/25	Method	d I	Not
Aluminum ND 690 1200 ug/L 25 5E02097 05/02/25 05/05/25 EAluminum-Dissolved ND 55 100 " 1 5E05172 05/05/25 05/05/25 EAluminum-Dissolved ND 55 100 " 1 5E05172 05/05/25 05/05/25 EAluminum-Dissolved ND 55 100 " 1 5E02081 05/02/25 05/02/25 EArsenic 7.8 2.9 20 " 1 5E02081 05/02/25 05/02/25 EArsenic 9.1 7.1 20 " 1 5E02081 05/02/25 05/02/25 EArsenic-Dissolved 9.1 7.1 20 " 1 5E02081 05/02/25 05/02/25 EBeryllium ND 40 " 1 5E02081 05/02/25 05/02/25 05/02/25 EBeryllium-Dissolved ND 40 " 1 5E02081 05/02/25			
Aluminum-Dissolved ND 55 100 " 1 5E05172 05/05/25 05/05/25 Arsenic 7.8 2.9 20 " 4 5E02080 05/02/25 05/02/25 EArsenic-Dissolved 9.1 7.1 20 " 1 5E02081 05/02/25 05/02/25 05/02/25 Beryllium ND 40 " 4 5E02080 05/02/25 05/02/25 05/02/25 Beryllium-Dissolved ND 40 " 1 5E02081 05/02/25 05/02/25 Cadmium-Dissolved ND 0.44 4.0 " 4 5E02080 05/02/25 05/02/25 Cadmium-Dissolved ND 0.44 8.0 " 1 5E02081 05/02/25 05/02/25 Cadmium-Dissolved ND 16 80 " 4 5E02080 05/02/25 05/02/25 Chromium-Dissolved ND 16 80 " 1 5E02081 05/02/25 05/02/25 Chromium-Dissolved ND 16 80 " 1 5E02081 05/02/25 05/02/25 Copper ND 6.5 40 " 1 5E02081 05/02/25 05/02/25 Iron 120 120 1200 " 25 5E02097 05/02/25 05/02/25 Iron 120 120 1200 " 5E02081 05/02/25 05/02/25 Iron 120 120 120 " 5E02081 05/02/25 05/02/25 Iron 120 120 120 " 5E02081 05/02/25 05/02/25 Iron 120 120 " 5E02081 05/02/25 05/02/25			
Arsenic 7.8 2.9 20 " 4 5E02080 05/02/25 05/02/25 EARSENIC-Dissolved 9.1 7.1 20 " 1 5E02081 05/02/25 05/02/25 05/02/25 EBeryllium ND 40 " 4 5E02080 05/02/25 05/02/25 05/02/25 EBeryllium-Dissolved ND 40 " 1 5E02081 05/02/25 05/02/	EPA 200.7	0.7	N_F
Arsenic-Dissolved 9.1 7.1 20 " 1 5E02081 05/02/25 05/02/25 EBeryllium ND	"		N_F
Beryllium	EPA 200.8	0.8 N_	N_RLr
Beryllium-Dissolved ND 40 " 1 5E02081 05/02/25 05/02/25	"		N_F N_RLr
Cadmium ND 0.44 4.0 1 5E02080 05/02/25 05/02/25 05/02/25 Cadmium-Dissolved ND 0.44 8.0 1 5E02080 05/02/25 05/02/25 05/02/25 05/02/25 Total Chromium ND 16 80 1 1 5E02081 05/02/25 05/02/25 05/02/25 Chromium-Dissolved ND 16 80 1 1 5E02081 05/02/25 05/02/25 05/02/25 05/02/25 Chromium-Dissolved ND 16 80 1 1 5E02081 05/02/25	"	1	N_F
Cadmium-Dissolved ND 0.44 8.0 " 1 5E02081 05/02/25 05/02/25	"		N_F
Total Chromium ND 16 80 " 4 5E02080 05/02/25	"	1	N_F
Chromium-Dissolved ND 16 80 " 1 5E02081 05/02/25 05/02/25	"		N_F
Hexavalent Chromium ND 1.0 1.0 1.0 5E02088 05/03/25 05/03/25 ECopper ND 6.5 40 1.0 4 5E02080 05/02/25 05/02/25 ECopper-Dissolved ND 6.5 40 1.0 4 5E02080 05/02/25 05/02/25 ECopper-Dissolved ND 6.5 40 1.0 1.0 1.0 5E02088 05/03/25 05/02/25 ECopper-Dissolved ND 6.5 40 1.0 1.0 1.0 1.0 1.0 1.0 1.0	"	1	N_F
Copper ND 6.5 40 " 4 5E02080 05/02/25 05/02/25 ECOpper-Dissolved ND 6.5 40 " 1 5E02081 05/02/25 05/02/25 EVENT ND 6.5 40 " 1 5E02081 05/02/25 05/02/25 EVENT ND 6.5 40 " 1 5E02081 05/02/25 05/05/25 EVENT ND 9.9 100 " 1 5E05172 05/05/25 05/05/25 EVENT ND 0.56 1.0 " " 5E02074 05/02/25 05/02/25 EVENT ND 0.56 1.0 " " " " 05/02/25 05/02/25 EVENT ND 0.56 1.0 " " " " 05/02/25 05/02/25 EVENT ND 0.56 1.0 " " " " 05/02/25 05/02/25 EVENT ND 0.56 1.0 " " " " 05/02/25 05/02/25 EVENT ND 0.56 1.0 " " " " 05/02/25 05/02/25 EVENT ND 0.56 1.0 " " " " 05/02/25 05/02/25 EVENT ND 0.56 1.0 " " " " 05/02/25 05/02/25 EVENT ND 0.56 1.0 " " " " 05/02/25 05/02/25 EVENT ND 0.56 1.0 " " " " 05/02/25 05/02/25 EVENT ND 0.56 1.0 " " " " 05/02/25 05/02/25 EVENT ND 0.56 1.0 " " " " 05/02/25 05/02/25 EVENT ND 0.56 1.0 " " " " 05/02/25 05/02/25 05/02/25 EVENT ND 0.56 1.0 " " " " 05/02/25 05/02/25 05/02/25 EVENT ND 0.56 1.0 " " " " 05/02/25 05/02/25 05/02/25 EVENT ND 0.56 1.0 " " 1 5E02081 05/02/25 05/02/25 05/02/25 US/02/25 05/02/25 US/02/25 05/02/25 US/02/25	"		N_F
Copper-Dissolved ND 6.5 40 " 1 5E02081 05/02/25 05/02/25 Elementary ND 6.5 40 " 1 5E02081 05/02/25 05/05/25 Elementary ND 6.5 40 " 1 5E02081 05/02/25 05/05/25 Elementary ND 9.9 100 " 1 5E05172 05/05/25 05/05/25 Ndercury ND 0.56 1.0 " " 5E02074 05/02/25 05/02/25 Ndercury-Dissolved ND 0.56 1.0 " " " " 05/02/25 Ndercury-Dissolved ND 0.56 1.0 " " " " 05/02/25 Ndercury-Dissolved ND 0.56 1.0 " " " " 05/02/25 Ndercury-Dissolved ND 0.56 1.0 " " " " 05/02/25 Ndercury-Dissolved ND 0.56 1.0 " " " " 05/02/25 Ndercury-Dissolved ND 0.56 1.0 " " " " 05/02/25 Ndercury-Dissolved ND 13 40 " 4 5E02080 05/02/25 05/02/25 Ndercury-Dissolved ND 13 40 " 4 5E02081 05/02/25 05/02/25 Ndercury-Dissolved ND 13 40 " 4 5E02081 05/02/25 05/02/25 Ndercury-Dissolved ND 13 40 " 4 5E02081 05/02/25 05/02/25 Ndercury-Dissolved ND 13 40 " 4 5E02081 05/02/25 05/02/25 Ndercury-Dissolved ND 6.2 40 " 4 5E02080 05/02/25 05/02/25 Ndercury-Dissolved ND 6.2 40 " 4 5E02081 05/02/25 05/02/25 Ndercury-Dissolved ND 6.2 40 " 4 5E02081 05/02/25 05/02/25 Ndercury-Dissolved ND 6.2 40 " 4 5E02081 05/02/25 05/02/25 Ndercury-Dissolved ND 6.2 40 " 4 5E02081 05/02/25 05/02/25 Ndercury-Dissolved ND 6.2 40 " 4 5E02081 05/02/25 05/02/25 Ndercury-Dissolved ND 6.2 40 " 4 5E02081 05/02/25 05/02/25 Ndercury-Dissolved ND 6.2 40 " 4 5E02081 05/02/25 05/02/25 Ndercury-Dissolved ND 6.2 40 " 4 5E02081 05/02/25 05/02/25 Ndercury-Dissolved ND 6.2 40 " 4 5E02081 05/02/25 05/02/25 Ndercury-Dissolved ND 6.2 40 " 1 5E02081 05/02/25 05/02/25 Ndercury-Dissolved ND 6.2 40 " 1 5E02081 05/02/25 05/02/25 Ndercury-Dissolved ND 6.2 40 " 1 5E02081 05/02/25 05/02/25 Ndercury-Dissolved ND 6.2 40 " 1 5E02081 05/02/25 05/02/25 Ndercury-Dissolved ND 6.2 40 " 1 5E02081 05/02/25 05/02/25 Ndercury-Dissolved ND 6.2 40 " 1 5E02081 05/02/25 05/02/25 Ndercury-Dissolved ND 6.2 40 " 1 5E02081 05/02/25 05/02/25 Ndercury-Dissolved ND 6.2 40 " 1 5E02081 05/02/25 05/02/25 Ndercury-Dissolved ND 6.2 40 " 1 5E02081 05/02/25 05/02/25 Ndercury-Dissolved ND 6.2 40 " 1 5E02081 05/02/25 05/02/25 Ndercury-Dissolved ND 6.2	EPA 218.6	3.6	N_F
120	EPA 200.8	1 8.0	N_F
Iron-Dissolved ND 9.9 100 " 1 5E05172 05/05/25 05/05/25 ND 0.56 1.0 " 5E02074 05/02/25 05/02/25 S Mercury-Dissolved ND 0.56 1.0 " " 5E02074 05/02/25 05/02/25 S Mercury-Dissolved ND 0.56 1.0 " " " " 05/02/25 S Manganese 52 7.5 40 " 4 5E02080 05/02/25 05/02/25 Manganese-Dissolved 34 7.5 40 " 1 5E02081 05/02/25 05/02/25 S Mickel ND 13 40 " 4 5E02080 05/02/25 05/02/25 Nickel-Dissolved ND 13 40 " 1 5E02081 05/02/25 05/02/25 S Mickel-Dissolved ND 13 40 " 1 5E02081 05/02/25 05/02/25 S Mickel-Dissolved ND 6.2 40 " 4 5E02080 05/02/25 05/02/25 S Mickel-Dissolved ND 6.2 40 " 4 5E02080 05/02/25 05/02/25 S Mickel-Dissolved ND 6.2 40 " 4 5E02080 05/02/25 05/02/25 S Mickel-Dissolved ND 6.2 40 " 4 5E02080 05/02/25 05/02/25 S Mickel-Dissolved ND 6.2 40 " 4 5E02080 05/02/25 05/02/25 S Mickel-Dissolved ND 6.2 40 " 4 5E02080 05/02/25 05/02/25 S Mickel-Dissolved ND 6.2 40 " 4 5E02080 05/02/25 05/02/25 S Mickel-Dissolved ND 6.2 40 " 4 5E02080 05/02/25 05/02/25 S Mickel-Dissolved ND 6.2 40 " 4 5E02080 05/02/25 05/02/25 S Mickel-Dissolved ND 6.2 40 " 4 5E02080 05/02/25 05/02/25 S Mickel-Dissolved ND 6.2 40 " 4 5E02080 05/02/25 05/02/25 S Mickel-Dissolved ND 6.2 40 " 4 5E02080 05/02/25 05/02/25 S Mickel-Dissolved ND 6.2 40 " 4 5E02080 05/02/25 05/02/25 S Mickel-Dissolved ND 6.2 40 " 4 5E02080 05/02/25 05/02/25 S Mickel-Dissolved ND 6.2 40 " 4 5E02080 05/02/25 05/02/25 S Mickel-Dissolved ND 6.2 40 " 4 5E02080 05/02/25 05/02/25 S Mickel-Dissolved ND 6.2 40 " 4 5E02080 05/02/25 05/02/25 S Mickel-Dissolved ND 6.2 40 " 4 5E02080 05/02/25 05/02/25 S Mickel-Dissolved ND 6.2 40 " 4 5E02080 05/02/25 05/02/25 S Mickel-Dissolved ND 6.2 40 " 1 5E02081 05/02/25 05/02/25 S Mickel-Dissolved ND 6.2 40 " 1 5E02081 05/02/25 05/02/25 S Mickel-Dissolved ND 6.2 40 " 1 5E02081 05/02/25 05/02/25 S Mickel-Dissolved ND 6.2 40 " 1 5E02081 05/02/25 05/02/25 S Mickel-Dissolved ND 6.2 40 " 1 5E02081 05/02/25 05/02/25 S Mickel-Dissolved ND 6.2 40 " 1 5E02081 05/02/25 05/02/25 S Mickel-Dissolved ND 6.2 Mickel-Dissolved ND 6.2 40 " 1 5E02081 05/02/25 05/02/25 S Micke	"		N_F
Mercury ND 0.56 1.0 " " 5E02074 05/02/25 05/02/25 S Mercury-Dissolved ND 0.56 1.0 " " " 05/02/25 05/02/25 S Manganese 52 7.5 40 " 4 5E02080 05/02/25 05/02/25 D 05/02/25 D D 05/02/25 05/02/25 D D 05/02/25 D D 05/02/25 D D D D 0 05/02/25 0 D D D D D 0 0 <td></td> <td>0.7 N_</td> <td>N_RLr</td>		0.7 N_	N_RLr
Mercury-Dissolved ND 0.56 1.0 " " " " 05/02/25 Manganese 52 7.5 40 " 4 5E02080 05/02/25 05/02/25 Manganese-Dissolved ND 13 40 " 4 5E02080 05/02/25 05/02/25 Nickel ND 13 40 " 4 5E02081 05/02/25 05/02/25 Nickel-Dissolved ND 13 40 " 4 5E02081 05/02/25 05/02/25 Lead ND 6.2 40 " 4 5E02080 05/02/25 05/02/25 Lead-Dissolved ND 6.2 40 " 4 5E02080 05/02/25 05/02/25 Lead-Dissolved ND 6.2 40 " 4 5E02080 05/02/25 05/02/25	"		N_
Manganese 52 7.5 40 " 4 5E02080 05/02/25 05/02/25 E Manganese-Dissolved 34 7.5 40 " 1 5E02081 05/02/25 05/02/25 Nickel ND 13 40 " 4 5E02080 05/02/25 05/02/25 Nickel-Dissolved ND 13 40 " 1 5E02081 05/02/25 05/02/25 Lead ND 6.2 40 " 4 5E02080 05/02/25 05/02/25 Lead-Dissolved ND 6.2 40 " 4 5E02080 05/02/25 05/02/25 Lead-Dissolved ND 6.2 40 " 1 5E02081 05/02/25 05/02/25	SM 3112B	2B	
Manganese Dissolved 32 7.5 40 4 5E02080 05/02/25 05/02/25 E Nickel ND 13 40 " 4 5E02081 05/02/25 05/02/25 05/02/25 Nickel-Dissolved ND 13 40 " 4 5E02080 05/02/25 05/02/25 Lead ND 6.2 40 " 4 5E02081 05/02/25 05/02/25 Lead-Dissolved ND 6.2 40 " 1 5E02081 05/02/25 05/02/25	"		N_
Nickel ND 13 40 " 4 5E02080 05/02/25 05/02/25 Nickel-Dissolved ND 13 40 " 1 5E02081 05/02/25 05/02/25 Lead ND 6.2 40 " 4 5E02080 05/02/25 05/02/25 Lead-Dissolved ND 6.2 40 " 1 5E02081 05/02/25 05/02/25	EPA 200.8		
Nickel-Dissolved ND 13 40 " 1 5E02081 05/02/25 05/02/25 Lead ND 6.2 40 " 4 5E02080 05/02/25 05/02/25 Lead-Dissolved ND 6.2 40 " 1 5E02081 05/02/25 05/02/25			N_F N_RLr
Lead ND 6.2 40 " 4 5E02080 05/02/25 05/02/25 Lead-Dissolved ND 6.2 40 " 1 5E02081 05/02/25 05/02/25	"	1	N_F
Lead-Dissolved ND 6.2 40 " 1 5E02081 05/02/25 05/02/25	"		N_F
Leau-Dissolved 100 0.2 40 1 5E02001 05/02/25 05/02/25	"	1	N_F
Selenium 130 6.7 20 " 4 5F02080 05/02/25 05/02/25	"		N_F
	"		
Selenium-Dissolved 120 6.7 20 " 1 5E02081 05/02/25 05/02/25	"		N_
Zinc ND 20 40 " 4 5E02080 05/02/25 05/02/25	"		N_F
Zinc-Dissolved ND 20 40 " 1 5E02081 05/02/25 05/02/25	"		N_F

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

DPH-002

C5E0127-05 (Liquid, Sampled: 05/01/25 09:00)

Analyte	Result	MDL RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock Labora	tories, In	c River	side				
Volatile Organic Compounds by	y EPA 624.1								N_RLm
1,1,1-Trichloroethane	ND	50	ug/L	100	5E03067	05/03/25	05/03/25	EPA 624.1	
1,1,2,2-Tetrachloroethane	ND	50	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	50	"	"	"	"	"	II .	
1,1-Dichloroethane	ND	50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	50	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	50	"	"	"	"	"	"	
1,2-Dichloroethane	ND	50	"	"	"	"	"	"	
1,2-Dichloropropane	ND	50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	50	"	"	u	"	·	"	
1,4-Dichlorobenzene	ND	50	"	"	u	"	·	"	
2-Chloroethylvinyl Ether	ND	500	"	"	"	"	"	II .	NCEVE
Acrolein	ND	1000	"	"	"	"	"	n .	
Acrylonitrile	ND	1000	"	"	"	"	"	n .	
Benzene	ND	50	"	"	"	"	"	"	
Bromodichloromethane	ND	50	"	"	"	"	"	"	
Bromoform	ND	100	"	"	"	"		"	
Bromomethane	ND	50	"	"	"	"		"	
Carbon Tetrachloride	ND	50	"	"	"	"	"	"	
Chlorobenzene	ND	50	"	"	"	"	"	"	
Chloroethane	ND	50	"	"	"	"	"	"	
Chloroform	ND	50		"	"	"	"	II .	
Chloromethane	ND	50		"	"	"	"	II .	
cis-1,3-Dichloropropene	ND	50		"	"	"	"	II .	
Dibromochloromethane	ND	50		"	"	"	"	II .	
Dichlorodifluoromethane	ND	50		"	"	"	"	II .	
Ethylbenzene	ND	50		"	"	"	"	"	
Methyl tert Butyl Ether	ND	500	"	"	"	"	"	II .	
Methylene Chloride	ND	300	"	"	"	"	"	II .	
Tetrachloroethene	ND	50	"	"	"	"	"	"	
Toluene	ND	50	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	50	"		"	"		"	
trans-1,3-Dichloropropene	ND	50	"	"	"	"		u u	
Trichloroethene	ND	50		"				"	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

DPH-002

C5E0127-05 (Liquid, Sampled: 05/01/25 09:00)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcoc	k Labora	tories, In	c Rivers	side				
Volatile Organic Compounds by EF	PA 624.1									N_RLm
Trichlorofluoromethane	ND		500	ug/L	100	5E03067	05/03/25	05/03/25	EPA 624.1	
Vinyl Chloride	ND		50	"	"	"	"	"	"	
Xylenes (m+p)	ND		50	"	"	"	"	"	"	
Xylenes (ortho)	ND		50	"	"	"	"	"	"	
Surrogate: 1,2-Dichlorobenzene-d4			103 %	80-	120	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4			105 %	80-	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			96 %	80-	120	"	"	"	"	
Surrogate: Toluene-d8			100 %	80-	120	"	"	"	"	
PFAS by LCMSMS (QSM 5.3 Table	B-15 Complia	ant)								
10:2 Fluorotelomer sulfonate	ND	4.8	7.1	ng/L	1	5E05186	05/05/25	05/06/25	ESB SOP T758	
11-chloroeicosafluoro 3oxaundecane-1-sulfonic Acid	ND	1.2	4.4	"	"	"	"	"	n .	
2H,2H,3H,3H-Perfluorodecanoic acid (7:3 FTCA)	ND	3.7	7.1	"	u	"	"	"	"	
2H,2H,3H,3H-Perfluorooctanoic acid (5:3 FTCA)	ND	3.6	7.1	"	"	"	"	"	"	
4,4,5,5,6,6,6-Heptafluorohexanoic Acid (3:3 FTCA)	ND	2.0	4.4	"	"	"	"	"	"	
4,8-dioxa-3H-perfluorononanoic Acid (ADONA)	ND	2.6	4.4	"	"	"	"	"	"	
4:2 Fluorotelomer Sulfonate	ND	1.8	4.4	"	"	"	"	· ·	"	
6:2 Fluorotelomer Sulfonate	ND	1.3	4.4	"	"	"	"	· ·	"	
3:2 Fluorotelomer Sulfonate	ND	1.2	4.4	"	"	"	"	"	"	
9-chlorohexadecafluoro-3-oxanone- 1-sulfonic Acid	ND	0.76	4.4	"	"	"	"	"	"	
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.7	4.4	"	"	"	II .	"	"	
N-ethyl perfluorooctanesulfonamidoacetic	ND	3.9	7.1	"	"	II	II	"	"	
N-Ethylperfluorooctanesulfonamide (EtFOSA)	ND	3.0	7.1	"	"	"	"	"	"	
N-Ethylperfluorooctanesulfonamido ethanol (EtFOSE)	ND	2.9	7.1	"	"	"	II .	"	"	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013

Project Number: Wildfire Response 2025
Project Manager: John Salguero

Project: RWB4_WildFireResponse_2025

Reported: 05/12/25 22:24

DDH 003

DPH-002 C5E0127-05 (Liquid, Sampled: 05/01/25 09:00)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Labora	tories, In	c Rivers	side				
PFAS by LCMSMS (QSM 5.3 Table I	B-15 Complia	ant)								
N-methyl perfluorooctanesulfonamidoacetic	ND	2.3	7.1	ng/L	1	5E05186	05/05/25	05/06/25	ESB SOP T758	
N-Methylperfluorooctanesulfonamid e (MeFOSA)	ND	4.3	7.1	"	n	"	n	"	ıı	
N-Methylperfluorooctanesulfonamid oethanol (MeFOSE)	ND	4.3	7.1	"	"	"	"	п	"	
Perfluorobutanesulfonic Acid (PFBS)	ND	2.1	4.4	"	"	"	II .	"	"	
Perfluorobutanoic acid (PFBA)	2.3	1.9	4.4	"	"	"	"	"	"	J
Perfluorodecanesulfonic acid (PFDS)	ND	2.5	4.4	"	"	II	II	"	"	
Perfluorodecanoic Acid (PFDA)	ND	1.3	4.4	"	"	"	"	"	"	
Perfluorododecanoic Acid (PFDoDA)	ND	1.9	4.4	"	"	II	II	"	"	
Perfluoroheptanesulfonic acid (PFHpS)	ND	1.7	4.4	"	"	"	W	"	"	
Perfluoroheptanoic Acid (PFHpA)	ND	2.8	4.4	"	"	"	"	"	"	
Perfluorohexadecanoic acid (PFHxDA)	ND	1.7	4.4	"	"	II	II	"	"	NISm
Perfluorohexanesulfonic Acid (PFHxS)	ND	1.7	4.4	"	"	"	"	"	"	
Perfluorohexanoic Acid (PFHxA)	ND	3.4	4.4	"	"	"	"	"	"	
Perfluorononanesulfonic acid (PFNS)	ND	2.6	4.4	"	"	"	"	"	"	
Perfluorononanoic Acid (PFNA)	ND	2.0	4.4	"	"	"	"	"		
Perfluorooctadecanoic acid (PFOcDA)	ND	3.6	4.4	"	"	"	"	"	"	NISm
Perfluorooctane Sulfonamide (PFOSA)	ND	2.7	7.1	"	"	"	"	"	"	
Perfluorooctanesulfonic Acid (PFOS)	3.0	1.3	4.4	"	"	"	"	"	"	J
Perfluorooctanoic Acid (PFOA)	ND	2.4	4.4	"	"	"	"	"	"	
Perfluoropentanesulfonate (PFPeS)	ND	2.7	4.4	"	"	"	"	"	"	
Perfluoropentanoic acid (PFPeA)	1.6	0.98	4.4	"	"	"	H .	"	"	J
Perfluorotetradecanoic Acid (PFTeDA)	ND	1.2	4.4	"	"	"	II	"	"	NISm
Perfluorotridecanoic Acid (PFTrDA)	ND	1.2	4.4	"	"	"		"		

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

DPH-002

C5E0127-05 (Liquid, Sampled: 05/01/25 09:00)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Labora	tories, In	ıc Rivers	side				
PFAS by LCMSMS (QSM 5.3 Table	B-15 Complia	ant)								
Perfluoroundecanoic Acid (PFUnA)	ND	0.82	4.4	ng/L	1	5E05186	05/05/25	05/06/25	ESB SOP T758	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

DPH 103 C5E0127-06 (Liquid, Sampled: 05/01/25 08:55)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcocl	k Labora	tories, Ind	c Rivers	side				
Cations										
Calcium	410	3.6	25	mg/L	25	5E02097	05/02/25	05/05/25	EPA 200.7	
Total Hardness	6600		25	"	"	"	"	"	SM 2340B/EPA 200.7	
Magnesium	1300	5.2	25	"	"	"	"	"	EPA 200.7	
Magnesium-Dissolved	1200	0.42	2.0	"	1	5E05172	05/05/25	05/05/25	"	N_Fil
Anions										
Bicarbonate	130	5.0	5.0	mg/L as CaCO3	1	5E05218	05/05/25	05/05/25	SM 2320B	
Carbonate	ND	5.0	5.0	"	"	"	"	"	"	
Hydroxide	ND	5.0	5.0	"	"	"	"	"	"	
Total Alkalinity	130	5.0	5.0	"	"	"	"	"	"	
Nitrate as N	ND	6.0	10	mg/L	50	5E01110	05/02/25	05/02/25	EPA 300.0	N_RLc
Nitrate/Nitrite as N	0.0060	0.0024	0.010	"	1	5E02134	05/02/25	05/02/25	EPA 353.2	
Sulfate	2700	23	25	"	50	5E01110	05/02/25	05/02/25	EPA 300.0	
Solids										
Settleable Solids	3.8	0.1	0.1	mL/L	1	5E02145	05/02/25	05/02/25	SM 2540F	
Total Dissolved Solids	36000	500	500	mg/L	50	5E02113	05/02/25	05/02/25	SM 2540C	
Total Suspended Solids	420	10	10	"	20	5E04177	05/04/25	05/04/25	SM 2540D	N_noF
Aggregate Organic Compounds										
Total Organic Carbon	3.0		0.70	mg/L	1	5E05188	05/05/25	05/05/25	SM 5310B	
Nutrients										
Ammonia-Nitrogen	0.02	0.008	0.01	mg/L	1	5E07156	05/07/25	05/07/25	SM4500NH3 H G	
Ortho Phosphate Phosphorus	ND		0.050	"	"	5E01121	05/01/25	05/01/25	SM 4500P E	
Phosphorus, Total as P	ND	0.02	0.05	"	"	5E02121	05/02/25	05/05/25	"	
Kjeldahl Nitrogen	0.9	0.07	0.1	"	"	5E05201	05/06/25	05/06/25	EPA 351.2	
Total Nitrogen (N)	0.94	0.073	0.11	"		[CALC]	"	"	Calculation	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

DPH 103 C5E0127-06 (Liquid, Sampled: 05/01/25 08:55)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Labora	tories, In	c Rivers	side				
Metals and Metalloids										
Aluminum	ND	690	1200	ug/L	25	5E02097	05/02/25	05/05/25	EPA 200.7	N_RLm
Aluminum-Dissolved	ND	55	100	"	1	5E05172	05/05/25	05/05/25	"	N_Filt, N_RLm
Arsenic	9.7	2.9	20	"	4	5E02080	05/02/25	05/02/25	EPA 200.8	N_RLm, J
Arsenic-Dissolved	8.7	7.1	20	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm, J
Beryllium	ND		40	"	4	5E02080	05/02/25	05/02/25	"	N_RLm
Beryllium-Dissolved	ND		40	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Cadmium	ND	0.44	4.0	"	4	5E02080	05/02/25	05/02/25	"	N_RLm
Cadmium-Dissolved	ND	0.44	8.0	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Total Chromium	ND	16	80	"	4	5E02080	05/02/25	05/02/25	"	N_RLm
Chromium-Dissolved	ND	16	80	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Hexavalent Chromium	ND		1.0	"	10	5E02088	05/03/25	05/03/25	EPA 218.6	N_RLm
Copper	ND	6.5	40	"	4	5E02080	05/02/25	05/02/25	EPA 200.8	N_RLm
Copper-Dissolved	ND	6.5	40	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Iron	610	120	1200	"	25	5E02097	05/02/25	05/05/25	EPA 200.7	N_RLm, J
Iron-Dissolved	ND	9.9	100	"	1	5E05172	05/05/25	05/05/25	"	N_Filt
Mercury	ND	0.56	1.0	"	"	5E02074	05/02/25	05/02/25	SM 3112B	
Mercury-Dissolved	ND	0.56	1.0	"	"	"	"	05/02/25	"	N_Filt
Manganese	29	7.5	40	"	4	5E02080	05/02/25	05/02/25	EPA 200.8	N_RLm, J
Manganese-Dissolved	10	7.5	40		1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm, J
Nickel	ND	13	40	"	4	5E02080	05/02/25	05/02/25	"	N_RLm
Nickel-Dissolved	ND	13	40	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Lead	ND	6.2	40	"	4	5E02080	05/02/25	05/02/25	"	N_RLm
Lead-Dissolved	ND	6.2	40	"	1	5E02081	05/02/25	05/02/25	ı	N_Filt, N_RLm
Selenium	130	6.7	20	"	4	5E02080	05/02/25	05/02/25	"	
Selenium-Dissolved	120	6.7	20	"	1	5E02081	05/02/25	05/02/25	"	N_Filt
Zinc	ND	20	40	"	4	5E02080	05/02/25	05/02/25	"	N_RLm
Zinc-Dissolved	ND	20	40	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013

Project Number: Wildfire Response 2025 Project Manager: John Salguero

Project: RWB4_WildFireResponse_2025

Reported: 05/12/25 22:24

DPH 103 C5E0127-06 (Liquid, Sampled: 05/01/25 08:55)

Analyte	Result	MDL RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock Labora	tories, In	c Rivers	side				
Volatile Organic Compounds by	y EPA 624.1								N_RLm
1,1,1-Trichloroethane	ND	50	ug/L	100	5E03067	05/03/25	05/03/25	EPA 624.1	
1,1,2,2-Tetrachloroethane	ND	50	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	50	"	"	"	"	"	II .	
1,1-Dichloroethane	ND	50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	50	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	50	"	"	"	"	"	"	
1,2-Dichloroethane	ND	50	"	"	"	"	"	"	
1,2-Dichloropropane	ND	50	"	"	"	u	·	II .	
1,3-Dichlorobenzene	ND	50	"	"	"	"	"	II .	
1,4-Dichlorobenzene	ND	50	"	"	"	"	"	II .	
2-Chloroethylvinyl Ether	ND	500	"	"	"	"	"	II .	NCEVE
Acrolein	ND	1000	"	"	"	"	"	"	
Acrylonitrile	ND	1000	"	"	"	"	"	"	
Benzene	ND	50	"	"	"	"	"	"	
Bromodichloromethane	ND	50	"	"	"	"		"	
Bromoform	ND	100	"	"	"	"		"	
Bromomethane	ND	50	"	"	"	"		"	
Carbon Tetrachloride	ND	50	"	"	"	u	·	u u	
Chlorobenzene	ND	50	"	"	"	u u	"	"	
Chloroethane	ND	50	"	"	"	"	"	ıı .	
Chloroform	ND	50	"	"	"	"	"	ıı .	
Chloromethane	ND	50	"	"	"	"	"	ıı .	
cis-1,3-Dichloropropene	ND	50	"	"	"	"	"	"	
Dibromochloromethane	ND	50	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	50	"	"	"	"	"	"	
Ethylbenzene	ND	50	"	"	"	"	"	"	
Methyl tert Butyl Ether	ND	500	"	"	"	"	"	"	
Methylene Chloride	ND	300	"	"	"	"	"	"	
Tetrachloroethene	ND	50	"	"	"	"	"	"	
Toluene	ND	50	"	"	"	"		"	
trans-1,2-Dichloroethene	ND	50		"	"	u .	u u	"	
trans-1,3-Dichloropropene	ND	50		"	"	u .	u u	"	
Trichloroethene	ND	50	"						

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

DPH 103 C5E0127-06 (Liquid, Sampled: 05/01/25 08:55)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcoc	k Labora	tories, In	c Rivers	side				
Volatile Organic Compounds by EF	PA 624.1									N_RLm
Trichlorofluoromethane	ND		500	ug/L	100	5E03067	05/03/25	05/03/25	EPA 624.1	
Vinyl Chloride	ND		50	"	"	"	"	"	II .	
Xylenes (m+p)	ND		50	"	"	"	"	"	"	
Xylenes (ortho)	ND		50	"	"	u u	II .	"	II .	
Surrogate: 1,2-Dichlorobenzene-d4			103 %	80-	120	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4			106 %	80-	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			94 %	80-	120	"	"	"	"	
Surrogate: Toluene-d8			100 %	80-	120	"	n	"	"	
PFAS by LCMSMS (QSM 5.3 Table	B-15 Complia	ant)								
10:2 Fluorotelomer sulfonate	ND	4.4	6.6	ng/L	1	5E05186	05/05/25	05/06/25	ESB SOP T758	NISn
11-chloroeicosafluoro 3oxaundecane-1-sulfonic Acid	ND	1.1	4.1	"	H	H	II	"	n .	
2H,2H,3H,3H-Perfluorodecanoic acid (7:3 FTCA)	ND	3.4	6.6	"	"	"	"	"	"	
2H,2H,3H,3H-Perfluorooctanoic acid (5:3 FTCA)	ND	3.4	6.6	"	"	II	II	"	"	
4,4,5,5,6,6,6-Heptafluorohexanoic Acid (3:3 FTCA)	ND	1.9	4.1	"	"	II	II	"	"	
4,8-dioxa-3H-perfluorononanoic Acid (ADONA)	ND	2.4	4.1	"	"	W	W	"	"	
4:2 Fluorotelomer Sulfonate	ND	1.6	4.1	"	"	"	II .	"	"	NISm
6:2 Fluorotelomer Sulfonate	ND	1.2	4.1	"	"	"	II .	"	"	NISm
8:2 Fluorotelomer Sulfonate	ND	1.1	4.1	"	"	"	"	"	"	NISm
9-chlorohexadecafluoro-3-oxanone- 1-sulfonic Acid	ND	0.70	4.1	"	"	n .	II	"	"	
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.6	4.1	"	"	n .	II	"	"	
N-ethyl perfluorooctanesulfonamidoacetic	ND	3.6	6.6	"	u	u	u	"	"	
N-Ethylperfluorooctanesulfonamide (EtFOSA)	ND	2.8	6.6	"	"	"	"	"	"	NISm
N-Ethylperfluorooctanesulfonamido ethanol (EtFOSE)	ND	2.7	6.6	"	"	н	II	"	"	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

DPH 103 C5E0127-06 (Liquid, Sampled: 05/01/25 08:55)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Labora	tories, In	c Rivers	side				
PFAS by LCMSMS (QSM 5.3 Table I	B-15 Complia	ant)								
N-methyl	ND	2.1	6.6	ng/L	1	5E05186	05/05/25	05/06/25	ESB SOP	
perfluorooctanesulfonamidoacetic				_					T758	
N-Methylperfluorooctanesulfonamid e (MeFOSA)	ND	4.0	6.6	"	"	"	"	"	ıı	NISm
N-Methylperfluorooctanesulfonamid oethanol (MeFOSE)	ND	3.9	6.6	"	"	"	"	"	"	
Perfluorobutanesulfonic Acid (PFBS)	ND	2.0	4.1	"	"	"	II .	"	"	
Perfluorobutanoic acid (PFBA)	ND	1.7	4.1	"	"	"	"	"	"	
Perfluorodecanesulfonic acid (PFDS)	ND	2.3	4.1	"	"	"	"	"	"	
Perfluorodecanoic Acid (PFDA)	ND	1.2	4.1	"	"	"	"	"	"	
Perfluorododecanoic Acid (PFDoDA)	ND	1.7	4.1	"	"	"	"	"	"	
Perfluoroheptanesulfonic acid (PFHpS)	ND	1.6	4.1	"	"	"	"	"	"	
Perfluoroheptanoic Acid (PFHpA)	ND	2.6	4.1	"	"	"	"	"	n n	
Perfluorohexadecanoic acid (PFHxDA)	ND	1.6	4.1	"	H .	II .	II .	"	"	NISm
Perfluorohexanesulfonic Acid (PFHxS)	ND	1.6	4.1	"	"	"	"	"	"	
Perfluorohexanoic Acid (PFHxA)	ND	3.1	4.1	"	"	"	"	"	"	
Perfluorononanesulfonic acid (PFNS)	ND	2.4	4.1	"	"	"	"	"	"	
Perfluorononanoic Acid (PFNA)	ND	1.8	4.1	"	"	"	"	"	"	
Perfluorooctadecanoic acid (PFOcDA)	ND	3.4	4.1	"	"	"	"	"	"	NISm
Perfluorooctane Sulfonamide (PFOSA)	ND	2.5	6.6	"	"	"	"	"	"	
Perfluorooctanesulfonic Acid (PFOS)	2.4	1.2	4.1	"	"	"	"	"	"	J
Perfluorooctanoic Acid (PFOA)	ND	2.2	4.1	"	"	"	u u	"	n .	
Perfluoropentanesulfonate (PFPeS)	ND	2.5	4.1	"	"	"	"	"	"	
Perfluoropentanoic acid (PFPeA)	ND	0.90	4.1	"	"	"	"	"	"	
Perfluorotetradecanoic Acid (PFTeDA)	ND	1.1	4.1	"	"	"	"	"	"	NISm
Perfluorotridecanoic Acid (PFTrDA)	ND	1.1	4.1	"		"	"	"		

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

DPH 103

C5E0127-06 (Liquid, Sampled: 05/01/25 08:55)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Laborat	tories, In	c Rivers	side				
PFAS by LCMSMS (QSM 5.3 Table	B-15 Complia	ant)								
Perfluoroundecanoic Acid (PFUnA)	ND	0.75	4.1	ng/L	1	5E05186	05/05/25	05/06/25	ESB SOP T758	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

SMB 2-4 C5E0127-07 (Liquid, Sampled: 05/01/25 08:17)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcocl	k Labora	tories, Ind	c Rivers	side				
Cations										
Calcium	440	7.2	50	mg/L	50	5E02097	05/02/25	05/05/25	EPA 200.7	
Total Hardness	6800		50	"	"	"	n	"	SM 2340B/EPA 200.7	
Magnesium	1400	10	50	"	"	"	"	"	EPA 200.7	
Magnesium-Dissolved	1200	0.42	2.0	"	1	5E05172	05/05/25	05/05/25	"	N_Filt
Anions										
Bicarbonate	120	5.0	5.0	mg/L as CaCO3	1	5E05218	05/05/25	05/05/25	SM 2320B	
Carbonate	ND	5.0	5.0	"	"	"	"	"	"	
Hydroxide	ND	5.0	5.0	"	"	"	"	"	"	
Total Alkalinity	120	5.0	5.0	"	"	"	"	"	"	
Nitrate as N	ND	6.0	10	mg/L	50	5E01110	05/02/25	05/02/25	EPA 300.0	N_RLd
Nitrate/Nitrite as N	ND	0.0024	0.010	"	1	5E02134	05/02/25	05/02/25	EPA 353.2	
Sulfate	2800	23	25	"	50	5E01110	05/02/25	05/02/25	EPA 300.0	
Solids										
Settleable Solids	8.0	0.1	0.1	mL/L	1	5E02145	05/02/25	05/02/25	SM 2540F	
Total Dissolved Solids	37000	500	500	mg/L	50	5E02113	05/02/25	05/02/25	SM 2540C	
Total Suspended Solids	2700	20	20	"	40	5E04177	05/04/25	05/04/25	SM 2540D	
Aggregate Organic Compounds										
Total Organic Carbon	4.5		0.70	mg/L	1	5E05188	05/05/25	05/05/25	SM 5310B	
Nutrients										
Ammonia-Nitrogen	0.01	0.008	0.01	mg/L	1	5E07156	05/07/25	05/07/25	SM4500NH3 H G	
Ortho Phosphate Phosphorus	ND		0.050	"	"	5E01121	05/01/25	05/01/25	SM 4500P E	
Phosphorus, Total as P	0.10	0.02	0.05	"	"	5E02121	05/02/25	05/05/25	"	
Kjeldahl Nitrogen	1.3	0.07	0.1	"	"	5E05201	05/06/25	05/06/25	EPA 351.2	
Total Nitrogen (N)	1.3	0.073	0.11	"	"	[CALC]	"	"	Calculation	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

SMB 2-4 C5E0127-07 (Liquid, Sampled: 05/01/25 08:17)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Labora	tories, In	c Rivers	side				
Metals and Metalloids										
Aluminum	ND	1400	2500	ug/L	50	5E02097	05/02/25	05/05/25	EPA 200.7	N_RLm
Aluminum-Dissolved	ND	55	100	"	1	5E05172	05/05/25	05/05/25	"	N_Filt, N_RLm
Arsenic	11	2.9	20	"	4	5E02080	05/02/25	05/02/25	EPA 200.8	N_RLm, J
Arsenic-Dissolved	9.1	7.1	20	"	1	5E02081	05/02/25	05/02/25	"	N_RLm, N_Filt, J
Beryllium	ND		40	"	4	5E02080	05/02/25	05/02/25	"	N_RLm
Beryllium-Dissolved	ND		40	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Cadmium	ND	0.44	4.0	"	4	5E02080	05/02/25	05/02/25	"	N_RLm
Cadmium-Dissolved	ND	0.44	8.0	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Total Chromium	ND	16	80	"	4	5E02080	05/02/25	05/02/25	"	N_RLm
Chromium-Dissolved	ND	16	80	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Hexavalent Chromium	ND		1.0	"	10	5E02088	05/03/25	05/03/25	EPA 218.6	N_RLm
Copper	ND	6.5	40	"	4	5E02080	05/02/25	05/02/25	EPA 200.8	N_RLm
Copper-Dissolved	ND	6.5	40	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Iron	1700	250	2500	"	50	5E02097	05/02/25	05/05/25	EPA 200.7	N_RLm, J
Iron-Dissolved	ND	9.9	100	"	1	5E05172	05/05/25	05/05/25	"	N_Filt
Mercury	ND	0.56	1.0	"	"	5E02074	05/02/25	05/02/25	SM 3112B	
Mercury-Dissolved	ND	0.56	1.0	"	"	"	"	05/02/25	"	N_Filt
Manganese	96	7.5	40	"	4	5E02080	05/02/25	05/02/25	EPA 200.8	
Manganese-Dissolved	14	7.5	40		1	5E02081	05/02/25	05/02/25		N_Filt, N_RLm, J
Nickel	ND	13	40	"	4	5E02080	05/02/25	05/02/25	"	N_RLm
Nickel-Dissolved	ND	13	40	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Lead	ND	6.2	40	"	4	5E02080	05/02/25	05/02/25	"	N_RLm
Lead-Dissolved	ND	6.2	40	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Selenium	130	6.7	20	"	4	5E02080	05/02/25	05/02/25	"	
Selenium-Dissolved	120	6.7	20	"	1	5E02081	05/02/25	05/02/25	"	N_Filt
Zinc	ND	20	40	"	4	5E02080	05/02/25	05/02/25	"	N_RLm
Zinc-Dissolved	ND	20	40	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

SMB 2-4 C5E0127-07 (Liquid, Sampled: 05/01/25 08:17)

Analyte	Result	MDL RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock Labora	tories, In	c Rivers	side				
Volatile Organic Compounds b	y EPA 624.1								N_RLm
1,1,1-Trichloroethane	ND	50	ug/L	100	5E03067	05/03/25	05/03/25	EPA 624.1	
1,1,2,2-Tetrachloroethane	ND	50	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	50	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	50	"	"	"	"	"	"	
1,2-Dichloroethane	ND	50	"	"	"	"	"	"	
1,2-Dichloropropane	ND	50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	50	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	50	"	"	"	"	"	"	
2-Chloroethylvinyl Ether	ND	500	"	"	"	"	"	"	NCEVE
Acrolein	ND	1000	"	"	"	"	"	"	
Acrylonitrile	ND	1000	"	"	"	"	"	"	
Benzene	ND	50	"	"	"	"	"	"	
Bromodichloromethane	ND	50	"	"	"	"	"	"	
Bromoform	ND	100	"	"	"	"	"	"	
Bromomethane	ND	50	"	"	"	"	"	"	
Carbon Tetrachloride	ND	50	"	"	"	"	"	"	
Chlorobenzene	ND	50	"	"	"	"	"	"	
Chloroethane	ND	50	"	"	"	"	"	"	
Chloroform	ND	50	"	"	"	"	"	"	
Chloromethane	ND	50	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	50	"	·	"	"	"	"	
Dibromochloromethane	ND	50	"	·	"	"	"	"	
Dichlorodifluoromethane	ND	50	"	"	"	"	"	"	
Ethylbenzene	ND	50	"	"	"	"	"	"	
Methyl tert Butyl Ether	ND	500	"	"	"	"	"	"	
Methylene Chloride	ND	300	"	"	"	"	"	"	
Tetrachloroethene	ND	50	"	"	"	"	"	"	
Toluene	ND	50	"	"		"	"	"	
trans-1,2-Dichloroethene	ND	50	"	"		"	"	"	
trans-1,3-Dichloropropene	ND	50	"			"	"	"	
Trichloroethene	ND	50	"	"					

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

SMB 2-4 C5E0127-07 (Liquid, Sampled: 05/01/25 08:17)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcoc	k Labora	tories, In	c Rivers	side				
Volatile Organic Compounds by EF	PA 624.1									N_RLm
Trichlorofluoromethane	ND		500	ug/L	100	5E03067	05/03/25	05/03/25	EPA 624.1	
Vinyl Chloride	ND		50	"	"	"	"	"	"	
Xylenes (m+p)	ND		50	"	"	"	"	"	"	
Xylenes (ortho)	ND		50	"	"	"	"	"	"	
Surrogate: 1,2-Dichlorobenzene-d4			103 %	80-	120	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4			105 %	80-	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			96 %	80-	120	"	"	"	"	
Surrogate: Toluene-d8			100 %	80-	120	"	"	"	"	
PFAS by LCMSMS (QSM 5.3 Table	B-15 Complia	ant)								
10:2 Fluorotelomer sulfonate	ND	4.6	6.8	ng/L	1	5E05186	05/05/25	05/06/25	ESB SOP T758	NISn
11-chloroeicosafluoro 3oxaundecane-1-sulfonic Acid	ND	1.2	4.3	"	H	H	II	"	II	
2H,2H,3H,3H-Perfluorodecanoic acid (7:3 FTCA)	ND	3.6	6.8	"	"	"	"	"	"	
2H,2H,3H,3H-Perfluorooctanoic acid (5:3 FTCA)	ND	3.5	6.8	"	"	II	II	"	"	
4,4,5,5,6,6,6-Heptafluorohexanoic Acid (3:3 FTCA)	ND	2.0	4.3	"	"	II	II	"	II	
4,8-dioxa-3H-perfluorononanoic Acid (ADONA)	ND	2.5	4.3	"	W .	II	II	"	II	
4:2 Fluorotelomer Sulfonate	ND	1.7	4.3	"	"	"	II .	"	"	NISm
6:2 Fluorotelomer Sulfonate	ND	1.3	4.3	"	"	"	"	"	"	NISm
8:2 Fluorotelomer Sulfonate	ND	1.1	4.3	"	"	"	II .	"	"	NISm
9-chlorohexadecafluoro-3-oxanone- 1-sulfonic Acid	ND	0.74	4.3	"	"	11	II	"	"	
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.6	4.3	"	"	11	II	"	"	
N-ethyl perfluorooctanesulfonamidoacetic	ND	3.8	6.8	"	"	"	"	"	"	NISn
N-Ethylperfluorooctanesulfonamide (EtFOSA)	ND	2.9	6.8	"	u	u	u	"	"	
N-Ethylperfluorooctanesulfonamido ethanol (EtFOSE)	ND	2.8	6.8	"	"	н	II	"	"	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

SMB 2-4 C5E0127-07 (Liquid, Sampled: 05/01/25 08:17)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Labora	tories, In	c Rivers	side				
PFAS by LCMSMS (QSM 5.3 Table I	B-15 Complia	ant)								
N-methyl perfluorooctanesulfonamidoacetic	ND	2.2	6.8	ng/L	1	5E05186	05/05/25	05/06/25	ESB SOP T758	NISn
N-Methylperfluorooctanesulfonamid e (MeFOSA)	ND	4.2	6.8	"	"	"	u	"	"	
N-Methylperfluorooctanesulfonamid pethanol (MeFOSE)	ND	4.1	6.8	"	"	"	"	"	"	
Perfluorobutanesulfonic Acid (PFBS)	ND	2.1	4.3	"	"	"	u	"	"	
Perfluorobutanoic acid (PFBA)	ND	1.8	4.3	"	"	"	u u	"	II .	
Perfluorodecanesulfonic acid (PFDS)	ND	2.4	4.3	"	"	"	u	"	"	
Perfluorodecanoic Acid (PFDA)	ND	1.3	4.3	"	"	"	"	"	"	
Perfluorododecanoic Acid (PFDoDA)	ND	1.8	4.3	"	"	"	"	"	"	
Perfluoroheptanesulfonic acid (PFHpS)	ND	1.6	4.3	"	"	"	"	"	"	
Perfluoroheptanoic Acid (PFHpA)	ND	2.7	4.3	"	"	"	"	"	"	
Perfluorohexadecanoic acid (PFHxDA)	ND	1.6	4.3	"	"	II	"	II	"	
Perfluorohexanesulfonic Acid (PFHxS)	ND	1.6	4.3	"	"	"	II	"	"	
Perfluorohexanoic Acid (PFHxA)	ND	3.3	4.3	"	"	"	"	"	"	
Perfluorononanesulfonic acid (PFNS)	ND	2.5	4.3	"	"	"	II	II .	"	
Perfluorononanoic Acid (PFNA)	ND	1.9	4.3	"	"	"	"	"	"	
Perfluorooctadecanoic acid (PFOcDA)	ND	3.5	4.3	"	"	"	II	"	"	
Perfluorooctane Sulfonamide (PFOSA)	ND	2.7	6.8	"	"	II	"	"	"	
Perfluorooctanesulfonic Acid (PFOS)	ND	1.3	4.3	"	"	"	II	"	"	
Perfluorooctanoic Acid (PFOA)	ND	2.3	4.3	"	u u	"	"	"	"	
Perfluoropentanesulfonate (PFPeS)	ND	2.7	4.3	"	"	"	"	"	"	
Perfluoropentanoic acid (PFPeA)	ND	0.94	4.3	"	"	"	"	"	"	
Perfluorotetradecanoic Acid (PFTeDA)	ND	1.1	4.3	"	"	"	u	"	"	
Perfluorotridecanoic Acid (PFTrDA)	ND	1.1	4.3	"	"	"	"	"	"	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

SMB 2-4

C5E0127-07 (Liquid, Sampled: 05/01/25 08:17)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Analyte	Resuit	MDL	KL	Units	Dilution	Daten	Prepareu	Analyzeu	wethod	notes
		Babcock	Labora	tories, In	c Rivers	side				
PFAS by LCMSMS (QSM 5.3 Table	B-15 Complia	ant)								
Perfluoroundecanoic Acid (PFUnA)	ND	0.79	4.3	ng/L	1	5E05186	05/05/25	05/06/25	ESB SOP T758	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

SMB 2-7 C5E0127-08 (Liquid, Sampled: 05/01/25 10:00)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcocl	k Labora	tories, Ind	c Rivers	side				
Cations										
Calcium	410	7.2	50	mg/L	50	5E02097	05/02/25	05/05/25	EPA 200.7	
Total Hardness	6500		50	"	"	u .	"	"	SM 2340B/EPA 200.7	
Magnesium	1300	10	50	"	"	"	u u	"	EPA 200.7	
Magnesium-Dissolved	1200	0.42	2.0	"	1	5E05172	05/05/25	05/05/25	"	N_Filt
Anions										
Bicarbonate	120	5.0	5.0	mg/L as CaCO3	1	5E05218	05/05/25	05/05/25	SM 2320B	
Carbonate	ND	5.0	5.0	"	"	"	"	"	"	
Hydroxide	ND	5.0	5.0	"	"	"	"	·	"	
Total Alkalinity	120	5.0	5.0	"	"	"	II .	"	"	
Nitrate as N	ND	6.0	10	mg/L	50	5E01110	05/02/25	05/02/25	EPA 300.0	N_RLd
Nitrate/Nitrite as N	0.0070	0.0024	0.010	"	1	5E07165	05/07/25	05/07/25	EPA 353.2	J
Sulfate	2800	23	25	"	50	5E01110	05/02/25	05/02/25	EPA 300.0	
Solids										
Settleable Solids	0.1	0.1	0.1	mL/L	1	5E02083	05/02/25	05/02/25	SM 2540F	
Total Dissolved Solids	37000	500	500	mg/L	50	5E02113	05/02/25	05/02/25	SM 2540C	
Total Suspended Solids	140	5	5	"	10	5E04177	05/04/25	05/04/25	SM 2540D	N_noH
Aggregate Organic Compounds										
Total Organic Carbon	2.8		0.70	mg/L	1	5E05188	05/05/25	05/05/25	SM 5310B	
Nutrients										
Ammonia-Nitrogen	0.01	0.008	0.01	mg/L	1	5E07156	05/07/25	05/07/25	SM4500NH3 H G	
Ortho Phosphate Phosphorus	ND		0.050	"	"	5E01121	05/01/25	05/01/25	SM 4500P E	
Phosphorus, Total as P	0.07	0.02	0.05	"	"	5E02121	05/02/25	05/05/25	"	
Kjeldahl Nitrogen	0.6	0.4	0.5	"	"	5E05201	05/06/25	05/06/25	EPA 351.2	
Total Nitrogen (N)	0.65	0.35	0.51	"	"	[CALC]	05/07/25	05/07/25	Calculation	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

SMB 2-7 C5E0127-08 (Liquid, Sampled: 05/01/25 10:00)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Labora	tories, In	c Rivers	side				
Metals and Metalloids										
Aluminum	ND	1400	2500	ug/L	50	5E02097	05/02/25	05/05/25	EPA 200.7	N_RLn
Aluminum-Dissolved	ND	55	100	"	1	5E05172	05/05/25	05/05/25	"	N_Filt, N_RLm
Arsenic	9.4	2.9	20	"	4	5E02080	05/02/25	05/02/25	EPA 200.8	N_RLm, 、
Arsenic-Dissolved	9.5	7.1	20	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm, 、
Beryllium	ND		40	"	4	5E02080	05/02/25	05/02/25	"	N_RLn
Beryllium-Dissolved	ND		40	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Cadmium	ND	0.44	4.0	"	4	5E02080	05/02/25	05/02/25	"	N_RLm
Cadmium-Dissolved	ND	0.44	8.0	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Total Chromium	ND	16	80	"	4	5E02080	05/02/25	05/02/25	"	N_RLn
Chromium-Dissolved	ND	16	80	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Hexavalent Chromium	ND		1.0	"	10	5E02088	05/03/25	05/03/25	EPA 218.6	N_RLn
Copper	ND	6.5	40	"	4	5E02080	05/02/25	05/02/25	EPA 200.8	N_RLm
Copper-Dissolved	ND	6.5	40	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Iron	ND	250	2500	"	50	5E02097	05/02/25	05/05/25	EPA 200.7	N_RLm
Iron-Dissolved	ND	9.9	100	"	1	5E05172	05/05/25	05/05/25	"	N_Fil
Mercury	ND	0.56	1.0	"	"	5E02074	05/02/25	05/02/25	SM 3112B	
Mercury-Dissolved	ND	0.56	1.0		"	"	"	05/02/25	"	N_Fil
Manganese	17	7.5	40	"	4	5E02080	05/02/25	05/02/25	EPA 200.8	N_RLm,
Manganese-Dissolved	11	7.5	40		1	5E02081	05/02/25	05/02/25	"	N_RLm, N_Filt, 、
Nickel	ND	13	40	"	4	5E02080	05/02/25	05/02/25	"	N_RLn
Nickel-Dissolved	ND	13	40	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLn
Lead	ND	6.2	40	"	4	5E02080	05/02/25	05/02/25	"	N_RLn
Lead-Dissolved	ND	6.2	40	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Selenium	130	6.7	20	"	4	5E02080	05/02/25	05/02/25	"	
Selenium-Dissolved	130	6.7	20	"	1	5E02081	05/02/25	05/02/25	"	N_Fil
Zinc	ND	20	40	"	4	5E02080	05/02/25	05/02/25	"	N_RLr
Zinc-Dissolved	ND	20	40	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200

Los Angeles CA, 90013

Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

SMB 2-7 C5E0127-08 (Liquid, Sampled: 05/01/25 10:00)

Analyte	Result	MDL RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock Labora	atories, Ir	c River	side				
Volatile Organic Compounds by	y EPA 624.1								N_RLm
1,1,1-Trichloroethane	ND	50	ug/L	100	5E03067	05/03/25	05/03/25	EPA 624.1	
1,1,2,2-Tetrachloroethane	ND	50	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	50	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	50	"	"	"	u	"	"	
1,2-Dichloroethane	ND	50	"	"	u	u	"	"	
1,2-Dichloropropane	ND	50	"	"	"	"	"	II .	
1,3-Dichlorobenzene	ND	50	"	"	"	"	m .	"	
1,4-Dichlorobenzene	ND	50	"	"	"	"	"	n .	
2-Chloroethylvinyl Ether	ND	500	"	"	"	"	"	"	NCEVE
Acrolein	ND	1000	"	"	"	"	"	"	
Acrylonitrile	ND	1000	"	"	u u	u	"	"	
Benzene	ND	50	"	"	"	"	"	"	
Bromodichloromethane	ND	50	"	"	u u	u	"	"	
Bromoform	ND	100	"	"	u u	u	"	"	
Bromomethane	ND	50	"	"	"	u u	"	II .	
Carbon Tetrachloride	ND	50	"	"	"	"	"	"	
Chlorobenzene	ND	50	"	"	"	"	"	"	
Chloroethane	ND	50	"	"	"	"	"	n .	
Chloroform	ND	50	"	"	"	"	"	"	
Chloromethane	ND	50	"	"	"	"	"	n .	
cis-1,3-Dichloropropene	ND	50	"	"	"	"	"	n .	
Dibromochloromethane	ND	50	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	50	"	"	"	"	"	"	
Ethylbenzene	ND	50		"	"	"	"	"	
Methyl tert Butyl Ether	ND	500			"	"	"	"	
Methylene Chloride	ND	300		"	"	u .	"	u u	
Tetrachloroethene	ND	50		"	"	u .	"	u u	
Toluene	ND	50		"	"	"	"	II .	
trans-1,2-Dichloroethene	ND	50		"	"	"	"	II .	
trans-1,3-Dichloropropene	ND	50	"				"	"	
Trichloroethene	ND	50	"					_	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

SMB 2-7 C5E0127-08 (Liquid, Sampled: 05/01/25 10:00)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcoc	k Labora	tories, In	c Rivers	side				
Volatile Organic Compounds by EF	PA 624.1									N_RLm
Trichlorofluoromethane	ND		500	ug/L	100	5E03067	05/03/25	05/03/25	EPA 624.1	
Vinyl Chloride	ND		50	"	"	"	"	"	"	
Xylenes (m+p)	ND		50	"	"	"	"	"	"	
Xylenes (ortho)	ND		50	"	"	"	"	· ·	"	
Surrogate: 1,2-Dichlorobenzene-d4			104 %	80-	120	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4			108 %	80-	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			97 %	80-	120	"	"	"	"	
Surrogate: Toluene-d8			100 %	80-	120	"	"	"	"	
PFAS by LCMSMS (QSM 5.3 Table	B-15 Compli	ant)								
10:2 Fluorotelomer sulfonate	ND	4.4	6.6	ng/L	1	5E05186	05/05/25	05/06/25	ESB SOP T758	NISm
11-chloroeicosafluoro 3oxaundecane-1-sulfonic Acid	ND	1.2	4.1	"	H	"	II	"	"	
2H,2H,3H,3H-Perfluorodecanoic acid (7:3 FTCA)	ND	3.5	6.6	"	"	"	"	"	u	
2H,2H,3H,3H-Perfluorooctanoic acid (5:3 FTCA)	ND	3.4	6.6	"	"	"	"	"	II	
4,4,5,5,6,6,6-Heptafluorohexanoic Acid (3:3 FTCA)	ND	1.9	4.1	"	"	"	"	"	"	
4,8-dioxa-3H-perfluorononanoic Acid (ADONA)	ND	2.4	4.1	"	"	"	II	"	"	
4:2 Fluorotelomer Sulfonate	ND	1.6	4.1	"	"	"	"	· ·	"	NISm
6:2 Fluorotelomer Sulfonate	ND	1.2	4.1	"	"	"	"	"	"	NISm
8:2 Fluorotelomer Sulfonate	ND	1.1	4.1	"	"	"	"	"	"	NISm
9-chlorohexadecafluoro-3-oxanone- 1-sulfonic Acid	ND	0.71	4.1	"	"	"	"	"	II	
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.6	4.1	"	"	"	II	"	"	
N-ethyl perfluorooctanesulfonamidoacetic	ND	3.6	6.6	"	"	II	"	"	II	
N-Ethylperfluorooctanesulfonamide (EtFOSA)	ND	2.8	6.6	"	"	"	"	"	n .	
N-Ethylperfluorooctanesulfonamido ethanol (EtFOSE)	ND	2.7	6.6	"	"	"	II	"	"	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025
Project Number: Wildfire Response 2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

SMB 2-7 C5E0127-08 (Liquid, Sampled: 05/01/25 10:00)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Labora	tories, In	c Rivers	side				
PFAS by LCMSMS (QSM 5.3 Table I	B-15 Complia	ant)								
N-methyl perfluorooctanesulfonamidoacetic	ND	2.1	6.6	ng/L	1	5E05186	05/05/25	05/06/25	ESB SOP T758	
N-Methylperfluorooctanesulfonamid e (MeFOSA)	ND	4.0	6.6	"	"	н	"	"	"	
N-Methylperfluorooctanesulfonamid pethanol (MeFOSE)	ND	3.9	6.6	"	"	II	II	"	"	
Perfluorobutanesulfonic Acid (PFBS)	ND	2.0	4.1	"	"	"	"	"	"	
Perfluorobutanoic acid (PFBA)	ND	1.7	4.1	"	"	"	"	"	"	
Perfluorodecanesulfonic acid (PFDS)	ND	2.3	4.1	"	"	"	"	"	"	
Perfluorodecanoic Acid (PFDA)	ND	1.2	4.1	"	"	"	"	"	"	
Perfluorododecanoic Acid (PFDoDA)	ND	1.7	4.1	"	"	W	"	"	"	
Perfluoroheptanesulfonic acid (PFHpS)	ND	1.6	4.1	"	"	"	"	"	"	
Perfluoroheptanoic Acid (PFHpA)	ND	2.6	4.1	"	"	"	"	"	"	
Perfluorohexadecanoic acid (PFHxDA)	ND	1.6	4.1	"	"	"	"	"	"	
Perfluorohexanesulfonic Acid (PFHxS)	ND	1.6	4.1	"	"	u	"	"	"	
Perfluorohexanoic Acid (PFHxA)	ND	3.1	4.1	"	"	"	"	"	"	
Perfluorononanesulfonic acid (PFNS)	ND	2.4	4.1	"	"	"	"	II	"	
Perfluorononanoic Acid (PFNA)	ND	1.8	4.1	"	"	"	"	"	"	
Perfluorooctadecanoic acid (PFOcDA)	ND	3.4	4.1	"	"	"	"	II	"	
Perfluorooctane Sulfonamide (PFOSA)	ND	2.5	6.6	"	"	"	"	II	"	
Perfluorooctanesulfonic Acid (PFOS)	1.7	1.2	4.1	"	"	"	"	"	"	•
Perfluorooctanoic Acid (PFOA)	ND	2.2	4.1	"	"	"	"	"	"	
Perfluoropentanesulfonate (PFPeS)	ND	2.5	4.1	"	"	"	II .	"	"	
Perfluoropentanoic acid (PFPeA)	ND	0.90	4.1	"	"	"	"	"	"	
Perfluorotetradecanoic Acid (PFTeDA)	ND	1.1	4.1	"	"	W	"	"	"	
Perfluorotridecanoic Acid (PFTrDA)	ND	1.1	4.1	"	"	"	"	"	"	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

SMB 2-7

C5E0127-08 (Liquid, Sampled: 05/01/25 10:00)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Allayee							· ·opaioa	Analyzou	Mictiloa	110103
		Babcock	Labora	tories, in	c Rivers	siae				
PFAS by LCMSMS (QSM 5.3 Table	B-15 Complia	ant)								
Perfluoroundecanoic Acid (PFUnA)	ND	0.76	4.1	ng/L	1	5E05186	05/05/25	05/06/25	ESB SOP T758	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

DPH-105B C5E0127-09 (Liquid, Sampled: 05/01/25 11:10)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	(Labora	tories, Ind	c Rivers	side				
Cations										
Calcium	390	3.6	25	mg/L	25	5E02097	05/02/25	05/05/25	EPA 200.7	
Total Hardness	6300		25	"	"	u	"	"	SM 2340B/EPA 200.7	
Magnesium	1300	5.2	25	"	"	"	II .	"	EPA 200.7	
Magnesium-Dissolved	1200	2.1	10	"	1	5E06168	05/06/25	05/06/25	"	N_Filt
Anions										
Bicarbonate	130	5.0	5.0	mg/L as CaCO3	1	5E05218	05/05/25	05/05/25	SM 2320B	
Carbonate	ND	5.0	5.0	"	"	"	"	"	· ·	
Hydroxide	ND	5.0	5.0	"	"	"	"	"	"	
Total Alkalinity	130	5.0	5.0	"	"	"	II .	"	"	
Nitrate as N	ND	6.0	10	mg/L	50	5E01110	05/02/25	05/02/25	EPA 300.0	N_RLd
Nitrate/Nitrite as N	0.0060	0.0024	0.010	"	1	5E02134	05/02/25	05/02/25	EPA 353.2	J
Sulfate	2800	23	25	"	50	5E01110	05/02/25	05/02/25	EPA 300.0	
Solids										
Settleable Solids	12	0.1	0.1	mL/L	0.967	5E02083	05/02/25	05/02/25	SM 2540F	
Total Dissolved Solids	37000	500	500	mg/L	50	5E02113	05/02/25	05/02/25	SM 2540C	
Total Suspended Solids	1500	5	5	"	10	5E04177	05/04/25	05/04/25	SM 2540D	
Aggregate Organic Compounds										
Total Organic Carbon	3.0		0.70	mg/L	1	5E05188	05/05/25	05/05/25	SM 5310B	
Nutrients										
Ammonia-Nitrogen	0.01	0.008	0.01	mg/L	1	5E07156	05/07/25	05/07/25	SM4500NH3 H G	
Ortho Phosphate Phosphorus	ND		0.050	"	"	5E01121	05/01/25	05/01/25	SM 4500P E	
Phosphorus, Total as P	0.06	0.02	0.05	"	"	5E02121	05/02/25	05/05/25	"	
Kjeldahl Nitrogen	0.9	0.9	1.2	"	"	5E05201	05/06/25	05/06/25	EPA 351.2	N_RLm, J
Total Nitrogen (N)	0.91	0.88	1.3	"	"	[CALC]	"	"	Calculation	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

DPH-105B C5E0127-09 (Liquid, Sampled: 05/01/25 11:10)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Labora	tories, In	c Rivers	side				
Metals and Metalloids										
Aluminum	ND	690	1200	ug/L	25	5E08121	05/08/25	05/09/25	EPA 200.7	N_RLn
Aluminum-Dissolved	ND	280	500	"	1	5E09127	05/09/25	05/09/25	"	N_Filt, N_RLm
Arsenic	9.2	2.9	20	"	4	5E02080	05/02/25	05/02/25	EPA 200.8	N_RLm, 、
Arsenic-Dissolved	9.0	7.1	20	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm, 、
Beryllium	ND		40	"	4	5E02080	05/02/25	05/02/25	"	N_RLn
Beryllium-Dissolved	ND		40	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Cadmium	ND	0.44	4.0	"	4	5E02080	05/02/25	05/02/25	"	N_RLm
Cadmium-Dissolved	ND	0.44	8.0	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Total Chromium	ND	16	80	"	4	5E02080	05/02/25	05/02/25	"	N_RLn
Chromium-Dissolved	ND	16	80	"	1	5E02081	05/02/25	05/02/25	"	N_RLm, N_Fil
Hexavalent Chromium	ND		1.0	"	10	5E02088	05/03/25	05/03/25	EPA 218.6	N_RLn
Copper	ND	6.5	40	"	4	5E02080	05/02/25	05/02/25	EPA 200.8	N_RLn
Copper-Dissolved	ND	6.5	40	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Iron	ND	120	1200	"	25	5E02097	05/02/25	05/05/25	EPA 200.7	N_RLr
Iron-Dissolved	ND	49	500	"	1	5E06168	05/06/25	05/06/25	"	N_Filt, N_RLm
Mercury	ND	0.56	1.0	"	"	5E02074	05/02/25	05/02/25	SM 3112B	
Mercury-Dissolved	ND	0.56	1.0	"	"	"	"	05/02/25	"	N_Fil
Manganese	11	7.5	40		4	5E02080	05/02/25	05/02/25	EPA 200.8	N_RLm,
Manganese-Dissolved	8.0	7.5	40		1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm, 、
Nickel	ND	13	40	"	4	5E02080	05/02/25	05/02/25	"	N_RLm
Nickel-Dissolved	ND	13	40	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLn
Lead	ND	6.2	40	"	4	5E02080	05/02/25	05/02/25	"	N_RLn
Lead-Dissolved	ND	6.2	40	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLn
Selenium	110	6.7	20	"	4	5E02080	05/02/25	05/02/25	"	
Selenium-Dissolved	120	6.7	20	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_TE
Zinc	ND	20	40	"	4	5E02080	05/02/25	05/02/25		N_RLr

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

DPH-105B C5E0127-09 (Liquid, Sampled: 05/01/25 11:10)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Labora	tories, In	c Rivers	side				
Metals and Metalloids										
Zinc-Dissolved	ND	20	40	ug/L	1	5E02081	05/02/25	05/02/25	EPA 200.8	N_Filt, N_RLn
Volatile Organic Compounds by	EPA 624.1									N_RLm
1,1,1-Trichloroethane	ND		50	ug/L	100	5E03067	05/03/25	05/03/25	EPA 624.1	
1,1,2,2-Tetrachloroethane	ND		50	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND		50	"	"	"	"	"	"	
1,1-Dichloroethane	ND		50	"	u u	"	"	·	"	
1,1-Dichloroethene	ND		50	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND		50	"	"	"	"	"	"	
1,2-Dichloroethane	ND		50	"	"	"	"	"	"	
1,2-Dichloropropane	ND		50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND		50	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND		50	"	"	"	"	"	"	
2-Chloroethylvinyl Ether	ND		500	"	"	"	"	"	"	NCEVE
Acrolein	ND		1000	"	"	"	u u	"	"	
Acrylonitrile	ND		1000	"	"	"	II .	"	"	
Benzene	ND		50	"	"	"	II .	"	"	
Bromodichloromethane	ND		50	"	"	"	"	· ·	"	
Bromoform	ND		100	"	"	"	"	"	"	
Bromomethane	ND		50	"	"	"	"	· ·	"	
Carbon Tetrachloride	ND		50	"	"	"	"	"	"	
Chlorobenzene	ND		50	"	"	"	"	· ·	"	
Chloroethane	ND		50	"	"	"	"	· ·	"	
Chloroform	ND		50	"	"	"	"	· ·	"	
Chloromethane	ND		50	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND		50	"	"	"	"	· ·	"	
Dibromochloromethane	ND		50	"	"	"	"	"	"	
Dichlorodifluoromethane	ND		50	"	"	"	"	"	"	
Ethylbenzene	ND		50	"	"	"	"	u	"	
Methyl tert Butyl Ether	ND		500	"	"	"	"	u	"	
Methylene Chloride	ND		300	"	"	"	"	· ·	"	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

DPH-105B C5E0127-09 (Liquid, Sampled: 05/01/25 11:10)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcoc	k Laborat	tories, In	c Rivers	side				
Volatile Organic Compounds by EF	PA 624.1									N_RLn
Toluene	ND		50	ug/L	100	5E03067	05/03/25	05/03/25	EPA 624.1	
rans-1,2-Dichloroethene	ND		50	"	"	"	"	"	"	
rans-1,3-Dichloropropene	ND		50	"	"	"	"	"	"	
Trichloroethene	ND		50	"	"	"	"	"	"	
Trichlorofluoromethane	ND		500	"	"	"	"	"	u .	
Vinyl Chloride	ND		50	"	"	"	"	"	II .	
Xylenes (m+p)	ND		50	"	"	"	"	"	II .	
Xylenes (ortho)	ND		50	"	"	"	"	"	II .	
Surrogate: 1,2-Dichlorobenzene-d4			103 %	80-	120	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4			107 %	80-	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			95 %	80-	120	"	"	"	"	
Surrogate: Toluene-d8			100 %	80-	120	"	"	"	"	
10:2 Fluorotelomer sulfonate	ND	4.5	6.7	ng/L	1	5E05186	05/05/25	05/06/25	ESB SOP T758	NIS
11-chloroeicosafluoro	ND	1.2	4.2	"	"	"	"	"	T758 "	
Boxaundecane-1-sulfonic Acid	ND	2.5	0.7	"				,	"	
2H,2H,3H,3H-Perfluorodecanoic acid (7:3 FTCA)	ND	3.5	6.7							
2H,2H,3H,3H-Perfluorooctanoic acid (5:3 FTCA)	ND	3.4	6.7	"	n	H .	"	"	II.	
4,4,5,5,6,6,6-Heptafluorohexanoic Acid (3:3 FTCA)	ND	1.9	4.2	"	u	u	"	u	"	
4,8-dioxa-3H-perfluorononanoic Acid (ADONA)	ND	2.4	4.2	"	"	II	"	"	"	
1:2 Fluorotelomer Sulfonate	ND	1.7	4.2	"	"	"	"	"	u .	
6:2 Fluorotelomer Sulfonate	ND	1.3	4.2	"	"	"	"	"	u	NIS
3:2 Fluorotelomer Sulfonate	ND	1.1	4.2	"	"	"	"	"	u	NIS
9-chlorohexadecafluoro-3-oxanone- 1-sulfonic Acid	ND	0.72	4.2	"	H	H	"	"	II.	
-Sullottic Acid			4.0			"			"	
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.6	4.2							

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

DPH-105B C5E0127-09 (Liquid, Sampled: 05/01/25 11:10)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Labora	tories, In	c Rivers	side				
PFAS by LCMSMS (QSM 5.3 Table	B-15 Complia	ant)								
N-Ethylperfluorooctanesulfonamide (EtFOSA)	ND	2.8	6.7	ng/L	1	5E05186	05/05/25	05/06/25	ESB SOP T758	
N-Ethylperfluorooctanesulfonamido ethanol (EtFOSE)	ND	2.8	6.7	"	"	H	W	"	"	
N-methyl perfluorooctanesulfonamidoacetic	ND	2.2	6.7	"	"	н	II	"	u.	
N-Methylperfluorooctanesulfonamid e (MeFOSA)	ND	4.1	6.7	"	"	H	W	"	"	
N-Methylperfluorooctanesulfonamid oethanol (MeFOSE)	ND	4.0	6.7	"	"	н	H .	"	II	
Perfluorobutanesulfonic Acid (PFBS)	ND	2.0	4.2	"	"	н	II	"	ıı	
Perfluorobutanoic acid (PFBA)	ND	1.8	4.2	"	"	"	"	"		
Perfluorodecanesulfonic acid (PFDS)	ND	2.3	4.2	"	"	u	u	"	"	
Perfluorodecanoic Acid (PFDA)	ND	1.3	4.2	"	"	"	u	"	"	
Perfluorododecanoic Acid (PFDoDA)	ND	1.8	4.2	"	"	"	"	"	u	
Perfluoroheptanesulfonic acid (PFHpS)	ND	1.6	4.2	"	"	"	"	"	u	
Perfluoroheptanoic Acid (PFHpA)	ND	2.7	4.2	"	"	"	u	"	"	
Perfluorohexadecanoic acid (PFHxDA)	ND	1.6	4.2	"	"	"	u	"	"	
Perfluorohexanesulfonic Acid (PFHxS)	ND	1.6	4.2	"	"	"	u	"	u	
Perfluorohexanoic Acid (PFHxA)	ND	3.2	4.2	"	"	"	n n	"	"	
Perfluorononanesulfonic acid (PFNS)	ND	2.4	4.2	"	"	"	u	"	u .	
Perfluorononanoic Acid (PFNA)	ND	1.8	4.2	"	"	II .	II .	"	"	
Perfluorooctadecanoic acid (PFOcDA)	ND	3.4	4.2	"	"	"	u	"	u .	
Perfluorooctane Sulfonamide (PFOSA)	ND	2.6	6.7	"	"	"	"	II	II	
Perfluorooctanesulfonic Acid (PFOS)	1.8	1.3	4.2	"	"	"	u	"	"	,
Perfluorooctanoic Acid (PFOA)	ND	2.3	4.2	"	"	"	"	"	"	
Perfluoropentanesulfonate (PFPeS)	ND	2.6	4.2	"	"	"	"	"	"	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

DPH-105B

C5E0127-09 (Liquid, Sampled: 05/01/25 11:10)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Laborat	tories, In	nc Rivers	side				
PFAS by LCMSMS (QSM 5.3 Table	B-15 Complia	ant)								
Perfluoropentanoic acid (PFPeA)	ND	0.92	4.2	ng/L	1	5E05186	05/05/25	05/06/25	ESB SOP T758	
Perfluorotetradecanoic Acid (PFTeDA)	ND	1.1	4.2	"	"	"	"	"	"	
Perfluorotridecanoic Acid (PFTrDA)	ND	1.1	4.2	"	"	"	"	"	"	
Perfluoroundecanoic Acid (PFUnA)	ND	0.77	4.2	"	"	"	"	"	"	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

SMB 1-16 C5E0127-10 (Liquid, Sampled: 05/01/25 10:30)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Labora	tories, Ind	c Rivers	side				
Cations										
Calcium	400	7.2	50	mg/L	50	5E02097	05/02/25	05/05/25	EPA 200.7	
Total Hardness	6400		50	"	"	u .	"	"	SM 2340B/EPA 200.7	
Magnesium	1300	10	50	"	"	"	II .	"	EPA 200.7	
Magnesium-Dissolved	1300	2.1	10	"	1	5E06168	05/06/25	05/06/25	"	N_Filt
Anions										
Bicarbonate	120	5.0	5.0	mg/L as CaCO3	1	5E05218	05/05/25	05/05/25	SM 2320B	
Carbonate	ND	5.0	5.0	"	"	"	"	II .	"	
Hydroxide	ND	5.0	5.0	"	"	"	"	·	"	
Total Alkalinity	120	5.0	5.0	"	"	"	II .	"	"	
Nitrate as N	ND	6.0	10	mg/L	50	5E01110	05/02/25	05/02/25	EPA 300.0	N_RLd
Nitrate/Nitrite as N	0.0040	0.0024	0.010	"	1	5E02134	05/02/25	05/02/25	EPA 353.2	J
Sulfate	2800	23	25	"	50	5E01110	05/02/25	05/02/25	EPA 300.0	
Solids										
Settleable Solids	0.3	0.09	0.09	mL/L	0.921	5E02083	05/02/25	05/02/25	SM 2540F	
Total Dissolved Solids	37000	500	500	mg/L	50	5E02113	05/02/25	05/02/25	SM 2540C	
Total Suspended Solids	210	1	1	"	2	5E02082	05/02/25	05/02/25	SM 2540D	
Aggregate Organic Compounds										
Total Organic Carbon	2.3		0.70	mg/L	1	5E05188	05/05/25	05/05/25	SM 5310B	
Nutrients										
Ammonia-Nitrogen	0.02	0.008	0.01	mg/L	1	5E07156	05/07/25	05/07/25	SM4500NH3 H G	
Ortho Phosphate Phosphorus	ND		0.050	"	"	5E01121	05/01/25	05/01/25	SM 4500P E	
Phosphorus, Total as P	0.07	0.02	0.05	"	"	5E02121	05/02/25	05/05/25	"	
Kjeldahl Nitrogen	ND	0.9	1.2	"	"	5E05201	05/06/25	05/06/25	EPA 351.2	N_RLm
Total Nitrogen (N)	ND	0.88	1.3	"		[CALC]	"	"	Calculation	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

SMB 1-16 C5E0127-10 (Liquid, Sampled: 05/01/25 10:30)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Labora	tories, In	c Rivers	side				
Metals and Metalloids										
Aluminum	ND	1400	2500	ug/L	50	5E02097	05/02/25	05/05/25	EPA 200.7	N_RLm
Aluminum-Dissolved	400	280	500	"	1	5E06168	05/06/25	05/06/25	"	J, N_Fil
Arsenic	9.0	2.9	20	"	4	5E02080	05/02/25	05/02/25	EPA 200.8	N_RLm,
Arsenic-Dissolved	9.1	7.1	20	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm, J
Beryllium	ND		40	"	4	5E02080	05/02/25	05/02/25	"	N_RLm
Beryllium-Dissolved	ND		40	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Cadmium	ND	0.44	4.0	"	4	5E02080	05/02/25	05/02/25	"	N_RLm
Cadmium-Dissolved	0.58	0.44	8.0	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm, J
Total Chromium	ND	16	80	"	4	5E02080	05/02/25	05/02/25	"	N_RLm
Chromium-Dissolved	ND	16	80	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Hexavalent Chromium	ND		1.0	"	10	5E02088	05/03/25	05/03/25	EPA 218.6	N_RLm
Copper	ND	6.5	40	"	4	5E02080	05/02/25	05/02/25	EPA 200.8	N_RLm
Copper-Dissolved	ND	6.5	40	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Iron	340	250	2500	"	50	5E02097	05/02/25	05/05/25	EPA 200.7	J, N_RLm
Iron-Dissolved	ND	49	500	"	1	5E06168	05/06/25	05/06/25	"	N_Filt, N_RLm
Mercury	ND	0.56	1.0	"	"	5E02074	05/02/25	05/02/25	SM 3112B	
Mercury-Dissolved	ND	0.56	1.0	"	"	"	"	05/02/25	"	N_Filt
Manganese	19	7.5	40	"	4	5E02080	05/02/25	05/02/25	EPA 200.8	J, N_RLm
Manganese-Dissolved	11	7.5	40	"	1	5E02081	05/02/25	05/02/25	"	J, N_Filt, N_RLm
Nickel	ND	13	40	"	4	5E02080	05/02/25	05/02/25	"	N_RLm
Nickel-Dissolved	ND	13	40	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Lead	ND	6.2	40	"	4	5E02080	05/02/25	05/02/25	"	N_RLm
Lead-Dissolved	ND	6.2	40	"	1	5E02081	05/02/25	05/02/25	ıı	N_RLm, N_Filt
Selenium	130	6.7	20	"	4	5E02080	05/02/25	05/02/25	"	
Selenium-Dissolved	120	6.7	20	"	1	5E02081	05/02/25	05/02/25	"	N_Fil
Zinc	ND	20	40	"	4	5E02080	05/02/25	05/02/25	"	N_RLm
Zinc-Dissolved	ND	20	40	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

SMB 1-16 C5E0127-10 (Liquid, Sampled: 05/01/25 10:30)

Analyte	Result	MDL RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock Labora	tories, In	c Rivers	side				
Volatile Organic Compounds by	y EPA 624.1								N_RLm
1,1,1-Trichloroethane	ND	50	ug/L	100	5E03067	05/03/25	05/03/25	EPA 624.1	
1,1,2,2-Tetrachloroethane	ND	50	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	50	"	"	"	"	"	II .	
1,1-Dichloroethane	ND	50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	50	"	"	"	u	"	"	
1,2-Dichlorobenzene	ND	50	"	"	"	u	"	"	
1,2-Dichloroethane	ND	50	"	"	"	"	"	II .	
1,2-Dichloropropane	ND	50	"	"	"	"	"	II .	
1,3-Dichlorobenzene	ND	50	"	"	"	"	"	n .	
1,4-Dichlorobenzene	ND	50	"	"	"	"	"	"	
2-Chloroethylvinyl Ether	ND	500	"	"	"	"	"	"	NCEVE
Acrolein	ND	1000	"	"	"	"		"	
Acrylonitrile	ND	1000	"	"	"	"		"	
Benzene	ND	50	"	"	"	"		"	
Bromodichloromethane	ND	50	"	·	"	u	·	u u	
Bromoform	ND	100	"	"	"	"	"	m .	
Bromomethane	ND	50	"	"	"	"	"	II .	
Carbon Tetrachloride	ND	50	"	"	"	"	"	II .	
Chlorobenzene	ND	50	"	"	"	"	"	II .	
Chloroethane	ND	50	"	"	"	"	"	n .	
Chloroform	ND	50	"	"	"	"	"	n .	
Chloromethane	ND	50	"	"	"	"	"	n .	
cis-1,3-Dichloropropene	ND	50	"	"	"	"	"	n .	
Dibromochloromethane	ND	50	"	"	"	"	"	n .	
Dichlorodifluoromethane	ND	50	"	"	"	"	"	n .	
Ethylbenzene	ND	50	"	"	"	"	"	"	
Methyl tert Butyl Ether	ND	500	"	"	"	"	"	"	
Methylene Chloride	ND	300			"	"		"	
Tetrachloroethene	ND	50			"	"		"	
Toluene	ND	50		"	"	u .	u u	"	
trans-1,2-Dichloroethene	ND	50		"		"	"	II .	
trans-1,3-Dichloropropene	ND	50	"	"			"	"	
Trichloroethene	ND	50	,,		,		,		

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

SMB 1-16 C5E0127-10 (Liquid, Sampled: 05/01/25 10:30)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcoc	k Labora	tories, In	c Rivers	side				
Volatile Organic Compounds by EF	PA 624.1									N_RLm
Trichlorofluoromethane	ND		500	ug/L	100	5E03067	05/03/25	05/03/25	EPA 624.1	
Vinyl Chloride	ND		50	"	"	"	"	"	"	
Xylenes (m+p)	ND		50	"	"	"	"	"	"	
Xylenes (ortho)	ND		50	"	"	"	"	"	"	
Surrogate: 1,2-Dichlorobenzene-d4			102 %	80-	120	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4			105 %	80-	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			98 %	80-	120	"	"	"	"	
Surrogate: Toluene-d8			101 %	80-	120	"	"	"	"	
PFAS by LCMSMS (QSM 5.3 Table	B-15 Compli	ant)								
10:2 Fluorotelomer sulfonate	ND	4.8	7.1	ng/L	1	5E05186	05/05/25	05/06/25	ESB SOP T758	
11-chloroeicosafluoro 3oxaundecane-1-sulfonic Acid	ND	1.2	4.4	"	"	"	II	"	"	
2H,2H,3H,3H-Perfluorodecanoic acid (7:3 FTCA)	ND	3.7	7.1	"	"	"	"	"	"	
2H,2H,3H,3H-Perfluorooctanoic acid (5:3 FTCA)	ND	3.6	7.1	"	"	"	II	"	"	
4,4,5,5,6,6,6-Heptafluorohexanoic Acid (3:3 FTCA)	ND	2.0	4.4	"	"	"	II	"	"	
4,8-dioxa-3H-perfluorononanoic Acid (ADONA)	ND	2.6	4.4	"	"	"	II	"	"	
4:2 Fluorotelomer Sulfonate	ND	1.8	4.4	"	"	"	"	"	"	
6:2 Fluorotelomer Sulfonate	ND	1.3	4.4	"	"	"	"	"	"	
8:2 Fluorotelomer Sulfonate	ND	1.2	4.4	"	"	"	"	"	"	
9-chlorohexadecafluoro-3-oxanone- 1-sulfonic Acid	ND	0.76	4.4	"	"	"	"	"	"	
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.7	4.4	"	"	"	II	"	"	
N-ethyl perfluorooctanesulfonamidoacetic	ND	3.9	7.1	"	"	II	"	"	"	
N-Ethylperfluorooctanesulfonamide (EtFOSA)	ND	3.0	7.1	"	"	"	"	"	"	NISn
N-Ethylperfluorooctanesulfonamido ethanol (EtFOSE)	ND	2.9	7.1	"	"	"	II	"	"	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

SMB 1-16 C5E0127-10 (Liquid, Sampled: 05/01/25 10:30)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Labora	tories, In	c Rivers	side				
PFAS by LCMSMS (QSM 5.3 Table I	B-15 Complia	ant)								
N-methyl perfluorooctanesulfonamidoacetic	ND	2.3	7.1	ng/L	1	5E05186	05/05/25	05/06/25	ESB SOP T758	
N-Methylperfluorooctanesulfonamid e (MeFOSA)	ND	4.3	7.1	"	u	"	"	"	"	NISm
N-Methylperfluorooctanesulfonamid oethanol (MeFOSE)	ND	4.3	7.1	"	"	"	"	"	II .	
Perfluorobutanesulfonic Acid (PFBS)	ND	2.1	4.4	"	"	"	"	"	"	
Perfluorobutanoic acid (PFBA)	ND	1.9	4.4	"	"	"	"	"	"	
Perfluorodecanesulfonic acid (PFDS)	ND	2.5	4.4	"	"	"	"	"	"	
Perfluorodecanoic Acid (PFDA)	ND	1.3	4.4	"	"	"	"	"	u .	
Perfluorododecanoic Acid (PFDoDA)	ND	1.9	4.4	"	"	"	"	"	"	
Perfluoroheptanesulfonic acid (PFHpS)	ND	1.7	4.4	"	"	"	"	"	"	
Perfluoroheptanoic Acid (PFHpA)	ND	2.8	4.4	"	"	"	"	"	"	
Perfluorohexadecanoic acid	4.2	1.7	4.4	"	"	"	"	"	"	J, NISm
(PFHxDA)				_						
Perfluorohexanesulfonic Acid (PFHxS)	ND	1.7	4.4	"	"	"	"	"	u.	
Perfluorohexanoic Acid (PFHxA)	ND	3.4	4.4	"	"	"	"	"	"	
Perfluorononanesulfonic acid (PFNS)	ND	2.6	4.4	"	"	"	"	"	"	
Perfluorononanoic Acid (PFNA)	ND	2.0	4.4	"	"	"	"	"	"	
Perfluorooctadecanoic acid (PFOcDA)	ND	3.6	4.4	"	"	"	II .	"	"	NISm
Perfluorooctane Sulfonamide (PFOSA)	ND	2.7	7.1	"	"	"	"	"	"	
Perfluorooctanesulfonic Acid (PFOS)	ND	1.3	4.4	"	"	"	"	"	"	
Perfluorooctanoic Acid (PFOA)	ND	2.4	4.4	"	"	"	"	"	"	
Perfluoropentanesulfonate (PFPeS)	ND	2.7	4.4	"	"	"	"	"	·	
Perfluoropentanoic acid (PFPeA)	ND	0.98	4.4	"	"	"	"	"	·	
Perfluorotetradecanoic Acid (PFTeDA)	ND	1.2	4.4	"	"	"	"	"	n	NISm
Perfluorotridecanoic Acid (PFTrDA)	ND	1.2	4.4	"	"	"	"	"		

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

SMB 1-16

C5E0127-10 (Liquid, Sampled: 05/01/25 10:30)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Laborat	tories, In	c Rivers	side				
PFAS by LCMSMS (QSM 5.3 Table	B-15 Complia	ant)								
Perfluoroundecanoic Acid (PFUnA)	ND	0.82	4.4	ng/L	1	5E05186	05/05/25	05/06/25	ESB SOP T758	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

SMB 2-10 C5E0127-11 (Liquid, Sampled: 05/01/25 12:00)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	k Labora	tories, Ind	c Rivers	side				
Cations										
Calcium	390	3.6	25	mg/L	25	5E02097	05/02/25	05/05/25	EPA 200.7	
Total Hardness	6300		25	"	"	"	"	"	SM 2340B/EPA 200.7	
Magnesium	1300	5.2	25	"	"	"	u u	"	EPA 200.7	
Magnesium-Dissolved	1300	2.1	10	"	1	5E06168	05/06/25	05/06/25	"	N_Filt
Anions										
Bicarbonate	120	5.0	5.0	mg/L as CaCO3	1	5E05218	05/05/25	05/05/25	SM 2320B	
Carbonate	ND	5.0	5.0	"	"	"	"	"	"	
Hydroxide	ND	5.0	5.0	"	"	"	"	"	"	
Total Alkalinity	120	5.0	5.0	"	"	"	"	·	"	
Nitrate as N	ND	6.0	10	mg/L	50	5E01110	05/02/25	05/02/25	EPA 300.0	N_RLd
Nitrate/Nitrite as N	ND	0.0024	0.010	"	1	5E02134	05/02/25	05/02/25	EPA 353.2	
Sulfate	2700	23	25	"	50	5E01110	05/02/25	05/02/25	EPA 300.0	
Solids										
Settleable Solids	3.9	0.1	0.1	mL/L	0.967	5E02083	05/02/25	05/02/25	SM 2540F	
Total Dissolved Solids	36000	500	500	mg/L	50	5E02113	05/02/25	05/02/25	SM 2540C	
Total Suspended Solids	1000	5	5	"	10	5E04177	05/04/25	05/04/25	SM 2540D	
Aggregate Organic Compounds										
Total Organic Carbon	2.0		0.70	mg/L	1	5E05188	05/05/25	05/05/25	SM 5310B	
Nutrients										
Ammonia-Nitrogen	0.008	0.008	0.01	mg/L	1	5E07156	05/07/25	05/07/25	SM4500NH3 H G	J
Ortho Phosphate Phosphorus	ND		0.050	"	"	5E01122	05/02/25	05/02/25	SM 4500P E	
Phosphorus, Total as P	0.04	0.02	0.05	"	"	5E02121	05/02/25	05/05/25	"	J
Kjeldahl Nitrogen	ND	0.9	1.2	"	"	5E05201	05/06/25	05/06/25	EPA 351.2	N_RLm
Total Nitrogen (N)	ND	0.88	1.3	"	"	[CALC]	"	"	Calculation	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

SMB 2-10 C5E0127-11 (Liquid, Sampled: 05/01/25 12:00)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Labora	tories, In	c Rivers	side				
Metals and Metalloids										
Aluminum	ND	690	1200	ug/L	25	5E02097	05/02/25	05/05/25	EPA 200.7	N_RLn
Aluminum-Dissolved	460	280	500	"	1	5E06168	05/06/25	05/06/25	"	J, N_Fil
Arsenic	8.6	2.9	20	"	4	5E02080	05/02/25	05/02/25	EPA 200.8	J, N_RLn
Arsenic-Dissolved	8.7	7.1	20	"	1	5E02081	05/02/25	05/02/25	"	J, N_Filt, N_RLm
Beryllium	ND		40	"	4	5E02080	05/02/25	05/02/25	"	N_RLm
Beryllium-Dissolved	ND		40	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Cadmium	ND	0.44	4.0	"	4	5E02080	05/02/25	05/02/25	"	N_RLm
Cadmium-Dissolved	ND	0.44	8.0	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Total Chromium	ND	16	80	"	4	5E02080	05/02/25	05/02/25	"	N_RLm
Chromium-Dissolved	ND	16	80	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Hexavalent Chromium	ND		1.0	"	10	5E02088	05/03/25	05/03/25	EPA 218.6	N_RLm
Copper	ND	6.5	40	"	4	5E02080	05/02/25	05/02/25	EPA 200.8	N_RLm
Copper-Dissolved	ND	6.5	40	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Iron	ND	120	1200	"	25	5E02097	05/02/25	05/05/25	EPA 200.7	N_RLm
Iron-Dissolved	ND	49	500	"	1	5E06168	05/06/25	05/06/25	"	N_Filt, N_RLm
Mercury	ND	0.56	1.0	"	"	5E05206	05/05/25	05/06/25	SM 3112B	
Mercury-Dissolved	ND	0.56	1.0	"	"	5E02076	05/02/25	05/02/25	"	N_Fil
Manganese	16	7.5	40	"	4	5E02080	05/02/25	05/02/25	EPA 200.8	J, N_RLm
Manganese-Dissolved	12	7.5	40	"	1	5E02081	05/02/25	05/02/25	"	J, N_Filt, N_RLm
Nickel	ND	13	40	"	4	5E02080	05/02/25	05/02/25	"	N_RLm
Nickel-Dissolved	ND	13	40	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Lead	ND	6.2	40	"	4	5E02080	05/02/25	05/02/25	"	N_RLm
Lead-Dissolved	ND	6.2	40	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Selenium	130	6.7	20	"	4	5E02080	05/02/25	05/02/25	"	
Selenium-Dissolved	110	6.7	20	"	1	5E02081	05/02/25	05/02/25	"	N_Fi
Zinc	ND	20	40	"	4	5E02080	05/02/25	05/02/25	"	N_RLn
Zinc-Dissolved	ND	20	40	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013

Project Number: Wildfire Response 2025 Project Manager: John Salguero

Project: RWB4_WildFireResponse_2025

Reported: 05/12/25 22:24

SMB 2-10 C5E0127-11 (Liquid, Sampled: 05/01/25 12:00)

Analyte	Result	MDL RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock Labora	tories, In	c Rivers	side				
Volatile Organic Compounds by	y EPA 624.1								N_RLm
1,1,1-Trichloroethane	ND	50	ug/L	100	5E03067	05/03/25	05/04/25	EPA 624.1	
1,1,2,2-Tetrachloroethane	ND	50	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	50	"	"	"	"	"	u u	
1,2-Dichlorobenzene	ND	50	"	"	"	"	"	u u	
1,2-Dichloroethane	ND	50	"	"	"	u u	"	n .	
1,2-Dichloropropane	ND	50	"	"	"	u u	"	n .	
1,3-Dichlorobenzene	ND	50	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	50	"	"	"	"	"	"	
2-Chloroethylvinyl Ether	ND	500	"	"	"	"	"	"	NCEVE
Acrolein	ND	1000	"	"	"	"	"	"	
Acrylonitrile	ND	1000	"	"	"	"	"	"	
Benzene	ND	50	"	"	"	"	"	"	
Bromodichloromethane	ND	50	"	"	"	"	"	"	
Bromoform	ND	100	"	"	"	"	"	"	
Bromomethane	ND	50	"	"	"	"	"	u u	
Carbon Tetrachloride	ND	50	"	"	"	u u	"	"	
Chlorobenzene	ND	50	"	"	"	"	"	u u	
Chloroethane	ND	50	"	"	"	"	"	u u	
Chloroform	ND	50	"	"	"	"	"	n .	
Chloromethane	ND	50	"	"	"	"	"	n .	
cis-1,3-Dichloropropene	ND	50	"	"	"	"	"	n .	
Dibromochloromethane	ND	50	"	"	"	"	"	n .	
Dichlorodifluoromethane	ND	50	"	"	"	"	"	n .	
Ethylbenzene	ND	50	"	"	"	"	"	"	
Methyl tert Butyl Ether	ND	500	"	"	"	"	"	n .	
Methylene Chloride	ND	300	"	"	"	"	"	n .	
Tetrachloroethene	ND	50	"	"	"	"	"	"	
Toluene	ND	50	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	50	"			"	"	"	
trans-1,3-Dichloropropene	ND	50		"	"	"	"	"	
Trichloroethene	ND	50	"	"	"			"	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

SMB 2-10 C5E0127-11 (Liquid, Sampled: 05/01/25 12:00)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcoc	k Labora	tories, In	c River	side				
Volatile Organic Compounds by EF	PA 624.1									N_RLn
Trichlorofluoromethane	ND		500	ug/L	100	5E03067	05/03/25	05/04/25	EPA 624.1	
Vinyl Chloride	ND		50	"	"	"	"	· ·	"	
Xylenes (m+p)	ND		50	"	"	"	"	"	"	
Xylenes (ortho)	ND		50	"	"	II .	II .	ıı .	II .	
Surrogate: 1,2-Dichlorobenzene-d4			102 %	80-	120	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4			107 %	80-	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			95 %	80-	120	"	"	"	"	
Surrogate: Toluene-d8			100 %	80-	120	"	"	"	"	
PFAS by LCMSMS (QSM 5.3 Table	B-15 Complia	ant)								
10:2 Fluorotelomer sulfonate	ND	4.7	7.0	ng/L	1	5E05186	05/05/25	05/07/25	ESB SOP T758	
11-chloroeicosafluoro 3oxaundecane-1-sulfonic Acid	ND	1.2	4.4	"	"	"	H	"	"	
2H,2H,3H,3H-Perfluorodecanoic acid (7:3 FTCA)	ND	3.7	7.0	"	"	"	"	"	"	
2H,2H,3H,3H-Perfluorooctanoic acid (5:3 FTCA)	ND	3.6	7.0	"	"	H .	"	"	"	
4,4,5,5,6,6,6-Heptafluorohexanoic Acid (3:3 FTCA)	ND	2.0	4.4	"	"	"	II	"	"	
4,8-dioxa-3H-perfluorononanoic Acid (ADONA)	ND	2.5	4.4	"	"	"	II	"	"	
4:2 Fluorotelomer Sulfonate	ND	1.7	4.4	"	"	"	"	"	"	
6:2 Fluorotelomer Sulfonate	ND	1.3	4.4	"	"	"	"	"	"	
8:2 Fluorotelomer Sulfonate	ND	1.1	4.4	"	"	"	"	"	"	
9-chlorohexadecafluoro-3-oxanone- 1-sulfonic Acid	ND	0.75	4.4	"	"	"	II	"	"	
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.7	4.4	"	"	"	II	"	"	
N-ethyl perfluorooctanesulfonamidoacetic	ND	3.8	7.0	"	"	H .	"	"	"	
N-Ethylperfluorooctanesulfonamide (EtFOSA)	ND	3.0	7.0	"	"	"	"	"	"	
N-Ethylperfluorooctanesulfonamido ethanol (EtFOSE)	ND	2.9	7.0	"	"	"	"	"	"	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

SMB 2-10 C5E0127-11 (Liquid, Sampled: 05/01/25 12:00)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Labora	tories, In	c Rivers	side				
PFAS by LCMSMS (QSM 5.3 Table I	B-15 Complia	ant)								
N-methyl perfluorooctanesulfonamidoacetic	ND	2.3	7.0	ng/L	1	5E05186	05/05/25	05/07/25	ESB SOP T758	
N-Methylperfluorooctanesulfonamid e (MeFOSA)	ND	4.3	7.0	"	"	u	"	"	"	
N-Methylperfluorooctanesulfonamid pethanol (MeFOSE)	ND	4.2	7.0	"	"	H	II	"	"	
Perfluorobutanesulfonic Acid (PFBS)	ND	2.1	4.4	"	"	W	"	"	"	
Perfluorobutanoic acid (PFBA)	ND	1.8	4.4	"	"	"	"	"	"	NISm
Perfluorodecanesulfonic acid (PFDS)	ND	2.4	4.4	"	"	"	"	"	"	
Perfluorodecanoic Acid (PFDA)	ND	1.3	4.4	"	"	"	"	"	"	
Perfluorododecanoic Acid (PFDoDA)	ND	1.8	4.4	"	"	W	"	"	"	
Perfluoroheptanesulfonic acid (PFHpS)	ND	1.7	4.4	"	"	"	"	"	"	
Perfluoroheptanoic Acid (PFHpA)	ND	2.8	4.4	"	"	"	"	"	II .	
Perfluorohexadecanoic acid (PFHxDA)	ND	1.7	4.4	"	"	"	"	"	"	NISm
Perfluorohexanesulfonic Acid (PFHxS)	ND	1.7	4.4	"	"	II	"	"	"	
Perfluorohexanoic Acid (PFHxA)	ND	3.3	4.4	"	"	"	"	"	11	
Perfluorononanesulfonic acid (PFNS)	ND	2.5	4.4	"	"	"	"	"	"	
Perfluorononanoic Acid (PFNA)	ND	1.9	4.4	"	"	"	"	"	11	
Perfluorooctadecanoic acid (PFOcDA)	ND	3.6	4.4	"	"	II	"	"	"	NISm
Perfluorooctane Sulfonamide (PFOSA)	ND	2.7	7.0	"	"	II	"	"	"	
Perfluorooctanesulfonic Acid (PFOS)	2.4	1.3	4.4	"	"	II	"	"	"	J
Perfluorooctanoic Acid (PFOA)	ND	2.4	4.4	"	"	II .	"	"	11	
Perfluoropentanesulfonate (PFPeS)	ND	2.7	4.4	"	"	II .	"	"	11	
Perfluoropentanoic acid (PFPeA)	1.0	0.96	4.4	"	"	"	"	"	"	J
Perfluorotetradecanoic Acid (PFTeDA)	ND	1.1	4.4	"	"	"	"	"	"	
Perfluorotridecanoic Acid (PFTrDA)	ND	1.1	4.4	"	"	"	"	"	n n	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

SMB 2-10

C5E0127-11 (Liquid, Sampled: 05/01/25 12:00)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Laborat	tories, In	c Rivers	side				
PFAS by LCMSMS (QSM 5.3 Table	B-15 Complia	ant)								
Perfluoroundecanoic Acid (PFUnA)	ND	0.80	4.4	ng/L	1	5E05186	05/05/25	05/07/25	ESB SOP T758	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

SMB 2-10 Duplicate C5E0127-12 (Liquid, Sampled: 05/01/25 12:35)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcocl	k Labora	tories, Ind	c Rivers	side				
Cations										
Calcium	390	3.6	25	mg/L	25	5E02097	05/02/25	05/05/25	EPA 200.7	
Total Hardness	6100		25	"	"	"	n	"	SM 2340B/EPA 200.7	
Magnesium	1200	5.2	25	"	"	"	"	"	EPA 200.7	
Magnesium-Dissolved	1200	0.42	2.0	"	1	5E05172	05/05/25	05/05/25	"	N_Fil
Anions										
Bicarbonate	120	5.0	5.0	mg/L as CaCO3	1	5E05218	05/05/25	05/05/25	SM 2320B	
Carbonate	ND	5.0	5.0	"	"	"	"	"	"	
Hydroxide	ND	5.0	5.0	"	"	"	"	"	"	
Total Alkalinity	120	5.0	5.0	"	"	"	u u	"	"	
Nitrate as N	ND	6.0	10	mg/L	50	5E01110	05/02/25	05/02/25	EPA 300.0	N_RLc
Nitrate/Nitrite as N	0.0030	0.0024	0.010	"	1	5E02134	05/02/25	05/02/25	EPA 353.2	
Sulfate	2700	23	25	"	50	5E01110	05/02/25	05/02/25	EPA 300.0	
Solids										
Settleable Solids	4.3	0.1	0.1	mL/L	0.96	5E02083	05/02/25	05/02/25	SM 2540F	
Total Dissolved Solids	36000	500	500	mg/L	50	5E02113	05/02/25	05/02/25	SM 2540C	
Total Suspended Solids	350	10	10	"	20	5E04177	05/04/25	05/04/25	SM 2540D	N_noF
Aggregate Organic Compounds										
Total Organic Carbon	1.8		0.70	mg/L	1	5E05188	05/05/25	05/05/25	SM 5310B	
Nutrients										
Ammonia-Nitrogen	ND	0.008	0.01	mg/L	1	5E07156	05/07/25	05/07/25	SM4500NH3 H G	
Ortho Phosphate Phosphorus	ND		0.050	"	"	5E01122	05/02/25	05/02/25	SM 4500P E	
Phosphorus, Total as P	0.04	0.02	0.05	"	"	5E02121	05/02/25	05/05/25	"	
Kjeldahl Nitrogen	ND	0.9	1.2	"	"	5E05201	05/06/25	05/06/25	EPA 351.2	N_RLm
Total Nitrogen (N)	ND	0.88	1.3	"	"	[CALC]	II .	"	Calculation	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

SMB 2-10 Duplicate C5E0127-12 (Liquid, Sampled: 05/01/25 12:35)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
					c Rivers		<u> </u>	, - <u>,</u>		
Metals and Metalloids										
Aluminum	ND	690	1200	ug/L	25	5E02097	05/02/25	05/05/25	EPA 200.7	N_RLm
Aluminum-Dissolved	ND	55	100	"	1	5E05172	05/05/25	05/05/25	"	N_Filt, N_RLm
Arsenic	9.1	2.9	20	"	4	5E02080	05/02/25	05/02/25	EPA 200.8	J, N_RLm
Arsenic-Dissolved	9.1	7.1	20	"	1	5E02081	05/02/25	05/02/25	"	J, N_Filt, N_RLm
Beryllium	ND		40	"	4	5E02080	05/02/25	05/02/25	"	N_RLm
Beryllium-Dissolved	ND		40	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Cadmium	ND	0.44	4.0	"	4	5E02080	05/02/25	05/02/25	"	N_RLm
Cadmium-Dissolved	ND	0.44	8.0	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Total Chromium	ND	16	80	"	4	5E02080	05/02/25	05/02/25	"	N_RLm
Chromium-Dissolved	ND	16	80	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Hexavalent Chromium	ND		1.0	"	10	5E02088	05/03/25	05/03/25	EPA 218.6	N_RLm
Copper	ND	6.5	40	"	4	5E02080	05/02/25	05/02/25	EPA 200.8	N_RLm
Copper-Dissolved	ND	6.5	40	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Iron	ND	120	1200	"	25	5E02097	05/02/25	05/05/25	EPA 200.7	N_RLm
Iron-Dissolved	ND	9.9	100	"	1	5E05172	05/05/25	05/05/25	"	N_Filt
Mercury	ND	0.56	1.0	"	"	5E02076	05/02/25	05/02/25	SM 3112B	
Mercury-Dissolved	ND	0.56	1.0	"	"	"	"	05/02/25	"	N_Filt
Manganese	15	7.5	40	"	4	5E02080	05/02/25	05/02/25	EPA 200.8	J, N_RLm
Manganese-Dissolved	7.6	7.5	40	"	1	5E02081	05/02/25	05/02/25	"	J, N_Filt, N_RLm
Nickel	ND	13	40	"	4	5E02080	05/02/25	05/02/25	"	N_RLm
Nickel-Dissolved	ND	13	40	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm
Lead	ND	6.2	40	"	4	5E02080	05/02/25	05/02/25	"	N_RLm
Lead-Dissolved	ND	6.2	40	"	1	5E02081	05/02/25	05/02/25	II	N_Filt, N_RLm
Selenium	130	6.7	20	"	4	5E02080	05/02/25	05/02/25	"	
Selenium-Dissolved	120	6.7	20	"	1	5E02081	05/02/25	05/02/25	"	N_Filt
Zinc	ND	20	40	"	4	5E02080	05/02/25	05/02/25	"	N_RLm
Zinc-Dissolved	ND	20	40	"	1	5E02081	05/02/25	05/02/25	"	N_Filt, N_RLm

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200

Los Angeles CA, 90013

Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

SMB 2-10 Duplicate

C5E0127-12 (Liquid, Sampled: 05/01/25 12:35)

Analyte	Result	MDL RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock Labora	tories, In	c Rivers	side				
Volatile Organic Compounds by	EPA 624.1								N_RLm
1,1,1-Trichloroethane	ND	50	ug/L	100	5E03067	05/03/25	05/04/25	EPA 624.1	
1,1,2,2-Tetrachloroethane	ND	50	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	50	"	"	u u	u	"	"	
1,2-Dichlorobenzene	ND	50	"	"	"	"	"	"	
1,2-Dichloroethane	ND	50	"	"	"	"	"	"	
1,2-Dichloropropane	ND	50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	50	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	50	"	"	"	"	"	"	
2-Chloroethylvinyl Ether	ND	500	"	"	"	"	"	"	NCEVE
Acrolein	ND	1000	"	"	"	"	"	"	
Acrylonitrile	ND	1000	"	"	"	u u	"	"	
Benzene	ND	50	"	"	"	"	"	"	
Bromodichloromethane	ND	50	"	"	"	"	"	"	
Bromoform	ND	100	"	"	"	u u	"	"	
Bromomethane	ND	50	"	"	"	"	"	"	
Carbon Tetrachloride	ND	50	"	"	"	"	"	"	
Chlorobenzene	ND	50	"	"	"	"	"	"	
Chloroethane	ND	50	"	"	"	"	"	"	
Chloroform	ND	50	"		"	"	"	"	
Chloromethane	ND	50	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	50	"	"	"	"	"	"	
Dibromochloromethane	ND	50	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	50	"	"	"	"	"	"	
Ethylbenzene	ND	50	"	"	"	u u	"	"	
Methyl tert Butyl Ether	ND	500	"	"			"	"	
Methylene Chloride	ND	300		"		"	"	"	
Tetrachloroethene	ND	50		"		"	"	"	
Toluene	ND	50	"	"		"	"	"	
trans-1,2-Dichloroethene	ND	50	"	"		"	"	"	
trans-1,3-Dichloropropene	ND	50	"			"	"	"	
Trichloroethene	ND ND	50	"				"	"	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

SMB 2-10 Duplicate

C5E0127-12 (Liquid, Sampled: 05/01/25 12:35)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcoc	k Labora	tories, In	c Rivers	side				
Volatile Organic Compounds by EF	PA 624.1									N_RLm
Trichlorofluoromethane	ND		500	ug/L	100	5E03067	05/03/25	05/04/25	EPA 624.1	
Vinyl Chloride	ND		50	"	"	"	"	"	"	
Xylenes (m+p)	ND		50	"	"	"	"	"	"	
Xylenes (ortho)	ND		50	"	"	"	"	"	"	
Surrogate: 1,2-Dichlorobenzene-d4			102 %	80-	120	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4			107 %	80-	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			99 %	80-	120	"	"	"	"	
Surrogate: Toluene-d8			99 %	80-	120	"	n	"	"	
PFAS by LCMSMS (QSM 5.3 Table	B-15 Complia	ant)								
10:2 Fluorotelomer sulfonate	ND	4.6	6.8	ng/L	1	5E05186	05/05/25	05/07/25	ESB SOP T758	
11-chloroeicosafluoro 3oxaundecane-1-sulfonic Acid	ND	1.2	4.2	"	"	"	"	"	"	
2H,2H,3H,3H-Perfluorodecanoic acid (7:3 FTCA)	ND	3.5	6.8	"	"	u	u	"	"	
2H,2H,3H,3H-Perfluorooctanoic acid (5:3 FTCA)	ND	3.5	6.8	"	"	u	"	"	"	
4,4,5,5,6,6,6-Heptafluorohexanoic Acid (3:3 FTCA)	ND	1.9	4.2	"	"	"	"	"	"	
4,8-dioxa-3H-perfluorononanoic Acid (ADONA)	ND	2.4	4.2	"	"	II	II	"	"	
4:2 Fluorotelomer Sulfonate	ND	1.7	4.2	"	"	"	"	"	"	
6:2 Fluorotelomer Sulfonate	ND	1.3	4.2	"	"	"	"	"	"	
8:2 Fluorotelomer Sulfonate	ND	1.1	4.2	"	"	"	"	"	II .	
9-chlorohexadecafluoro-3-oxanone- 1-sulfonic Acid	ND	0.73	4.2	"	"	"	"	"	"	
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.6	4.2	"	"	n .	II	"	"	
N-ethyl perfluorooctanesulfonamidoacetic	ND	3.7	6.8	"	"	u	u	"	"	
N-Ethylperfluorooctanesulfonamide (EtFOSA)	ND	2.9	6.8	"	"	"	"	"	"	
N-Ethylperfluorooctanesulfonamido ethanol (EtFOSE)	ND	2.8	6.8	"	"	п	II	"	"	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

SMB 2-10 Duplicate

C5E0127-12 (Liquid, Sampled: 05/01/25 12:35)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Labora	tories, In	c Rivers	side				
PFAS by LCMSMS (QSM 5.3 Table I	B-15 Compli	ant)								
N-methyl perfluorooctanesulfonamidoacetic	ND	2.2	6.8	ng/L	1	5E05186	05/05/25	05/07/25	ESB SOP T758	
N-Methylperfluorooctanesulfonamid e (MeFOSA)	ND	4.1	6.8	"	"	"	"	"	п	
N-Methylperfluorooctanesulfonamid oethanol (MeFOSE)	ND	4.1	6.8	"	"	н	"	"	"	
Perfluorobutanesulfonic Acid (PFBS)	ND	2.0	4.2	"	· ·	н	"	"	"	
Perfluorobutanoic acid (PFBA)	ND	1.8	4.2	"	"	"	n n	"	n	NISm
Perfluorodecanesulfonic acid (PFDS)	ND	2.4	4.2	"	"	н	II	"	"	
Perfluorodecanoic Acid (PFDA)	ND	1.3	4.2	"	"	"	u u	"	II .	
Perfluorododecanoic Acid (PFDoDA)	ND	1.8	4.2	"	· ·	н	"	"	"	
Perfluoroheptanesulfonic acid (PFHpS)	ND	1.6	4.2	"	"	H	"	"	"	
Perfluoroheptanoic Acid (PFHpA)	ND	2.7	4.2	"	"	"	n n	"	n	
Perfluorohexadecanoic acid (PFHxDA)	ND	1.6	4.2	"	"	u	"	"	"	
Perfluorohexanesulfonic Acid (PFHxS)	ND	1.6	4.2	"	"	"	"	"	"	
Perfluorohexanoic Acid (PFHxA)	ND	3.2	4.2	"	"	"	"	"	"	
Perfluorononanesulfonic acid (PFNS)	ND	2.4	4.2	"	"	II	"	II	"	
Perfluorononanoic Acid (PFNA)	ND	1.9	4.2	"	"	"	II .	"	"	
Perfluorooctadecanoic acid (PFOcDA)	ND	3.5	4.2	"	"	"	"	II	"	
Perfluorooctane Sulfonamide (PFOSA)	ND	2.6	6.8	"	"	II	"	II .	"	
Perfluorooctanesulfonic Acid (PFOS)	2.7	1.3	4.2	"	"	II	"	II	"	J
Perfluorooctanoic Acid (PFOA)	ND	2.3	4.2	"	"	"	"	"	"	
Perfluoropentanesulfonate (PFPeS)	ND	2.6	4.2	"	"	"	"	"	"	
Perfluoropentanoic acid (PFPeA)	ND	0.93	4.2	"	"	"	u u	"	m .	
Perfluorotetradecanoic Acid (PFTeDA)	ND	1.1	4.2	"	"	н	"	"	II .	
Perfluorotridecanoic Acid (PFTrDA)	ND	1.1	4.2	"	"	"	"	"	"	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

SMB 2-10 Duplicate

C5E0127-12 (Liquid, Sampled: 05/01/25 12:35)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Laborat	tories, In	c Rivers	side				
PFAS by LCMSMS (QSM 5.3 Table	B-15 Complia	ant)								
Perfluoroundecanoic Acid (PFUnA)	ND	0.78	4.2	ng/L	1	5E05186	05/05/25	05/07/25	ESB SOP T758	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

Cations - Quality Control

Babcock Laboratories, Inc. - Riverside

Analyte Batch 5E02097, Prep Method: EPA 200 Blank (5E02097-BLK1) Calcium Magnesium LCS (5E02097-BS1) Calcium Magnesium Duplicate (5E02097-DUP1)	ND ND 17.1 16.9	0.14 0.21	1.0 1.0 1.0	mg/L	Prepared:	05/02/25 A			RPD	Limit	Notes
Blank (5E02097-BLK1) Calcium Magnesium LCS (5E02097-BS1) Calcium Magnesium	ND ND 17.1 16.9	0.14 0.21	1.0	"	Prepared:						
Calcium Magnesium LCS (5E02097-BS1) Calcium Magnesium	17.1 16.9	0.21	1.0	"	Prepared:						
Magnesium LCS (5E02097-BS1) Calcium Magnesium	17.1 16.9	0.21	1.0	"		05/02/25	Analvzed [.]	05/05/25			
LCS (5E02097-BS1) Calcium Magnesium	17.1 16.9	0.14	1.0			05/02/25	Analvzed [.]	05/05/25			
Calcium Magnesium	16.9	• • • •		mg/L		05/02/25	Analyzed:	05/05/25			
Magnesium	16.9	• • • •		mg/L				33,00,20			
_		0.21	1.0	•	17.0		100	85-115			
Dunlicate (5F02097-DUP1)			1.0	"	17.0		99	85-115			
5 apricate (626266: 56: 1)		Source:	C5D412	1-01	Prepared:	05/02/25	Analyzed:	05/06/25			
Calcium	20.5	0.14	1.0	mg/L		20.5			0.1	20	
Magnesium	3.96	0.21	1.0	"		3.90			2	20	
Matrix Spike (5E02097-MS1)		Source:	C5D412	1-01	Prepared:	05/02/25	Analyzed:	05/06/25			
Calcium	36.6	0.14	1.0	mg/L	17.0	20.5	95	70-130			
Magnesium	20.7	0.21	1.0	"	17.0	3.90	99	70-130			
Matrix Spike Dup (5E02097-MSD1)		Source:	C5D412	1-01	Prepared:	05/02/25	Analyzed:	05/06/25			
Calcium	36.9	0.14	1.0	mg/L	17.0	20.5	96	70-130	0.6	20	
Magnesium	20.6	0.21	1.0	"	17.0	3.90	98	70-130	0.4	20	
Batch 5E05172, Prep Method: 200.7/ No	o Digest,	Analyst	ALD								
Blank (5E05172-BLK1)					Prepared	& Analyzed	d: 05/05/2	5			
Magnesium-Dissolved	ND	0.21	1.0	mg/L							
Blank (5E05172-BLK2)					Prepared	& Analyzed	d: 05/05/2	5			
Magnesium-Dissolved	ND	0.21	1.0	mg/L		,					

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

Cations - Quality Control

Babcock Laboratories, Inc. - Riverside

					Spike	Source		%REC		RPD	
Analyte	Result	MDL	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5E05172, Prep Method: 200.7	/ No Digest,	Analyst:	ALD								
LCS (5E05172-BS1)					Prepared	& Analyze	d: 05/05/2	25			
Magnesium-Dissolved	15.6	0.21	1.0	mg/L	16.4		95	85-115			
Duplicate (5E05172-DUP1)		Source:	C5E012	7-01	Prepared	& Analyze	d: 05/05/2	25			
Magnesium-Dissolved	1190	0.42	2.0	mg/L		1180			0.5	20	
Matrix Spike (5E05172-MS1)		Source:	C5E012	7-01	Prepared	& Analyze	d: 05/05/2	25			
Magnesium-Dissolved	1180	0.42	2.0	mg/L	32.8	1180	8	70-130			QMint
Matrix Spike Dup (5E05172-MSD1)		Source:	C5E012	7-01	Prepared	& Analyze	d: 05/05/2	25			
Magnesium-Dissolved	1190	0.42	2.0	mg/L	32.8	1180	25	70-130	0.5	20	QMint

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

Anions - Quality Control

Babcock Laboratories, Inc. - Riverside

Analyte	Result	MDL	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5E01110, Prep Method: N/A, A	nalyst: JXN	1									
Blank (5E01110-BLK1)					Prepared	& Analyze	d: 05/01/2	5			
Sulfate	ND	0.46	0.50	mg/L							
Nitrate as N	ND	0.12	0.20	II .							
LCS (5E01110-BS1)					Prepared	& Analyze	d: 05/01/2	5			
Sulfate	24.8	0.46	0.50	mg/L	25.0		99	90-110			
Nitrate as N	5.60	0.12	0.20	"	5.65		99	90-110			
Duplicate (5E01110-DUP1)		Source:	C5E009	0-03	Prepared	& Analyze	d: 05/01/2	5			
Sulfate	33.4	0.46	0.50	mg/L		33.5			0.3	25	
Nitrate as N	0.142	0.12	0.20	"		0.144			0.9	20	J
Matrix Spike (5E01110-MS1)		Source:	C5E009	0-03	Prepared	& Analyze	d: 05/01/2	5			
Sulfate	59.2	0.46	0.50	mg/L	25.0	33.5	103	80-120			
Nitrate as N	5.84	0.12	0.20	II .	5.65	0.144	101	80-120			
								_			
Matrix Spike (5E01110-MS2)		Source:	C5E012	7-12	Prepared	& Analyze	d: 05/02/2	5			
	4030	Source: 24	C5E012 3	7-12 mg/L	Prepared 1250	& Analyze 2710	d: 05/02/2 105	80-120			
Sulfate	4030 281										
Sulfate Nitrate as N		24	26 10	mg/L	1250 282	2710	105 99	80-120 80-120			
Sulfate Nitrate as N Matrix Spike Dup (5E01110-MSD1)		24 6.2	26 10	mg/L	1250 282	2710 ND	105 99	80-120 80-120	0.04	25	
Sulfate Nitrate as N Matrix Spike Dup (5E01110-MSD1)	281	24 6.2 Source:	26 10 C5E009	mg/L " 0-03	1250 282 Prepared	2710 ND & Analyze	105 99 d: 05/01/2	80-120 80-120 5	0.04	25 25	
Nitrate as N Matrix Spike Dup (5E01110-MSD1) Sulfate	59.2 5.74	24 6.2 Source: 0.46 0.12	26 10 C5E009 0 0.50	mg/L " 0-03 mg/L	1250 282 Prepared 25.0	2710 ND & Analyze 33.5	105 99 d: 05/01/2 103	80-120 80-120 5 80-120			
Sulfate Nitrate as N Matrix Spike Dup (5E01110-MSD1) Sulfate Nitrate as N	59.2 5.74	24 6.2 Source: 0.46 0.12	26 10 C5E009 0 0.50	mg/L " 0-03 mg/L	1250 282 Prepared 25.0 5.65	2710 ND & Analyze 33.5	105 99 d: 05/01/2 103 99	80-120 80-120 5 80-120 80-120			

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

Anions - Quality Control

Babcock Laboratories, Inc. - Riverside

					Spike	Source		%REC		RPD	
Analyte	Result	MDL	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5E02134, Prep Method: N/A, A	Analyst: TR	s									
LCS (5E02134-BS1)					Prepared	& Analyze	d: 05/02/2	5			
Nitrate/Nitrite as N	0.505	0.0024	0.010	mg/L	0.500		101	90-110			
Duplicate (5E02134-DUP1)		Source:	C5E012	27-01	Prepared	& Analyze	d: 05/02/2	5			
Nitrate/Nitrite as N	0.00300	0.0024	0.010	mg/L		ND				20	
Matrix Spike (5E02134-MS1)		Source:	C5E012	27-01	Prepared	& Analyze	d: 05/02/2	5			
Nitrate/Nitrite as N	0.468	0.0024	0.010	mg/L	0.500	ND	94	90-110			
Matrix Spike (5E02134-MS2)		Source:	C5E012	27-02	Prepared	& Analyze	d: 05/02/2	5			
Nitrate/Nitrite as N	0.473	0.0024	0.010	mg/L	0.500	ND	95	90-110			
Matrix Spike Dup (5E02134-MSD1)		Source:	C5E012	27-01	Prepared	& Analyze	d: 05/02/2	5			
NPC	0.482	0.0024	0.010	mg/L	0.500	ND	96	90-110	3	20	
Nitrate/Nitrite as N Batch 5F05218 Prep Method: N/A		IB.									
Batch 5E05218, Prep Method: N/A, A Blank (5E05218-BLK1)		IB .			Prepared	& Analyze	d: 05/05/2	 5			
Batch 5E05218, Prep Method: N/A, /		5.0	5.0	mg/L as CaCO3	Prepared	& Analyze	d: 05/05/2	5			
Batch 5E05218, Prep Method: N/A, A	Analyst: GM		5.0		Prepared	& Analyze	d: 05/05/2	5			
Batch 5E05218, Prep Method: N/A, ABIank (5E05218-BLK1) Total Alkalinity	Analyst: GM ND	5.0			Prepared	& Analyze	d: 05/05/2	5			
Batch 5E05218, Prep Method: N/A, A Blank (5E05218-BLK1) Total Alkalinity Hydroxide	Analyst: GM ND ND	5.0 5.0	5.0		Prepared	& Analyze	d: 05/05/2	5			
Batch 5E05218, Prep Method: N/A, A Blank (5E05218-BLK1) Total Alkalinity Hydroxide Carbonate	Analyst: GM ND ND ND	5.0 5.0 5.0	5.0 5.0		Prepared Prepared	,					
Batch 5E05218, Prep Method: N/A, A Blank (5E05218-BLK1) Total Alkalinity Hydroxide Carbonate Bicarbonate	Analyst: GM ND ND ND	5.0 5.0 5.0	5.0 5.0		·	,					
Batch 5E05218, Prep Method: N/A, A Blank (5E05218-BLK1) Total Alkalinity Hydroxide Carbonate Bicarbonate LCS (5E05218-BS3)	Analyst: GM ND ND ND ND	5.0 5.0 5.0 5.0	5.0 5.0 5.0	CaCO3	Prepared	,	d: 05/05/2	5			
Batch 5E05218, Prep Method: N/A, A Blank (5E05218-BLK1) Total Alkalinity Hydroxide Carbonate Bicarbonate LCS (5E05218-BS3) Total Alkalinity	Analyst: GM ND ND ND ND ND 1250	5.0 5.0 5.0 5.0 5.0	5.0 5.0 5.0	mg/L as CaCO3	Prepared 1250 1250	,	d: 05/05/2 100 99	5 90-110 90-110			
Batch 5E05218, Prep Method: N/A, A Blank (5E05218-BLK1) Total Alkalinity Hydroxide Carbonate Bicarbonate LCS (5E05218-BS3) Total Alkalinity Carbonate	Analyst: GM ND ND ND ND ND 1250	5.0 5.0 5.0 5.0 5.0	5.0 5.0 5.0 5.0	mg/L as CaCO3	Prepared 1250 1250	& Analyze	d: 05/05/2 100 99	5 90-110 90-110	0.009	25	
Batch 5E05218, Prep Method: N/A, A Blank (5E05218-BLK1) Total Alkalinity Hydroxide Carbonate Bicarbonate LCS (5E05218-BS3) Total Alkalinity Carbonate Duplicate (5E05218-DUP1)	Analyst: GM ND ND ND ND 1250 1240	5.0 5.0 5.0 5.0 5.0 5.0	5.0 5.0 5.0 5.0 5.0	mg/L as CaCO3	Prepared 1250 1250	& Analyze & Analyze	d: 05/05/2 100 99	5 90-110 90-110	0.009	25 25	
Batch 5E05218, Prep Method: N/A, A Blank (5E05218-BLK1) Total Alkalinity Hydroxide Carbonate Bicarbonate LCS (5E05218-BS3) Total Alkalinity Carbonate Duplicate (5E05218-DUP1) Total Alkalinity	ND ND ND 1250 1240	5.0 5.0 5.0 5.0 5.0 5.0 5.0	5.0 5.0 5.0 5.0 5.0 5.0 5.0	mg/L as CaCO3	Prepared 1250 1250	& Analyze & Analyze 112	d: 05/05/2 100 99	5 90-110 90-110	0.009		

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

Anions - Quality Control

Babcock Laboratories, Inc. - Riverside

Analyte	Result	MDL	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5E05218, Prep Method: N/A,	Analyst: GMI	3									
Duplicate (5E05218-DUP2)		Source:	C5E024	7-01	Prepared	& Analyze	d: 05/05/2	5			
Total Alkalinity	183	5.0	5.0	mg/L as CaCO3		191			4	25	
Hydroxide	ND	5.0	5.0	"		ND				25	
Carbonate	ND	5.0	5.0	"		ND				25	
Bicarbonate	183	5.0	5.0	"		191			4	25	
Matrix Spike (5E05218-MS1)		Source:	C5E012	7-01	Prepared	& Analyze	d: 05/05/2	5			
Total Alkalinity	1390	5.0	5.0	mg/L as CaCO3	1250	112	103	80-120			
Matrix Spike Dup (5E05218-MSD1)		Source:	C5E012	7-01	Prepared	& Analyze	d: 05/05/2	5			
Total Alkalinity	1430	5.0	5.0	mg/L as CaCO3	1250	112	105	80-120	2	25	
Batch 5E05249, Prep Method: N/A,	Analyst: JXM										
Blank (5E05249-BLK1)					Prepared	& Analyze	d: 05/06/2	5			
Sulfate	ND	0.46	0.50	mg/L							
LCS (5E05249-BS1)					Prepared	& Analyze	d: 05/06/2	5			
Sulfate	24.7	0.46	0.50	mg/L	25.0		99	90-110			
Duplicate (5E05249-DUP1)		Source:	C5E012	7-01RE1	Prepared	& Analyze	d: 05/06/2	5			
Sulfate	2650	46	50	mg/L		2700			2	25	
Matrix Spike (5E05249-MS1)		Source:	C5E046	2-01	Prepared	& Analyze	d: 05/06/2	5			
Sulfate	167	0.46	0.50	mg/L	25.0	142	97	80-120			
Matrix Spike (5E05249-MS2)		Source:	C5E047	1-01	Prepared	& Analyze	d: 05/06/2	5			
Sulfate	147	0.46	0.50	mg/L	25.0	122	100	80-120			

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

Anions - Quality Control

Babcock Laboratories, Inc. - Riverside

					Spike	Source		%REC		RPD	
Analyte	Result	MDL	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5E05249, Prep Method: N/A,	Analyst: JXI	М									
Matrix Spike (5E05249-MS3)		Source	C5E012	7-01RE1	Prepared	& Analyze	d: 05/06/2	5			
Sulfate	5430	48	52	mg/L	2500	2700	109	80-120			
Matrix Spike Dup (5E05249-MSD1)		Source:	C5E046	2-01	Prepared	& Analyze	d: 05/06/2	5			
Sulfate	168	0.46	0.50	mg/L	25.0	142	101	80-120	0.5	25	
Batch 5E07165, Prep Method: N/A,	Analyst: TR	s									
Blank (5E07165-BLK1)					Prepared	& Analyze	d: 05/07/2	5			
Nitrate/Nitrite as N	ND	0.0024	0.010	mg/L							
LCS (5E07165-BS1)					Prepared	& Analyze	d: 05/07/2	5			
Nitrate/Nitrite as N	0.506	0.0024	0.010	mg/L	0.500		101	90-110			
Duplicate (5E07165-DUP1)		Source	C5D359	6-01	Prepared	& Analyze	d: 05/07/2	5			
Nitrate/Nitrite as N	0.00500	0.0024	0.010	mg/L		0.00300			50	20	QRPDI, .
Matrix Spike (5E07165-MS1)		Source	C5D359	6-01	Prepared	& Analyze	d: 05/07/2	5			
Nitrate/Nitrite as N	0.522	0.0024	0.010	mg/L	0.500	0.00300	104	90-110			
Matrix Spike (5E07165-MS2)		Source:	C5D359	9-01	Prepared	& Analyze	d: 05/07/2	5			
Nitrate/Nitrite as N	0.520	0.0024	0.010	mg/L	0.500	0.00700	103	90-110			
Matrix Spike Dup (5E07165-MSD1)		Source	C5D359	6-01	Prepared	& Analyze	d: 05/07/2	5			
Nitrate/Nitrite as N	0.531	0.0024	0.010	mg/L	0.500	0.00300	106	90-110	2	20	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

Solids - Quality Control

Babcock Laboratories, Inc. - Riverside

Analyte	Result	MDL	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5E01124, Prep Method: N/											
Duplicate (5E01124-DUP1)		Source:	C5E001	3-01	Prepared	& Analyze	d: 05/01/2	5			
Settleable Solids	ND	0.1	0.1	mL/L		ND				20	
Batch 5E02082, Prep Method: N/	A, Analyst: PBS										
Blank (5E02082-BLK1)					Prepared	& Analyze	d: 05/02/2	5			
Total Suspended Solids	ND	0.5	0.5	mg/L							
LCS (5E02082-BS1)					Prepared	& Analyze	d: 05/02/2	5			
Total Suspended Solids	492	5	5	mg/L	500		98	0-200			
Duplicate (5E02082-DUP1)		Source:	C5D400	5-01	Prepared	& Analyze	d: 05/02/2	5			
Total Suspended Solids	318	10	10	mg/L		280			13	25	
Duplicate (5E02082-DUP2)		Source:	C5E002	4-05	Prepared	& Analyze	d: 05/02/2	5			
Total Suspended Solids	1.50	0.5	0.5	mg/L		1.40			7	25	
Batch 5E02083, Prep Method: N/	A, Analyst: PBS	i									
Duplicate (5E02083-DUP1)		Source:	C5E012	7-02	Prepared	& Analyze	d: 05/02/2	5			
Settleable Solids	1.91	0.1	0.1	mL/L		0.658			98	20	QRPD
Batch 5E02113, Prep Method: N/	A, Analyst: CSS										
Blank (5E02113-BLK1)					Prepared	& Analyze	d: 05/02/2	<u></u>			
Total Dissolved Solids	ND	10	10	mg/L							

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

Solids - Quality Control

Babcock Laboratories, Inc. - Riverside

Analyte	Result	MDL	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5E02113, Prep Method: N/	A, Analyst: CS\$	8									
LCS (5E02113-BS1)					Prepared	& Analyze	d: 05/02/2	5			
Total Dissolved Solids	744	10	10	mg/L	746		100	90-110			
Duplicate (5E02113-DUP1)		Source:	C5D404	0-01	Prepared	& Analyze	d: 05/02/2	5			
Total Dissolved Solids	681	10	10	mg/L	·	690			1	25	
Duplicate (5E02113-DUP2)		Source:	C5E012	7-01	Prepared	& Analyze	d: 05/02/2	5			
Total Dissolved Solids	36000	500	500	mg/L	·	36600			2	25	
Batch 5E02145, Prep Method: N/ Duplicate (5E02145-DUP1)	A, Analyst: EZF	Source:	C5F012	7-04RF1	Prepared	& Analyze	d: 05/02/2				
Settleable Solids	1.30	0.1	0.1	mL/L	Troparca	0.600	u. 00/02/20	,	74	20	QRPDo
Batch 5E04177, Prep Method: N/	A, Analyst: VM	v									
Blank (5E04177-BLK1)					Prepared	& Analyze	d: 05/04/2	5			
Total Suspended Solids	ND	0.5	0.5	mg/L							
LCS (5E04177-BS1)					Prepared	& Analyze	d: 05/04/2	5			
Total Suspended Solids	484	5	5	mg/L	500		97	0-200			
Duplicate (5E04177-DUP1)		Source:	C5D399	6-01	Prepared	& Analyze	d: 05/04/2	5			
Total Suspended Solids	192	10	10	mg/L	•	186			3	25	
Duplicate (5E04177-DUP2)		Source:	C5E012	7-12RE1	Prepared	& Analyze	d: 05/04/2	5			
Total Suspended Solids	84.0	10	10	mg/L	-1	348			122	25	QFnoH, QRPDh

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

Aggregate Organic Compounds - Quality Control Babcock Laboratories, Inc. - Riverside

Analyte	Result	MDL	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5E05188, Prep Method: N/A, A	Analyst: GM	3									
Blank (5E05188-BLK1)					Prepared	& Analyze	d: 05/05/2	:5			
Total Organic Carbon	ND		0.70	mg/L							
LCS (5E05188-BS1)					Prepared	& Analyze	d: 05/05/2	5			
Total Organic Carbon	4.94		0.70	mg/L	5.00		99	80-120			
Duplicate (5E05188-DUP1)		Source:	C5E012	7-01	Prepared	& Analyze	d: 05/05/2	:5			
Total Organic Carbon	2.61		0.70	mg/L		2.78			6	25	
Matrix Spike (5E05188-MS1)		Source:	C5E012	7-01	Prepared	& Analyze	d: 05/05/2	:5			
Total Organic Carbon	7.92		0.70	mg/L	5.00	2.78	103	80-120			
Matrix Spike Dup (5E05188-MSD1)		Source:	C5E012	7-01	Prepared	& Analyze	d: 05/05/2	5			
Total Organic Carbon	8.01		0.70	mg/L	5.00	2.78	105	80-120	1	25	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

Nutrients - Quality Control

Babcock Laboratories, Inc. - Riverside

					Spike	Source		%REC		RPD	
Analyte	Result	MDL	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5E01121, Prep Method: Filter	if turbid., An	alyst: E	XR								
Blank (5E01121-BLK1)					Prepared	& Analyze	d: 05/01/2	5			
Ortho Phosphate Phosphorus	ND		0.050	mg/L							
LCS (5E01121-BS1)					Prepared	& Analyze	d: 05/01/2	5			
Ortho Phosphate Phosphorus	0.525		0.050	mg/L	0.500		105	90-110			
Ouplicate (5E01121-DUP1)		Source:	C5D412	1-01	Prepared	& Analyze	d: 05/01/2	5			
Ortho Phosphate Phosphorus	0.0160		0.050	mg/L		0.0140			13	20	
Matrix Spike (5E01121-MS1)		Source:	C5D412	1-01	Prepared	& Analyze	d: 05/01/2	5			
Ortho Phosphate Phosphorus	0.525		0.050	mg/L	0.500	0.0140	102	80-120			
								_			
Matrix Spike Dup (5E01121-MSD1)		Source:	C5D412	1-01	Prepared	& Analyze	d: 05/01/2	5			
· · · · · · · · · · · · · · · · · · ·	0.551	Source:	0.050	1-01 mg/L	0.500	8 Analyze 0.0140	107	80-120	5	20	
Ortho Phosphate Phosphorus	0.551		0.050						5	20	
Ortho Phosphate Phosphorus Batch 5E01122, Prep Method: Filter	0.551		0.050		0.500		107	80-120	5	20	
ortho Phosphate Phosphorus Batch 5E01122, Prep Method: Filter Blank (5E01122-BLK1)	0.551		0.050		0.500	0.0140	107	80-120	5	20	
Matrix Spike Dup (5E01121-MSD1) Ortho Phosphate Phosphorus Batch 5E01122, Prep Method: Filter Blank (5E01122-BLK1) Ortho Phosphate Phosphorus LCS (5E01122-BS1)	0.551		0.050 BXR	mg/L	0.500 Prepared	0.0140	107 d: 05/02/2	80-120 5	5	20	
Ortho Phosphate Phosphorus Batch 5E01122, Prep Method: Filter Blank (5E01122-BLK1) Ortho Phosphate Phosphorus CS (5E01122-BS1)	0.551		0.050 BXR	mg/L	0.500 Prepared	0.0140 & Analyze	107 d: 05/02/2	80-120 5	5	20	
Ortho Phosphate Phosphorus Batch 5E01122, Prep Method: Filter Blank (5E01122-BLK1) Ortho Phosphate Phosphorus	0.551 if turbid., An ND 0.512		0.050 BXR 0.050 0.050	mg/L	0.500 Prepared Prepared 0.500	0.0140 & Analyze	107 d: 05/02/2 d: 05/02/2 102	80-120 5 5 90-110	5	20	
Ortho Phosphate Phosphorus Batch 5E01122, Prep Method: Filter Blank (5E01122-BLK1) Ortho Phosphate Phosphorus CS (5E01122-BS1) Ortho Phosphate Phosphorus Ouplicate (5E01122-DUP1)	0.551 if turbid., An ND 0.512	nalyst: E	0.050 BXR 0.050 0.050	mg/L	0.500 Prepared Prepared 0.500	& Analyze	107 d: 05/02/2 d: 05/02/2 102	80-120 5 5 90-110	5	20	
Ortho Phosphate Phosphorus Batch 5E01122, Prep Method: Filter Blank (5E01122-BLK1) Ortho Phosphate Phosphorus CS (5E01122-BS1) Ortho Phosphate Phosphorus	0.551 if turbid., An ND 0.512	nalyst: E	0.050 8XR 0.050 0.050 C5E0127 0.050	mg/L mg/L mg/L mg/L mg/L	0.500 Prepared Prepared 0.500 Prepared	& Analyzer & Analyzer & Analyzer	107 d: 05/02/2 d: 05/02/2 102 d: 05/02/2	80-120 5 5 90-110			

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025
Project Manager: John Salguero

Reported: 05/12/25 22:24

Nutrients - Quality Control

Babcock Laboratories, Inc. - Riverside

Analyte	Danish	MDL	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Result	MDL	KL	Units	Levei	Resuit	%REC	LITTIES	KPD	LITTIL	notes
Batch 5E01122, Prep Method: Filter	if turbid., A	nalyst: E	BXR								
Matrix Spike Dup (5E01122-MSD1)		Source:	C5E012	7-03	Prepared	& Analyze	ed: 05/02/2	5			
Ortho Phosphate Phosphorus	0.524		0.050	mg/L	0.500	0.0260	100	80-120	2	20	
Batch 5E02121, Prep Method: Total	Phos - Acid	Digest,	Analys	t: EZP							
Blank (5E02121-BLK1)					Prepared:	: 05/02/25	Analyzed	: 05/05/25			
Phosphorus, Total as P	ND	0.02	0.05	mg/L							
LCS (5E02121-BS1)					Prepared:	05/02/25	Analyzed	: 05/05/25			
Phosphorus, Total as P	0.238	0.02	0.05	mg/L	0.250		95	90-110			
Duplicate (5E02121-DUP1)		Source:	C5E012	7-01	Prepared:	05/02/25	Analyzed	: 05/05/25			
Phosphorus, Total as P	ND	0.02	0.05	mg/L		ND				25	
Matrix Spike (5E02121-MS1)		Source:	C5D315	5-02RE1	Prepared:	05/02/25	Analyzed	: 05/05/25			
Phosphorus, Total as P	2.83	0.10	0.25	mg/L	0.250	2.57	104	80-120			
Matrix Spike (5E02121-MS2)		Source:	C5E012	7-01	Prepared:	05/02/25	Analyzed	: 05/05/25			
Phosphorus, Total as P	0.0639	0.02	0.05	mg/L	0.250	ND	26	80-120			QFini, QMint
Matrix Spike Dup (5E02121-MSD1)		Source:	C5D315	5-02RE1	Prepared:	05/02/25	Analyzed	: 05/05/25			
Phosphorus, Total as P	2.78	0.10	0.25	mg/L	0.250	2.57	86	80-120	2	25	
Matrix Spike Dup (5E02121-MSD2)		Source:	C5E012	7-01	Prepared:	05/02/25	Analyzed	: 05/05/25			
Phosphorus, Total as P	0.0641	0.02	0.05	mg/L	0.250	ND	26	80-120	0.3	25	QFini, QMint
Batch 5E05199, Prep Method: Acid I	Digest, Anal	yst: VM	V								
Blank (5E05199-BLK1)				·	Prepared:	: 05/05/25	Analyzed	: 05/06/25		·	
Kjeldahl Nitrogen	ND	0.07	0.1	mg/L	•		<u>.</u>				

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

Nutrients - Quality Control

Babcock Laboratories, Inc. - Riverside

Analyte	Result	MDL	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5E05199, Prep Method: Acid		yst: VM\	/								
LCS (5E05199-BS1)					Prepared:	05/05/25	Analyzed	: 05/06/25			
Kjeldahl Nitrogen	1.00	0.07	0.1	mg/L	1.00		100	80-120			
Duplicate (5E05199-DUP1)		Source:	C5E012	7-01	Prepared:	05/05/25	Analyzed	: 05/06/25			
Kjeldahl Nitrogen	1.32	0.7	1.0	mg/L	·	1.00	•		28	25	QRPD
Matrix Spike (5E05199-MS1)		Source:	C5E012	7-01	Prepared:	05/05/25	Analyzed	: 05/06/25			
Kjeldahl Nitrogen	10.7	0.7	1.0	mg/L	10.0	1.00	97	42-154			
Matrix Spike Dup (5E05199-MSD1)		Source:	C5E012	7-01	Prepared:	05/05/25	Analyzed	: 05/06/25			
Kjeldahl Nitrogen	10.8	0.7	1.0	mg/L	10.0	1.00	98	42-154	1	25	
Batch 5E05201, Prep Method: Acid Blank (5E05201-BLK1)	Digest, Anal	yst: NR			Prepared	& Analyze	d: 05/06/2	·5			
Kjeldahl Nitrogen	ND	0.07	0.1	mg/L	Порагоа	a / many 20	u. 00/00/2				
LCS (5E05201-BS1)					Prepared	& Analyze	d: 05/06/2	.5			
Kjeldahl Nitrogen	0.875	0.07	0.1	mg/L	1.00	-	88	80-120			
Duplicate (5E05201-DUP1)		Source:	C5D359	6-01	Prepared	& Analyze	d: 05/06/2	.5			
Kjeldahl Nitrogen	0.0769	0.07	0.1	mg/L	•	0.156			68	25	QRPDI, J
Matrix Spike (5E05201-MS1)		Source:	C5D359	6-01	Prepared	& Analyze	d: 05/06/2	:5			
Kjeldahl Nitrogen	1.05	0.07	0.1	mg/L	1.00	0.156	89	42-154			
Matrix Spike Dup (5E05201-MSD1)		Source:	C5D359	6-01	Prepared	& Analyze	d: 05/06/2	5			
Kjeldahl Nitrogen	1.09	0.07	0.1	mg/L	1.00	0.156	94	42-154	4	25	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

Nutrients - Quality Control

Babcock Laboratories, Inc. - Riverside

Analyte	Result	MDL	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5E07150, Prep Method: Total	Phos - Acid	Digest,	Analys	t: BXR							
Blank (5E07150-BLK1)					Prepared	& Analyze	d: 05/07/2	25			
Phosphorus, Total as P	ND	0.02	0.05	mg/L							
LCS (5E07150-BS1)					Prepared	& Analyze	d: 05/07/2	25			
Phosphorus, Total as P	0.252	0.02	0.05	mg/L	0.250		101	90-110			
Duplicate (5E07150-DUP1)		Source:	C5E012	7-01RE1	Prepared	& Analyze	d: 05/07/2	25			
Phosphorus, Total as P	ND	0.02	0.05	mg/L	-	ND				25	
Matrix Spike (5E07150-MS1)		Source:	C5E012	7-01RE1	Prepared	& Analyze	d: 05/07/2	25			
Phosphorus, Total as P	0.0759	0.02	0.05	mg/L	0.250	ND	30	80-120			QMin
Matrix Spike Dup (5E07150-MSD1)		Source:	C5E012	7-01RE1	Prepared	& Analyze	d: 05/07/2	25			
Phosphorus, Total as P	0.0730	0.02	0.05	mg/L	0.250	ND	29	80-120	4	25	QMin
Batch 5E07156, Prep Method: Amm	onia - Gas D	iffusion	, Analy	st: TRS							
Blank (5E07156-BLK1)					Prepared	& Analyze	d: 05/07/2	25			
Ammonia-Nitrogen	ND	0.008	0.01	mg/L							
LCS (5E07156-BS1)					Prepared	& Analyze	d: 05/07/2	25			
Ammonia-Nitrogen	0.496	0.008	0.01	mg/L	0.500		99	90-110			
Duplicate (5E07156-DUP1)		Source:	C5E012	7-02	Prepared	& Analyze	d: 05/07/2	25			
Ammonia-Nitrogen	0.0100	0.008	0.01	mg/L		0.00800			22	20	QRPD
Matrix Spike (5E07156-MS1)		Source:	C5E012	7-02	Prepared	& Analyze	d: 05/07/2	25			
Ammonia-Nitrogen	0.533	0.008	0.01	mg/L	0.500	0.00800	105	80-120			

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

Nutrients - Quality Control

Babcock Laboratories, Inc. - Riverside

					Spike	Source		%REC		RPD	
Analyte	Result	MDL	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 5E07156, Prep Method: Ammonia - Gas Diffusion, Analyst: TRS

Matrix Spike Dup (5E07156-MSD1)		Source:	C5E012	7-02	Prepared	& Analyzed	: 05/07/2	25			
Ammonia-Nitrogen	0.550	0.008	0.01	mg/L	0.500	0.00800	108	80-120	3	20	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Project Manager: John Salguero Reported: 05/12/25 22:24

Metals and Metalloids - Quality Control Babcock Laboratories, Inc. - Riverside

					Spike	Source		%REC		RPD	
Analyte	Result	MDL	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5E02074, Prep Method: EPA 74	170A/SM 31	12B, An	alyst: 、	JTR							
Blank (5E02074-BLK1)					Prepared	& Analyze	d: 05/02/2	25			
Mercury-Dissolved	ND	0.11	0.20	ug/L							
Mercury	ND	0.11	0.20	"							
Blank (5E02074-BLK2)					Prepared	& Analyze	d: 05/02/2	25			
Mercury-Dissolved	ND	0.11	0.20	ug/L							
Mercury	ND	0.11	0.20	"							
LCS (5E02074-BS1)					Prepared	& Analyze	d: 05/02/2	25			
Mercury-Dissolved	5.03	0.11	0.20	ug/L	5.00		101	85-115			
Mercury	5.03	0.11	0.20	"	5.00		101	85-115			
Matrix Spike (5E02074-MS1)		Source:	C5E012	7-01	Prepared	& Analyze	d: 05/02/2	25			
Mercury-Dissolved	25.2	0.56	1.0	ug/L	25.0	ND	101	70-130			
Mercury	25.2	0.56	1.0	"	25.0	ND	101	70-130			
Matrix Spike Dup (5E02074-MSD1)		Source:	C5E012	7-01	Prepared	& Analyze	d: 05/02/2	25			
Mercury-Dissolved	25.2	0.56	1.0	ug/L	25.0	ND	101	70-130	0.08	20	
Mercury	25.2	0.56	1.0	"	25.0	ND	101	70-130	0.08	20	
Batch 5E02076, Prep Method: EPA 74	170A/SM 31	12B, An	alyst: 、	JTR							
Blank (5E02076-BLK1)					Prepared	& Analyze	ed: 05/02/2	25			
Mercury-Dissolved	0.113	0.11	0.20	ug/L	•						QBLK,
Mercury	0.113	0.11	0.20	"							QBLK,
Blank (5E02076-BLK2)					Prepared	& Analyze	ed: 05/02/2	25			
Mercury-Dissolved	ND	0.11	0.20	ug/L							
	ND	0.11	0.20								Nfi

Babcock Laboratories, Inc. - Riverside

Beryllium

Cadmium

Copper

Manganese

Lead

Nickel

Zinc

Selenium

Total Chromium

Babcock Laboratories, Inc. - Riverside 6100 Quail Valley Court Riverside, CA 92507-0704 (951) 653-3351

%REC

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013

Project: RWB4_WildFireResponse_2025

Spike

Source

Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 05/12/25 22:24

RPD

Metals and Metalloids - Quality Control Babcock Laboratories, Inc. - Riverside

0.11

4.0

1.6

1.6

1.9

3.3

1.7

5.0

360

327

332

324

331

336

333

328

323

10

1.0

20

10

10

10

10

5.0

10

332

332

332

332

332

332

332

332

332

					Spike	Source		70KEU		KFD	
Analyte	Result	MDL	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5E02076, Prep Method: EPA	7470A/SM 31	12B, An	nalyst: .	JTR							
LCS (5E02076-BS1)					Prepared	& Analyze	d: 05/02/2	25			
Mercury-Dissolved	5.04	0.11	0.20	ug/L	5.00		101	85-115			
Mercury	5.04	0.11	0.20	"	5.00		101	85-115			
Matrix Spike (5E02076-MS1)		Source:	C5E012	7-11	Prepared	& Analyze	d: 05/02/2	25			
Mercury-Dissolved	24.9	0.56	1.0	ug/L	25.0	ND	99	70-130			
Mercury	24.9	0.56	1.0	"	25.0	0.739	97	70-130			
Matrix Spike Dup (5E02076-MSD1)		Source:	C5E012	7-11	Prepared	& Analyze	d: 05/02/2	25			
Mercury-Dissolved	24.5	0.56	1.0	ug/L	25.0	ND	98	70-130	1	20	
Mercury	24.5	0.56	1.0	"	25.0	0.739	95	70-130	1	20	
Blank (5E02080-BLK1)					Prepared	& Analyze	d: 05/02/2	25			
Arsenic	ND	0.71	5.0	ug/L							
Beryllium	ND		10	"							
Cadmium	ND	0.11	1.0	"							
Total Chromium	ND	4.0	20	"							
Copper	ND	1.6	10	"							
Lead	ND	1.6	10	"							
Manganese	ND	1.9	10	"							
Nickel	ND	3.3	10	"							
Selenium	ND	1.7	5.0	"							
Zinc	ND	5.0	10	"							
LCS (5E02080-BS1)					Prepared	& Analyze	d: 05/02/2	25			
Arsenic	333	0.71	5.0	ug/L	332		100	85-115			

Babcock Laboratories, Inc. - Riverside

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

108

98

100

98

100

101

100

99

97

85-115

85-115

85-115

85-115

85-115

85-115

85-115

85-115

85-115

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Project Manager: John Salguero Reported: 05/12/25 22:24

Metals and Metalloids - Quality Control Babcock Laboratories, Inc. - Riverside

Arsenic 2.30 0.71 5.0 ug/L 2.47 7 20 QRPCI Beryllium 0.277 10 ' 0.225 21 20 QRPCI Cadmium 0.179 0.11 1.0 ' 0.225 21 20 QRPCI Cadmium ND 0.179 0.11 1.0 ' 0.226 20 47 20 QRPCI Copper ND 1.6 10 ' ND 0 0.25 20 20 Manganese 11.5 1.9 10 ' ND 0 1.2 20 Manganese 11.5 1.9 10 ' ND 0 1.2 20 Manganese 11.5 1.9 10 ' ND 0 1.2 20 Marki Spike (5E02080-MS1)		_	ME	Б.		Spike	Source	W DEC	%REC	555	RPD	N 1 (
Duplicate (SE02080-DUP1)	Analyte	Result	MDL	KL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Arsenic 2.30 0.71 5.0 ug/L 2.47 7 20 QAPPL Beryllium 0.277 10 ' 0.225 21 20 QAPPL Codmium 0.179 0.11 1.0 ' 0.225 21 20 QAPPL Total Chromium ND 0.4.0 20 ' ND 0.25 20 20 QAPPL Total Chromium ND 1.6 10 ' ND 0.25 20 20 20 QAPPL Copper ND 1.6 10 ' ND 0.2 20 20 20 20 QAPPL Manganese 11.5 1.9 10 ' ND 11.2 20 20 20 20 QAPPL Manganese 11.5 1.9 10 ' ND 0.2 20 20 20 QAPPL Mickel ND 3.3 10 ' ND 0.2 20 20 20 20 QAPPL Zinc ND 5.0 ' ND 0.2 20 20 20 20 QAPPL Marix Spike (5E02080-MS1)	Batch 5E02080, Prep Method: EPA 2	200.2, Analys	st: AJH									
Beryllium	Duplicate (5E02080-DUP1)		Source:	C5D412	1-01	Prepared	& Analyze	d: 05/02/2	25			
Cadmium	Arsenic	2.30	0.71	5.0	ug/L		2.47			7	20	J
Selenium	Beryllium	0.277		10	"		0.225			21	20	QRPDI
No	Cadmium	0.179	0.11	1.0	"		0.290			47	20	QRPDI, J
Manganese	Total Chromium	ND	4.0	20	"		ND				20	
Manganese	Copper	ND	1.6	10	"		ND				20	
Nickel N	Lead	ND	1.6	10	"		ND				20	
Selenium	Manganese	11.5	1.9	10	"		11.2			2	20	
Matrix Spike (5E02080-MS1) Source: C5D4121-01 Prepared & Analyzed: 05/02/25	Nickel	ND	3.3	10	"		ND				20	
Matrix Spike (5E02080-MS1) Source: C5D4121-01 Prepared & Analyzed: ○5/02/25 Arsenic 319 0.71 5.0 ug/L 332 2.47 95 70-130 Beryllium 321 0.11 1.0 332 0.290 97 70-130 Total Chromium 321 4.0 20 10 332 ND 96 70-130 Copper 312 1.6 10 10 332 ND 97 70-130 Copper 312 1.6 10 10 332 ND 97 70-130 Lead Manganese 335 1.9 10 10 10 10 10 332 ND 97 70-130 Frepared & Analyzed: ○5/02/25 104 70-130 104 105 105 106 107 108 108 109 109 109 109 109 109	Selenium	ND	1.7	5.0	"		ND				20	
Arsenic 319 0.71 5.0 ug/L 332 2.47 95 70-130 Beryllium 345 10 " 332 0.225 104 70-130 Cadmium 321 0.11 1.0 " 332 0.290 97 70-130 Total Chromium 321 4.0 20 " 332 ND 96 70-130 Copper 312 1.6 10 " 332 ND 94 70-130 Lead 323 1.6 10 " 332 ND 94 70-130 Lead 323 1.6 10 " 332 ND 97 70-130 Manganese 335 1.9 10 " 332 ND 96 70-130 Selenium 317 1.7 5.0 " 332 ND 96 70-130 Selenium 317 1.7 5.0 " 332 ND 96 70-130 Matrix Spike Dup (5E02080-MSD1) Source: C5D4121-01 Prepared & Analyzed: 05/02/25 Arsenic 322 0.71 5.0 ug/L 332 0.25 102 70-130 1 20 Beryllium 340 10 " 332 ND 96 70-130 0.9 20 Beryllium 340 10 " 332 0.25 102 70-130 1 20 Cadmium 315 0.11 1.0 " 332 0.25 102 70-130 1 20 Cadmium 320 4.0 20 " 332 ND 96 70-130 0.3 20 Copper 313 1.6 10 " 332 ND 96 70-130 0.2 20 Lead 320 1.6 10 " 332 ND 96 70-130 0.2 20 Lead 320 1.6 10 " 332 ND 96 70-130 0.2 20 Lead 320 1.6 10 " 332 ND 96 70-130 0.2 20 Lead 320 1.6 10 " 332 ND 96 70-130 0.3 20 Manganese 337 1.9 10 " 332 ND 96 70-130 0.8 20 Manganese 337 1.9 10 " 332 ND 96 70-130 0.8 20 Manganese 337 1.9 10 " 332 ND 96 70-130 0.8 20 Manganese 338 3.3 10 " 332 ND 96 70-130 0.8 20 Mickel 318 3.3 10 " 332 ND 96 70-130 0.8 20 Mickel 318 3.3 10 " 332 ND 96 70-130 0.8 20 Mickel 318 3.3 10 " 332 ND 96 70-130 0.8 20 Mickel 318 3.3 10 " 332 ND 96 70-130 0.8 20 Mickel 318 3.3 10 " 332 ND 96 70-130 0.8 20 Mickel 318 3.3 10 " 332 ND 96 70-130 0.0 20 Mickel 318 3.3 10 " 332 ND 96 70-130 0.0 20	Zinc	ND	5.0	10	"		ND				20	
Beryllium	Matrix Spike (5E02080-MS1)		Source:	C5D412	1-01	Prepared	& Analyze	d: 05/02/2	25			
Cadmium 321 0.11 1.0 " 332 0.290 97 70-130 Total Chromium 321 4.0 20 " 332 ND 96 70-130 Copper 312 1.6 10 " 332 ND 97 70-130 Lead 323 1.6 10 " 332 ND 97 70-130 Manganese 335 1.9 10 " 332 ND 96 70-130 Nickel 318 3.3 10 " 332 ND 95 70-130 Selenium 317 1.7 5.0 " 332 ND 95 70-130 Marrix Spike Dup (5E02080-MSD1) Source: C5D4121-01 Prepared & Analyzed: 05/02/25 Arsenic 322 0.71 5.0 ug/L 332 0.295 102 70-130 1 20 Beryllium 340 10 " 332 ND 95 70-130 0.9 20 Beryllium 340 10 " 332 0.295 102 70-130 1 20 Cadmium 315 0.11 1.0 " 332 0.290 95 70-130 2 20 Total Chromium 320 4.0 20 " 332 ND 96 70-130 0.3 20 Copper 313 1.6 10 " 332 ND 96 70-130 0.3 20 Copper 313 1.6 10 " 332 ND 96 70-130 0.3 20 Lead 320 1.6 10 " 332 ND 96 70-130 0.8 20 Manganese 337 1.9 10 " 332 ND 96 70-130 0.8 20 Manganese 337 1.9 10 " 332 ND 96 70-130 0.8 20 Manganese 337 1.9 10 " 332 ND 96 70-130 0.8 20 Manganese 337 1.9 10 " 332 ND 96 70-130 0.8 20 Manganese 337 1.9 10 " 332 ND 96 70-130 0.8 20 Manganese 337 1.9 10 " 332 ND 96 70-130 0.8 20 Manganese 337 1.9 10 " 332 ND 96 70-130 0.8 20 Manganese 337 1.9 10 " 332 ND 96 70-130 0.8 20 Manganese 337 1.9 10 " 332 ND 96 70-130 0.8 20 Manganese 318 3.3 10 " 332 ND 96 70-130 0.8 20 Manganese 318 3.3 10 " 332 ND 96 70-130 0.8 20 Manganese 318 3.3 10 " 332 ND 96 70-130 0.8 20 Manganese 318 3.3 10 " 332 ND 96 70-130 0.8 20 Manganese 318 3.3 10 " 332 ND 96 70-130 0.6 20 Manganese 318 3.3 10 " 332 ND 96 70-130 0.0 20	Arsenic	319	0.71	5.0	ug/L	332	2.47	95	70-130			
Total Chromium 321 4.0 20 " 332 ND 96 70-130 Copper 312 1.6 10 " 332 ND 94 70-130 Lead 323 1.6 10 " 332 ND 97 70-130 Manganese 335 1.9 10 " 332 ND 96 70-130 Nickel 318 3.3 10 " 332 ND 96 70-130 Selenium 317 1.7 5.0 " 332 ND 96 70-130 Matrix Spike Dup (5E02080-MSD1) Matrix Spike Dup (5E02080-MSD1) Source: C5D4121-01 Prepared & Analyzed: 05/02/25 Arsenic 322 0.71 5.0 ug/L 332 0.25 102 70-130 1 20 Beryllium 340 10 " 332 0.25 102 70-130 1 20 Cadmium 315 0.11 1.0 " 332 0.290 95 70-130 2 20 Cadmium 320 4.0 20 " 332 ND 96 70-130 0.3 20 Copper 313 1.6 10 " 332 ND 96 70-130 0.3 20 Copper 313 1.6 10 " 332 ND 96 70-130 0.3 20 Copper 313 1.6 10 " 332 ND 96 70-130 0.3 20 Copper 313 1.6 10 " 332 ND 96 70-130 0.2 20 Lead 320 1.6 10 " 332 ND 96 70-130 0.8 20 Manganese 337 1.9 10 " 332 ND 96 70-130 0.8 20 Manganese 337 1.9 10 " 332 ND 96 70-130 0.6 20 Nickel 318 3.3 10 " 332 ND 95 70-130 0.03 20 Selenium 318 3.3 10 " 332 ND 96 70-130 0.03 20	Beryllium	345		10	"	332	0.225	104	70-130			
No. Copper 312 1.6 10 " 332 ND 94 70-130	Cadmium	321	0.11	1.0	"	332	0.290	97	70-130			
Lead 323 1.6 10 " 332 ND 97 70-130 Manganese 335 1.9 10 " 332 ND 97 70-130 Nickel 318 3.3 10 " 332 ND 96 70-130 Selenium 317 1.7 5.0 " 332 ND 95 70-130 Selenium 315 5.0 10 " 332 ND 95 70-130 Selenium 315 5.0 10 " 332 ND 95 70-130 Selenium 315 5.0 10 " 332 ND 95 70-130 Selenium 315 Selenium 340 No 10 " 332 ND 95 70-130 NO 95 70-130 Selenium 340 NO 10 " 332 ND 95 70-130 NO 95 70-130 NO 95	Total Chromium	321	4.0	20	"	332	ND	96	70-130			
Manganese 335 1.9 10 " 332 11.2 97 70-130 Nickel 318 3.3 10 " 332 ND 96 70-130 Selenium 317 1.7 5.0 " 332 ND 95 70-130 Zinc 315 5.0 10 " 332 ND 95 70-130 Matrix Spike Dup (5E02080-MSD1)	Copper	312	1.6	10	"	332	ND	94	70-130			
Nickel 318 3.3 10 " 332 ND 96 70-130 Selenium 317 1.7 5.0 " 332 ND 95 70-130 Selenium 315 5.0 10 " 332 ND 95 70-130 Selenium 315 5.0 10 " 332 ND 95 70-130 Selenium 315 5.0 10 " 332 ND 95 70-130 Selenium 315 5.0 ND 95 70-130 Selenium 322 0.71 5.0 ug/L 332 2.47 96 70-130 0.9 20 Selenium 340 10 " 332 0.225 102 70-130 1 20 Cadmium 315 0.11 1.0 " 332 0.290 95 70-130 2 20 Total Chromium 320 4.0 20 " 332 ND 96 70-130 0.3 20 Copper 313 1.6 10 " 332 ND 96 70-130 0.2 20 Lead 320 1.6 10 " 332 ND 96 70-130 0.8 20 Manganese 337 1.9 10 " 332 ND 96 70-130 0.8 20 Nickel 318 3.3 10 " 332 ND 95 70-130 0.03 20 Selenium 318 1.7 5.0 " 332 ND 95 70-130 0.03 20 Selenium 318 1.7 5.0 " 332 ND 96 70-130 0.03 20 Selenium 318 1.7 5.0 " 332 ND 96 70-130 0.03 20 Selenium 318 1.7 5.0 " 332 ND 96 70-130 0.03 20 Selenium 318 1.7 5.0 " 332 ND 96 70-130 0.03 20 Selenium 318 1.7 5.0 " 332 ND 96 70-130 0.03 20 Selenium 318 1.7 5.0 " 332 ND 96 70-130 0.01 20 Seleniu	Lead	323	1.6	10	"	332	ND	97	70-130			
Selenium 317 1.7 5.0 " 332 ND 95 70-130	Manganese	335	1.9	10	"	332	11.2	97	70-130			
Matrix Spike Dup (5E02080-MSD1) Source: C5D4121-01 Prepared & Analyzed: 05/02/25	Nickel	318	3.3	10	"	332	ND	96	70-130			
Matrix Spike Dup (5E02080-MSD1) Source: C5D4121-01 Prepared & Analyzed: 05/02/25 Arsenic 322 0.71 5.0 ug/L 332 2.47 96 70-130 0.9 20 Beryllium 340 10 " 332 0.225 102 70-130 1 20 Cadmium 315 0.11 1.0 " 332 ND 95 70-130 2 20 Total Chromium 320 4.0 20 " 332 ND 96 70-130 0.3 20 Copper 313 1.6 10 " 332 ND 94 70-130 0.2 20 Lead 320 1.6 10 " 332 ND 96 70-130 0.8 20 Manganese 337 1.9 10 " 332 ND 95 70-130 0.6 20 Nickel 318 3.3 10 " 332	Selenium	317	1.7	5.0	"	332	ND	95	70-130			
Arsenic 322 0.71 5.0 ug/L 332 2.47 96 70-130 0.9 20 Beryllium 340 10 " 332 0.225 102 70-130 1 20 Cadmium 315 0.11 1.0 " 332 0.290 95 70-130 2 20 Total Chromium 320 4.0 20 " 332 ND 96 70-130 0.3 20 Copper 313 1.6 10 " 332 ND 94 70-130 0.2 20 Lead 320 1.6 10 " 332 ND 96 70-130 0.8 20 Manganese 37 1.9 10 " 332 ND 96 70-130 0.8 20 Nickel 318 3.3 10 " 332 ND 95 70-130 0.6 20 Selenium 318 1.7 5.0 " 332 ND 96 70-130 0.03 20	Zinc	315	5.0	10	"	332	ND	95	70-130			
Beryllium 340 10 " 332 0.225 102 70-130 1 20 Cadmium 315 0.11 1.0 " 332 0.290 95 70-130 2 20 Total Chromium 320 4.0 20 " 332 ND 96 70-130 0.3 20 Copper 313 1.6 10 " 332 ND 94 70-130 0.2 20 Lead 320 1.6 10 " 332 ND 96 70-130 0.8 20 Manganese 337 1.9 10 " 332 ND 96 70-130 0.6 20 Nickel 318 3.3 10 " 332 ND 95 70-130 0.03 20 Selenium 318 1.7 5.0 " 332 ND 96 70-130 0.1 20	Matrix Spike Dup (5E02080-MSD1)		Source:	C5D412	1-01	Prepared	& Analyze	d: 05/02/2	25			
Cadmium 340 10 332 0.223 102 70-130 1 20 Cadmium 315 0.11 1.0 " 332 0.290 95 70-130 2 20 Total Chromium 320 4.0 20 " 332 ND 96 70-130 0.3 20 Copper 313 1.6 10 " 332 ND 94 70-130 0.2 20 Lead 320 1.6 10 " 332 ND 96 70-130 0.8 20 Manganese 337 1.9 10 " 332 ND 96 70-130 0.6 20 Nickel 318 3.3 10 " 332 ND 95 70-130 0.03 20 Selenium 318 1.7 5.0 " 332 ND 96 70-130 0.1 20	Arsenic	322	0.71	5.0	ug/L	332	2.47	96	70-130	0.9	20	
Code Management 310 6.11 1.0 332 0.2 35 70-130 2 20 Total Chromium 320 4.0 20 " 332 ND 96 70-130 0.3 20 Copper 313 1.6 10 " 332 ND 94 70-130 0.2 20 Lead 320 1.6 10 " 332 ND 96 70-130 0.8 20 Manganese 337 1.9 10 " 332 11.2 98 70-130 0.6 20 Nickel 318 3.3 10 " 332 ND 95 70-130 0.03 20 Selenium 318 1.7 5.0 " 332 ND 96 70-130 0.1 20	Beryllium	340		10	"	332	0.225	102	70-130	1	20	
Copper 313 1.6 10 " 332 ND 94 70-130 0.2 20 Lead 320 1.6 10 " 332 ND 96 70-130 0.8 20 Manganese 337 1.9 10 " 332 11.2 98 70-130 0.6 20 Nickel 318 3.3 10 " 332 ND 95 70-130 0.03 20 Selenium 318 1.7 5.0 " 332 ND 96 70-130 0.1 20	Cadmium	315	0.11	1.0	"	332	0.290	95	70-130	2	20	
Copper 313 1.0 10 332 ND 94 70-130 0.2 20 Lead 320 1.6 10 " 332 ND 96 70-130 0.8 20 Manganese 337 1.9 10 " 332 11.2 98 70-130 0.6 20 Nickel 318 3.3 10 " 332 ND 95 70-130 0.03 20 Selenium 318 1.7 5.0 " 332 ND 96 70-130 0.1 20	Total Chromium	320	4.0	20	"	332	ND	96	70-130	0.3	20	
Manganese 337 1.9 10 " 332 11.2 98 70-130 0.6 20 Nickel 318 3.3 10 " 332 ND 95 70-130 0.03 20 Selenium 318 1.7 5.0 " 332 ND 96 70-130 0.1 20	Copper	313	1.6	10	"	332	ND	94	70-130	0.2	20	
Nickel 318 3.3 10 " 332 ND 95 70-130 0.0 20 Selenium 318 1.7 5.0 " 332 ND 96 70-130 0.1 20	Lead	320	1.6	10	"	332	ND	96	70-130	0.8	20	
Selenium 318 1.7 5.0 " 332 ND 96 70-130 0.1 20	Manganese	337	1.9	10	"	332	11.2	98	70-130	0.6	20	
Selenium 510 1.7 5.0 532 ND 90 70-150 0.1 20	Nickel	318	3.3	10	"	332	ND	95	70-130	0.03	20	
Zinc 311 5.0 10 " 332 ND 93 70-130 1 20	Selenium	318	1.7	5.0	"	332	ND	96	70-130	0.1	20	
	Zinc	311	5.0	10	"	332	ND	93	70-130	1	20	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Project Manager: John Salguero Reported: 05/12/25 22:24

Metals and Metalloids - Quality Control Babcock Laboratories, Inc. - Riverside

					Spike	Source		%REC		RPD	
Analyte	Result	MDL	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (5E02081-BLK1)					Prepared &	Analyzed: 05/02/	25			
Beryllium-Dissolved	ND		10	ug/L						
Zinc-Dissolved	ND	5.0	10	"						
Cadmium-Dissolved	ND	0.11	2.0	"						
Chromium-Dissolved	ND	4.0	20	"						
Nickel-Dissolved	ND	3.3	10	"						
Copper-Dissolved	ND	1.6	10							
Selenium-Dissolved	ND	1.7	5.0	"						
Arsenic-Dissolved	ND	1.8	5.0	"						
Lead-Dissolved	ND	1.6	10	"						
Manganese-Dissolved	ND	1.9	10	"						
LCS (5E02081-BS1)					Prepared &	Analyzed: 05/02/	25			
Manganese-Dissolved	50.7	1.9	10	ug/L	50.0	101	85-115			
Chromium-Dissolved	50.1	4.0	20	"	50.0	100	85-115			
Zinc-Dissolved	50.3	5.0	10	"	50.0	101	85-115			
Cadmium-Dissolved	50.7	0.11	2.0		50.0	101	85-115			
Beryllium-Dissolved	55.9		10	"	50.0	112	85-115			
Nickel-Dissolved	49.3	3.3	10	"	50.0	99	85-115			
Copper-Dissolved	49.9	1.6	10		50.0	100	85-115			
Arsenic-Dissolved	50.7	1.8	5.0		50.0	101	85-115			
Selenium-Dissolved	50.5	1.7	5.0	"	50.0	101	85-115			
Lead-Dissolved	50.9	1.6	10	"	50.0	102	85-115			
Duplicate (5E02081-DUP1)		Source:	C5E0127	7-01	Prepared &	Analyzed: 05/02/	25			
Chromium-Dissolved	ND	16	80	ug/L		ND			20	
Copper-Dissolved	ND	6.5	40	"		ND			20	
Selenium-Dissolved	117	6.7	20			122		4	20	
Cadmium-Dissolved	ND	0.44	8.0			ND			20	
Lead-Dissolved	ND	6.2	40			ND			20	
Zinc-Dissolved	ND	20	40	"		ND			20	
Arsenic-Dissolved	8.95	7.1	20	"		9.92		10	20	
Manganese-Dissolved	ND	7.5	40	"		ND			20	
Nickel-Dissolved	ND	13	40			ND			20	
Beryllium-Dissolved	ND		40	"		ND			20	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Project Manager: John Salguero

5 **Reported:** 05/12/25 22:24

Metals and Metalloids - Quality Control Babcock Laboratories, Inc. - Riverside

					Spike	Source		%REC		RPD	
Analyte	Result	MDL	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 5E02081, Prep Method: 200.8/ No Digest, Analyst: AJH

Matrix Spike (5E02081-MS1)		Source: (C5E0127	7-01	Prepared	& Analyze	d: 05/02/2	25			
Nickel-Dissolved	193	13	40	ug/L	200	ND	96	70-130			
Lead-Dissolved	181	6.2	40	"	200	ND	90	70-130			
Arsenic-Dissolved	205	7.1	20	"	200	9.92	98	70-130			
Copper-Dissolved	181	6.5	40	"	200	ND	90	70-130			
Beryllium-Dissolved	193		40	"	200	ND	97	70-130			
Cadmium-Dissolved	163	0.44	8.0	"	200	ND	81	70-130			
Chromium-Dissolved	225	16	80	"	200	ND	112	70-130			
Manganese-Dissolved	217	7.5	40	"	200	ND	108	70-130			
Selenium-Dissolved	287	6.7	20	"	200	122	83	70-130			
Zinc-Dissolved	151	20	40	"	200	ND	76	70-130			
Matrix Spike Dup (5E02081-MSD1)		Source: (C5E0127	7-01	Prepared	& Analyze	d: 05/02/2	25			
Selenium-Dissolved	284	6.7	20	ug/L	200	122	81	70-130	1	20	
Lead-Dissolved	184	6.2	40	"	200	ND	92	70-130	2	20	
Manganese-Dissolved	224	7.5	40	"	200	ND	112	70-130	4	20	
Arsenic-Dissolved	212	7.1	20	"	200	9.92	101	70-130	3	20	
Zinc-Dissolved	153	20	40	"	200	ND	77	70-130	1	20	
Copper-Dissolved	184	6.5	40	"	200	ND	92	70-130	2	20	
Nickel-Dissolved	196	13	40	"	200	ND	98	70-130	2	20	
Chromium-Dissolved	230	16	80	"	200	ND	115	70-130	2	20	
Beryllium-Dissolved	197		40	"	200	ND	99	70-130	2	20	
Bolyman Bloodived											

Batch 5E02088, Prep Method: Filter if turbid.-IC, Analyst: CMR

Blank (5E02088-BLK1) Prepared & Analyzed: 05/03/25

Hexavalent Chromium ND 0.10 ug/L

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Project Manager: John Salguero Reported: 05/12/25 22:24

Metals and Metalloids - Quality Control Babcock Laboratories, Inc. - Riverside

					Spike	Source		%REC		RPD	
Analyte	Result	MDL	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5E02088, Prep Method: Filter	if turbidIC,	Analyst	: CMR								
Blank (5E02088-BLK2)					Prepared	& Analyze	d: 05/03/2	5			
Hexavalent Chromium	ND		0.10	ug/L							
LCS (5E02088-BS1)					Prepared	& Analyze	d: 05/03/2	5			
Hexavalent Chromium	5.06		0.10	ug/L	5.00		101	90-110			
Duplicate (5E02088-DUP1)		Source: (C5D384	6-01	Prepared	& Analyze	d: 05/03/2	5			
Hexavalent Chromium	ND		0.10	ug/L		ND		·		20	
Matrix Spike (5E02088-MS1)	;	Source: (C5D384	6-01	Prepared	& Analyze	d: 05/03/2	5			
Hexavalent Chromium	5.38		0.10	ug/L	5.00	ND	108	85-117			
Matrix Spike Dup (5E02088-MSD1)	:	Source: (C5D384	6-01	Prepared	& Analyze	d: 05/03/2	5			
Hexavalent Chromium	5.43		0.10	ug/L	5.00	ND	109	85-117	0.9	20	
Batch 5E02097, Prep Method: EPA 2	200.2, Analys	t: ALD									
<u> </u>	200.2, Analys	t: ALD			Prepared:	05/02/25	Analyzed	05/05/25			
Batch 5E02097, Prep Method: EPA 2 Blank (5E02097-BLK1) Aluminum	200.2, Analys	28	50	ug/L	Prepared:	05/02/25	Analyzed	05/05/25			
Blank (5E02097-BLK1)			50 50	ug/L	Prepared:	05/02/25	Analyzed	05/05/25			
Blank (5E02097-BLK1) Aluminum	ND	28		ug/L "	·	05/02/25	•				
Blank (5E02097-BLK1) Aluminum Iron	ND	28		ug/L " ug/L	·		•				
Blank (5E02097-BLK1) Aluminum Iron LCS (5E02097-BS1)	ND ND	28 4.9	50	"	Prepared:		Analyzed	05/05/25			
Blank (5E02097-BLK1) Aluminum Iron LCS (5E02097-BS1) Aluminum	ND ND 1200 1190	28 4.9 28 4.9	50 50 50	"	Prepared:		Analyzed 103	05/05/25 85-115			
Blank (5E02097-BLK1) Aluminum Iron LCS (5E02097-BS1) Aluminum Iron	ND ND 1200 1190	28 4.9 28 4.9	50 50 50	"	Prepared: 1170 1170		Analyzed 103 102	05/05/25 85-115 85-115			
Blank (5E02097-BLK1) Aluminum Iron LCS (5E02097-BS1) Aluminum Iron Batch 5E05172, Prep Method: 200.7	ND ND 1200 1190	28 4.9 28 4.9	50 50 50	"	Prepared: 1170 1170	05/02/25	Analyzed 103 102	05/05/25 85-115 85-115			

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

Metals and Metalloids - Quality Control Babcock Laboratories, Inc. - Riverside

					Spike	Source		%REC		RPD	
Analyte	Result	MDL	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5E05172, Prep Method: 200.7	/ No Digest,	Analyst	: ALD								
Blank (5E05172-BLK2)					Prepared	& Analyze	d: 05/05/2	5			
Aluminum-Dissolved	ND	28	50	ug/L							
Iron-Dissolved	ND	4.9	50	"							
LCS (5E05172-BS1)					Prepared	& Analyze	d: 05/05/2	5			
Aluminum-Dissolved	347	28	50	ug/L	400		87	85-115			
Iron-Dissolved	1550	4.9	50	"	1600		97	85-115			
Duplicate (5E05172-DUP1)		Source:	C5E012	7-01	Prepared	& Analyze	d: 05/05/2	5			
Iron-Dissolved	ND	9.9	100	ug/L		ND				20	
Aluminum-Dissolved	ND	55	100	"		ND				20	
Matrix Spike (5E05172-MS1)		Source:	C5E012	7-01	Prepared	& Analyze	d: 05/05/2	5			
Iron-Dissolved	2860	9.9	100	ug/L	3200	ND	90	70-130			
Aluminum-Dissolved	564	55	100	"	800	ND	71	70-130			
Matrix Spike Dup (5E05172-MSD1)		Source:	C5E012	7-01	Prepared	& Analyze	d: 05/05/2	5			
Aluminum-Dissolved	536	55	100	ug/L	800	ND	67	70-130	5	20	QMS(D)
Iron-Dissolved	2820	9.9	100	"	3200	ND	88	70-130	1	20	
Batch 5E05206, Prep Method: EPA	7470A/SM 31	12B, An	alyst: 、	JTR							
Blank (5E05206-BLK1)					Prepared	: 05/05/25	Analyzed	: 05/06/25			
Mercury	ND	0.11	0.20	ug/L	-		-				
LCS (5E05206-BS1)					Prepared	05/05/25	Analyzed	: 05/06/25			
Mercury	3.97	0.11	0.20	ug/L	4.00		99	85-115			

Babcock Laboratories, Inc. - Riverside

Reported:

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025

Project Manager: John Salguero 05/12/25 22:24

Metals and Metalloids - Quality Control Babcock Laboratories, Inc. - Riverside

Analyte	Result	MDL	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5E05206, Prep Method: EPA	7470A/SM 31	12B, An	alyst: J	ITR							
Matrix Spike (5E05206-MS1)		Source:	C5E012	7-11RE1	Prepared	05/05/25	Analyzed	: 05/06/25			
Mercury	20.7	0.56	1.0	ug/L	20.0	ND	104	70-130			
Matrix Spike Dup (5E05206-MSD1)		Source:	C5E012	7-11RE1	Prepared	05/05/25	Analyzed	: 05/06/25			
Mercury	21.0	0.56	1.0	ug/L	20.0	ND	105	70-130	1	20	
Batch 5E08085, Prep Method: EPA	200.2, Analys	st: TJK									
Blank (5E08085-BLK1)					Prepared	& Analyze	d: 05/08/2	5			
Arsenic	ND	0.71	5.0	ug/L							
Beryllium	ND		10	"							
Cadmium	ND	0.11	1.0	"							
Total Chromium	ND	4.0	20	"							
Copper	ND	1.6	10	"							
Lead	ND	1.6	10	"							
Manganese	ND	1.9	10	"							
Nickel	ND	3.3	10	"							
Selenium	ND	1.7	5.0	"							
Zinc	ND	5.0	10	"							
Matrix Spike (5E08085-MS1)		Source:	C5E012	7-09RE1	Prepared	& Analyze	d: 05/08/2	5			
Arsenic	381	2.9	20	ug/L	332	11.1	111	70-130			
Beryllium	338		40	"	332	ND	102	70-130			
Cadmium	317	0.44	4.0	"	332	ND	95	70-130			
Total Chromium	418	16	80	"	332	ND	126	70-130			
Copper	339	6.5	40	"	332	ND	102	70-130			
Lead	317	6.2	40	"	332	ND	95	70-130			
Manganese	414	7.5	40	"	332	13.4	120	70-130			
Nickel	364	13	40	"	332	ND	109	70-130			

332

332

215

ND

100

92

70-130

70-130

Babcock Laboratories, Inc. - Riverside

Selenium

Zinc

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

549

304

6.7

20

20

40

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Project Manager: John Salguero Reported: 05/12/25 22:24

Metals and Metalloids - Quality Control Babcock Laboratories, Inc. - Riverside

Analyto	Descit	MDL	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Result		NL.	UTIILS	Level	Result	70REU	LIIIIII	KFD	LIIIII	Notes
Batch 5E08121, Prep Method: EPA	200.2, Analys	st: ALD									
Blank (5E08121-BLK1)					Prepared	05/08/25	Analyzed	: 05/09/25			
Aluminum	ND	28	50	ug/L							
LCS (5E08121-BS1)					Prepared	05/08/25	Analyzed	: 05/09/25			
Aluminum	1310	28	50	ug/L	1170		112	85-115			
Duplicate (5E08121-DUP1)		Source:	C5E012	7-09RE1	Prepared	05/08/25	Analyzed	: 05/09/25			
Aluminum	ND	690	1200	ug/L		ND				20	
Matrix Spike (5E08121-MS1)		Source:	C5E012	7-09RE1	Prepared	05/08/25	Analyzed	: 05/09/25			
Aluminum	2180	690	1200	ug/L	1170	ND	187	70-130			QFnt, QMou
Matrix Spike Dup (5E08121-MSD1)		Source:	C5E012	7-09RE1	Prepared	05/08/25	Analyzed	: 05/09/25			
Aluminum	1740	690	1200	ug/L	1170	ND	149	70-130	23	20	QFnt, QMou
Batch 5E09127, Prep Method: 200.7	// No Digest,	Analys	t: ALD								
Blank (5E09127-BLK1)					Prepared	& Analyze	d: 05/09/2	:5			
Aluminum-Dissolved	ND	28	50	ug/L							
LCS (5E09127-BS1)					Prepared	& Analyze	d: 05/09/2	5			
Aluminum-Dissolved	426	28	50	ug/L	400		107	85-115			
Duplicate (5E09127-DUP1)		Source:	C5E012	7-09RE2	Prepared	& Analyze	d: 05/09/2	5			
Aluminum-Dissolved	588	280	500	ug/L		ND				20	
Matrix Spike (5E09127-MS1)		Source:	C5E012	7-09RE2	Prepared	& Analyze	d: 05/09/2	5			
Aluminum-Dissolved	4600	280	500	ug/L	4000	ND	115	70-130			

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

Metals and Metalloids - Quality Control Babcock Laboratories, Inc. - Riverside

					Spike	Source		%REC		RPD	
Analyte	Result	MDL	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 5E09127, Prep Method: 200.7/ No Digest, Analyst: ALD

Matrix Spike Dup (5E09127-MSD1)		Source: (C5E0127	-09RE2	Prepared 8	& Analyze	d: 05/09/2	5			
Aluminum-Dissolved	4390	280	500	ug/L	4000	ND	110	70-130	5	20	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

Volatile Organic Compounds by EPA 624.1 - Quality Control

Babcock Laboratories, Inc. - Riverside

					Spike	Source		%REC		RPD	
Analyte	Result	MDL	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 5E03067, Prep Method: Purge and Trap, Analyst: jes

Blank (5E03067-BLK1)				Prepared & Analyzed: 05/03/25
1,1,1-Trichloroethane	ND	0.50	ug/L	
1,1,2,2-Tetrachloroethane	ND	0.50	"	
1,1,2-Trichloroethane	ND	0.50	"	
1,1-Dichloroethane	ND	0.50	"	
1,1-Dichloroethene	ND	0.50	"	
1,2-Dichlorobenzene	ND	0.50	"	
1,2-Dichloroethane	ND	0.50	"	
1,2-Dichloropropane	ND	0.50	"	
1,3-Dichlorobenzene	ND	0.50	"	
1,4-Dichlorobenzene	ND	0.50	"	
2-Chloroethylvinyl Ether	ND	5.0	"	QCEVE
Acrolein	ND	10	"	
Acrylonitrile	ND	10	"	
Benzene	ND	0.50	"	
Bromodichloromethane	ND	0.50	"	
Bromoform	ND	1.0	"	
Bromomethane	ND	0.50	"	
Carbon Tetrachloride	ND	0.50	"	
Chlorobenzene	ND	0.50	"	
Chloroethane	ND	0.50	"	
Chloroform	ND	0.50	"	
Chloromethane	ND	0.50	"	
cis-1,3-Dichloropropene	ND	0.50	"	
Dibromochloromethane	ND	0.50	"	
Dichlorodifluoromethane	ND	0.50	"	
Ethylbenzene	ND	0.50	"	
Methyl tert Butyl Ether	ND	5.0	"	
Methylene Chloride	ND	3.0	"	
Tetrachloroethene	ND	0.50	"	
Toluene	ND	0.50	"	
trans-1,2-Dichloroethene	ND	0.50	"	
trans-1,3-Dichloropropene	ND	0.50	"	
Trichloroethene	ND	0.50	"	
Trichlorofluoromethane	ND	5.0	"	
Vinyl Chloride	ND	0.50	"	
Xylenes (m+p)	ND	0.50	"	
Xylenes (ortho)	ND	0.50	"	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

Volatile Organic Compounds by EPA 624.1 - Quality Control

Babcock Laboratories, Inc. - Riverside

					Spike	Source		%REC		RPD	
Analyte	Result	MDL	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 5E03067, Prep Method: Purge and Trap, Analyst: jes

Blank (5E03067-BLK1)				Prepared & An	alyzed: 05/03/2	25			
Surrogate: 1,2-Dichloroethane-d4	10		ug/L	10.0	103	80-120			
Surrogate: 4-Bromofluorobenzene	9.6		"	10.0	96	80-120			
Surrogate: Toluene-d8	10		"	10.0	101	80-120			
Surrogate: 1,2-Dichlorobenzene-d4	10		"	10.0	101	80-120			
LCS (5E03067-BS1)				Prepared & Ana	alyzed: 05/03/2	25			
1,1-Dichloroethane	23.3	0.50	ug/L	25.0	93	70-130			
1,1-Dichloroethene	23.4	0.50	"	25.0	94	50-150			
1,4-Dichlorobenzene	22.9	0.50		25.0	92	65-135			
Benzene	23.0	0.50	"	25.0	92	65-135			
Bromodichloromethane	23.2	0.50	"	25.0	93	65-135			
Bromoform	22.3	1.0	"	25.0	89	70-130			
Chloroform	23.5	0.50	"	25.0	94	70-135			
Dibromochloromethane	22.6	0.50	"	25.0	91	70-135			
Ethylbenzene	22.9	0.50	"	25.0	91	60-140			
Methyl tert Butyl Ether	24.0	5.0	"	25.0	96	70-130			
Tetrachloroethene	22.7	0.50	"	25.0	91	70-130			
Toluene	22.9	0.50	"	25.0	92	70-130			
Trichloroethene	22.5	0.50		25.0	90	65-135			
Vinyl Chloride	23.4	0.50		25.0	94	5-195			
Xylenes (m+p)	45.9	0.50	"	50.0	92	70-130			
Xylenes (ortho)	23.7	0.50	"	25.0	95	70-130			
Surrogate: 1,2-Dichloroethane-d4	10		n	10.0	101	80-120			
Surrogate: 4-Bromofluorobenzene	9.5		"	10.0	95	80-120			
Surrogate: Toluene-d8	9.9		"	10.0	99	80-120			
Surrogate: 1,2-Dichlorobenzene-d4	10		"	10.0	103	80-120			
LCS Dup (5E03067-BSD1)				Prepared & An	alyzed: 05/03/2	25			
1,1-Dichloroethane	23.3	0.50	ug/L	25.0	93	70-130	0.09	40	
1,1-Dichloroethene	23.6	0.50	"	25.0	94	50-150	0.6	32	
1,4-Dichlorobenzene	22.6	0.50	"	25.0	90	65-135	1	57	
Benzene	22.9	0.50	"	25.0	91	65-135	0.8	61	
Bromodichloromethane	23.4	0.50	"	25.0	93	65-135	0.5	56	
Bromoform	22.6	1.0	"	25.0	91	70-130	1	42	
Chloroform	23.2	0.50	"	25.0	93	70-135	1	54	
Dibromochloromethane	22.7	0.50	"	25.0	91	70-135	0.09	50	
Ethylbenzene	22.5	0.50	"	25.0	90	60-140	2	63	
Methyl tert Butyl Ether	23.3	5.0	"	25.0	93	70-130	3	20	

Babcock Laboratories, Inc. - Riverside

RPD

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Spike

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

%REC

Source

Volatile Organic Compounds by EPA 624.1 - Quality Control

Babcock Laboratories, Inc. - Riverside

Analyte	Result	MDL	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5E03067, Prep Method: Pur	ge and Trap, A	nalyst:	jes								
LCS Dup (5E03067-BSD1)					Prepared	& Analyze	d: 05/03/2	5			
Tetrachloroethene	22.3		0.50	ug/L	25.0		89	70-130	1	39	
Toluene	22.9		0.50	"	25.0		92	70-130	0.1	41	
Trichloroethene	22.5		0.50	"	25.0		90	65-135	0	48	
Vinyl Chloride	25.7		0.50	"	25.0		103	5-195	9	66	
Xylenes (m+p)	45.4		0.50	"	50.0		91	70-130	1	20	
Xylenes (ortho)	23.2		0.50	"	25.0		93	70-130	2	20	
Surrogate: 1,2-Dichloroethane-d4	10			n	10.0		103	80-120			
Surrogate: 4-Bromofluorobenzene	9.8			"	10.0		98	80-120			
Surrogate: Toluene-d8	9.9			"	10.0		99	80-120			
Surrogate: 1,2-Dichlorobenzene-d4	10			"	10.0		103	80-120			
Matrix Spike (5E03067-MS1)		Source: (C5D390	1-03	Prepared	& Analyze	d: 05/03/2	5			
1,1-Dichloroethane	26.2		0.50	ug/L	25.0	ND	105	59-155			
1,1-Dichloroethene	29.3		0.50	"	25.0	ND	117	5-234			
1,4-Dichlorobenzene	24.2		0.50	"	25.0	ND	97	18-190			
Benzene	25.6		0.50	"	25.0	ND	102	37-151			
Bromodichloromethane	25.4		0.50	"	25.0	ND	101	35-155			
Bromoform	23.7		1.0	"	25.0	ND	95	45-169			
Chloroform	26.0		0.50	"	25.0	0.270	103	51-138			
Dibromochloromethane	23.9		0.50	"	25.0	ND	96	53-149			
Ethylbenzene	24.9		0.50	"	25.0	ND	100	37-162			
Methyl tert Butyl Ether	25.4		5.0	"	25.0	ND	102	70-139			
Tetrachloroethene	26.0		0.50	"	25.0	ND	104	64-148			
Toluene	25.8		0.50	"	25.0	ND	103	47-150			
Trichloroethene	26.1		0.50	"	25.0	ND	104	70-157			
Vinyl Chloride	31.6		0.50	"	25.0	ND	126	5-251			
Xylenes (m+p)	49.7		0.50	"	50.0	ND	99	70-130			
Xylenes (ortho)	25.1		0.50	"	25.0	ND	100	70-130			
Surrogate: 1,2-Dichloroethane-d4	10			"	10.0		100	80-120			
Surrogate: 4-Bromofluorobenzene	9.6			"	10.0		96	80-120			
Surrogate: Toluene-d8	9.9			"	10.0		99	80-120			
Surrogate: 1,2-Dichlorobenzene-d4	10			"	10.0		102	80-120			

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

Volatile Organic Compounds by EPA 624.1 - Quality Control

Babcock Laboratories, Inc. - Riverside

					Spike	Source		%REC		RPD	
Analyte	Result	MDL	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 5E03067, Prep Method: Purge and Trap, Analyst: jes

Matrix Spike Dup (5E03067-MSD1)	Sou	rce: C5D390 [,]	1-03	Prepared	& Analyze					
1,1-Dichloroethane	26.8	0.50	ug/L	25.0	ND	107	59-155	2	40	
1,1-Dichloroethene	29.4	0.50	"	25.0	ND	118	5-234	0.6	32	
1,4-Dichlorobenzene	26.1	0.50	"	25.0	ND	104	18-190	7	57	
Benzene	26.3	0.50	"	25.0	ND	105	37-151	3	61	
Bromodichloromethane	25.5	0.50	"	25.0	ND	102	35-155	0.6	56	
Bromoform	24.5	1.0	"	25.0	ND	98	45-169	4	42	
Chloroform	26.6	0.50	"	25.0	0.270	105	51-138	2	54	
Dibromochloromethane	24.8	0.50	"	25.0	ND	99	53-149	4	50	
Ethylbenzene	26.6	0.50	"	25.0	ND	107	37-162	7	63	
Methyl tert Butyl Ether	25.8	5.0	"	25.0	ND	103	70-139	2	40	
Tetrachloroethene	27.6	0.50	"	25.0	ND	110	64-148	6	39	
Toluene	26.3	0.50	"	25.0	ND	105	47-150	2	41	
Trichloroethene	26.2	0.50	"	25.0	ND	105	70-157	0.4	48	
Vinyl Chloride	30.5	0.50	"	25.0	ND	122	5-251	3	66	
Xylenes (m+p)	53.5	0.50	"	50.0	ND	107	70-130	7	40	
Xylenes (ortho)	27.2	0.50	"	25.0	ND	109	70-130	8	40	
Surrogate: 1,2-Dichloroethane-d4	10		"	10.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	9.6		"	10.0		96	80-120			
Surrogate: Toluene-d8	9.9		"	10.0		99	80-120			
Surrogate: 1,2-Dichlorobenzene-d4	10		"	10.0		104	80-120			

Babcock Laboratories, Inc. - Riverside

Los Angeles CA, 90013

Babcock Laboratories, Inc. - Riverside 6100 Quail Valley Court Riverside, CA 92507-0704 (951) 653-3351

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200

Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

PFAS by LCMSMS (QSM 5.3 Table B-15 Compliant) - Quality Control

Babcock Laboratories, Inc. - Riverside

					Spike	Source		%REC		RPD		l
Analyte	Result	MDL	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	l

Batch 5E05186, Prep Method: SPE, Analyst: MOF

Blank (5E05186-BLK1)					Prepared: 05/05/25 Analyzed: 05/06/25
Perfluorobutanoic acid (PFBA)	ND	2.1	5.0	ng/L	
Perfluoropentanoic acid (PFPeA)	ND	1.1	5.0		
Perfluorohexanoic Acid (PFHxA)	ND	3.8	5.0	"	
Perfluoroheptanoic Acid (PFHpA)	ND	3.2	5.0	"	
Perfluorooctanoic Acid (PFOA)	ND	2.7	5.0	"	
Perfluorononanoic Acid (PFNA)	ND	2.2	5.0	"	
Perfluorodecanoic Acid (PFDA)	ND	1.5	5.0	"	
Perfluoroundecanoic Acid (PFUnA)	ND	0.92	5.0	"	
Perfluorododecanoic Acid (PFDoDA)	ND	2.1	5.0	"	
Perfluorotridecanoic Acid (PFTrDA)	ND	1.3	5.0	"	
Perfluorotetradecanoic Acid (PFTeDA)	ND	1.3	5.0	"	
Perfluorohexadecanoic acid (PFHxDA)	ND	1.9	5.0	"	
Perfluorooctadecanoic acid (PFOcDA)	ND	4.1	5.0	"	
Perfluorobutanesulfonic Acid (PFBS)	ND	2.4	5.0	"	
Perfluoropentanesulfonate (PFPeS)	ND	3.1	5.0	"	
Perfluorohexanesulfonic Acid (PFHxS)	ND	1.9	5.0	"	
Perfluoroheptanesulfonic acid (PFHpS)	ND	1.9	5.0	"	
Perfluorooctanesulfonic Acid (PFOS)	ND	1.5	5.0	"	
Perfluorononanesulfonic acid (PFNS)	ND	2.9	5.0	"	
Perfluorodecanesulfonic acid (PFDS)	ND	2.8	5.0	"	
4:2 Fluorotelomer Sulfonate	ND	2.0	5.0	"	
6:2 Fluorotelomer Sulfonate	ND	1.5	5.0	"	
3:2 Fluorotelomer Sulfonate	ND	1.3	5.0	"	
10:2 Fluorotelomer sulfonate	ND	5.4	8.0	"	
N-methyl	ND	2.6	8.0	"	
perfluorooctanesulfonamidoacetic acid				_	
N-ethyl perfluorooctanesulfonamidoacetic acid	ND	4.4	8.0		
perfluorooctanesuifonamidoacetic acid Perfluorooctane Sulfonamide (PFOSA)	ND	3.1	8.0		
N-Methylperfluorooctanesulfonamide	ND	4.9	8.0		
MeFOSA)	110	1.0	0.0		
N-Ethylperfluorooctanesulfonamide (EtFOSA)	ND	3.4	8.0	"	
N-Methylperfluorooctanesulfonamidoeth anol (MeFOSE)	ND	4.8	8.0	"	
N-Ethylperfluorooctanesulfonamidoetha nol (EtFOSE)	ND	3.3	8.0	"	
4,4,5,5,6,6,6-Heptafluorohexanoic Acid (3:3 FTCA)	ND	2.3	5.0	"	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

PFAS by LCMSMS (QSM 5.3 Table B-15 Compliant) - Quality Control

Babcock Laboratories, Inc. - Riverside

					Spike	Source		%REC		RPD	
Analyte	Result	MDL	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 5E05186, Prep Method: SPE, Analyst: MOF

Blank (5E05186-BLK1)					Prepared: 05/0	05/25 Analyzed	: 05/06/25	
2H,2H,3H,3H-Perfluorooctanoic acid (5:3 FTCA)	ND	4.1	8.0	ng/L				
2H,2H,3H,3H-Perfluorodecanoic acid (7:3 FTCA)	ND	4.2	8.0	"				
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.9	5.0	"				
4,8-dioxa-3H-perfluorononanoic Acid (ADONA)	ND	2.9	5.0	"				
9-chlorohexadecafluoro-3-oxanone-1-su Ifonic Acid	ND	0.86	5.0	"				
11-chloroeicosafluoro 3oxaundecane-1-sulfonic Acid	ND	1.4	5.0	"				
LCS (5E05186-BS1)					Prepared: 05/0	05/25 Analyzed	: 05/06/25	
Perfluorobutanoic acid (PFBA)	21	2.1	5.0	ng/L	20.0	105	73-129	
Perfluoropentanoic acid (PFPeA)	19	1.1	5.0	"	20.0	97	72-129	
Perfluorohexanoic Acid (PFHxA)	19	3.8	5.0	"	20.0	96	72-129	
Perfluoroheptanoic Acid (PFHpA)	22	3.2	5.0	"	20.0	108	72-130	
Perfluorooctanoic Acid (PFOA)	22	2.7	5.0	"	20.0	108	71-133	
Perfluorononanoic Acid (PFNA)	18	2.2	5.0	"	20.0	89	69-130	
Perfluorodecanoic Acid (PFDA)	22	1.5	5.0	"	20.0	110	71-129	
Perfluoroundecanoic Acid (PFUnA)	20	0.92	5.0	"	20.0	100	69-133	
Perfluorododecanoic Acid (PFDoDA)	21	2.1	5.0	"	20.0	107	72-134	
Perfluorotridecanoic Acid (PFTrDA)	20	1.3	5.0	"	20.0	98	65-144	
Perfluorotetradecanoic Acid (PFTeDA)	22	1.3	5.0	"	20.0	110	71-132	
Perfluorohexadecanoic acid (PFHxDA)	21	1.9	5.0	"	20.0	105	70-130	
Perfluorooctadecanoic acid (PFOcDA)	22	4.1	5.0	"	20.0	111	38-142	
Perfluorobutanesulfonic Acid (PFBS)	22	2.4	5.0	"	20.0	108	72-130	
Perfluoropentanesulfonate (PFPeS)	21	3.1	5.0	"	20.0	107	71-127	
Perfluorohexanesulfonic Acid (PFHxS)	20	1.9	5.0	"	20.0	102	68-131	
Perfluoroheptanesulfonic acid (PFHpS)	20	1.9	5.0	"	20.0	102	69-134	
Perfluorooctanesulfonic Acid (PFOS)	19	1.5	5.0	"	20.0	96	65-140	
Perfluorononanesulfonic acid (PFNS)	21	2.9	5.0	"	20.0	103	69-127	
Perfluorodecanesulfonic acid (PFDS)	19	2.8	5.0	"	20.0	93	53-142	
4:2 Fluorotelomer Sulfonate	22	2.0	5.0	"	20.0	112	63-143	
6:2 Fluorotelomer Sulfonate	24	1.5	5.0	"	20.0	121	64-140	
8:2 Fluorotelomer Sulfonate	22	1.3	5.0	"	20.0	108	67-138	
10:2 Fluorotelomer sulfonate	19	5.4	8.0	"	20.0	96	64-136	
N-methyl perfluorooctanesulfonamidoacetic acid	20	2.6	8.0	"	20.0	102	65-136	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

PFAS by LCMSMS (QSM 5.3 Table B-15 Compliant) - Quality Control Babcock Laboratories, Inc. - Riverside

					Spike	Source		%REC		RPD	
Analyte	Result	MDL	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 5E05186,	Prep	Method: SPE	. Anal	vst: MOF

LCS (5E05186-BS1)					Prepared: 05	/05/25 Analyzed	: 05/06/25			
N-ethyl	21	4.4	8.0	ng/L	20.0	103	61-135			
perfluorooctanesulfonamidoacetic acid										
Perfluorooctane Sulfonamide (PFOSA)	21	3.1	8.0	"	20.0	106	67-137			
N-Methylperfluorooctanesulfonamide (MeFOSA)	22	4.9	8.0	"	20.0	112	68-141			
N-Ethylperfluorooctanesulfonamide (EtFOSA)	23	3.4	8.0	"	20.0	113	52-159			
N-Methylperfluorooctanesulfonamidoeth anol (MeFOSE)	21	4.8	8.0	"	20.0	107	70-134			
N-Ethylperfluorooctanesulfonamidoetha nol (EtFOSE)	20	3.3	8.0	"	20.0	98	58-148			
4,4,5,5,6,6,6-Heptafluorohexanoic Acid (3:3 FTCA)	18	2.3	5.0	"	20.0	92	40-145			
2H,2H,3H,3H-Perfluorooctanoic acid (5:3 FTCA)	20	4.1	8.0	"	20.0	99	70-130			
2H,2H,3H,3H-Perfluorodecanoic acid (7:3 FTCA)	19	4.2	8.0	"	20.0	95	70-130			
Hexafluoropropylene oxide dimer acid (HFPO-DA)	21	1.9	5.0	"	20.0	106	65-135			
4,8-dioxa-3H-perfluorononanoic Acid (ADONA)	21	2.9	5.0	"	20.0	103	70-130			
9-chlorohexadecafluoro-3-oxanone-1-su Ifonic Acid	20	0.86	5.0	"	20.0	99	70-130			
11-chloroeicosafluoro 3oxaundecane-1-sulfonic Acid	19	1.4	5.0	"	20.0	96	70-130			
LCS Dup (5E05186-BSD1)					Prepared: 05	/05/25 Analyzed	: 05/06/25			
Perfluorobutanoic acid (PFBA)	21	2.1	5.0	ng/L	20.0	104	73-129	0.5	30	
Perfluoropentanoic acid (PFPeA)	19	1.1	5.0	"	20.0	95	72-129	2	30	
Perfluorohexanoic Acid (PFHxA)	21	3.8	5.0	"	20.0	107	72-129	10	30	
Perfluoroheptanoic Acid (PFHpA)	21	3.2	5.0	"	20.0	106	72-130	2	30	
Perfluorooctanoic Acid (PFOA)	22	2.7	5.0	"	20.0	108	71-133	0.4	30	
Perfluorononanoic Acid (PFNA)	18	2.2	5.0	"	20.0	89	69-130	0.4	30	
Perfluorodecanoic Acid (PFDA)	22	1.5	5.0	"	20.0	109	71-129	1	30	
Perfluoroundecanoic Acid (PFUnA)	20	0.92	5.0	"	20.0	98	69-133	2	30	
Perfluorododecanoic Acid (PFDoDA)	22	2.1	5.0	"	20.0	110	72-134	3	30	
Perfluorotridecanoic Acid (PFTrDA)	21	1.3	5.0	"	20.0	104	65-144	7	30	
Perfluorotetradecanoic Acid (PFTeDA)	21	1.3	5.0	"	20.0	107	71-132	3	30	
Perfluorohexadecanoic acid (PFHxDA)	22	1.9	5.0	"	20.0	108	70-130	3	30	
Perfluorooctadecanoic acid (PFOcDA)	22	4.1	5.0	"	20.0	110	38-142	1	30	
Perfluorobutanesulfonic Acid (PFBS)	21	2.4	5.0	"	20.0	107	72-130	0.8	30	
Perfluoropentanesulfonate (PFPeS)	19	3.1	5.0	"	20.0	94	71-127	13	30	

Babcock Laboratories, Inc. - Riverside

Analyte

Babcock Laboratories, Inc. - Riverside 6100 Quail Valley Court Riverside, CA 92507-0704 (951) 653-3351

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

PFAS by LCMSMS (QSM 5.3 Table B-15 Compliant) - Quality Control Babcock Laboratories, Inc. - Riverside

				•						
				Spike	Source		%REC		RPD	
Result	MDL	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Ratch 5F05186	Pron Mothod: SI	PE. Analyst: MOF
Dalcii acua iob.	Fred Method, Si	PE. AHAIVSI, IVIUF

LCS Dup (5E05186-BSD1)					Prepared: 05/	05/25 Analyzed	: 05/06/25		
Perfluorohexanesulfonic Acid (PFHxS)	21	1.9	5.0	ng/L	20.0	103	68-131	0.3	30
Perfluoroheptanesulfonic acid (PFHpS)	20	1.9	5.0	"	20.0	102	69-134	0.3	30
Perfluorooctanesulfonic Acid (PFOS)	19	1.5	5.0	"	20.0	95	65-140	1	30
Perfluorononanesulfonic acid (PFNS)	20	2.9	5.0	"	20.0	102	69-127	1	30
Perfluorodecanesulfonic acid (PFDS)	20	2.8	5.0	"	20.0	98	53-142	5	30
4:2 Fluorotelomer Sulfonate	25	2.0	5.0	"	20.0	125	63-143	11	30
6:2 Fluorotelomer Sulfonate	23	1.5	5.0	"	20.0	114	64-140	6	30
8:2 Fluorotelomer Sulfonate	21	1.3	5.0	"	20.0	105	67-138	2	30
10:2 Fluorotelomer sulfonate	18	5.4	8.0	"	20.0	89	64-136	8	30
N-methyl	21	2.6	8.0	"	20.0	105	65-136	3	30
perfluorooctanesulfonamidoacetic acid	0.4	4.4	0.0	"	00.0	405	04.405	0	00
N-ethyl perfluorooctanesulfonamidoacetic acid	21	4.4	8.0		20.0	105	61-135	2	30
Perfluorooctane Sulfonamide (PFOSA)	21	3.1	8.0	"	20.0	107	67-137	1	30
N-Methylperfluorooctanesulfonamide (MeFOSA)	22	4.9	8.0	"	20.0	111	68-141	0.8	30
N-Ethylperfluorooctanesulfonamide (EtFOSA)	22	3.4	8.0	II .	20.0	109	52-159	4	30
N-Methylperfluorooctanesulfonamidoeth anol (MeFOSE)	21	4.8	8.0	"	20.0	107	70-134	0.3	30
N-Ethylperfluorooctanesulfonamidoetha nol (EtFOSE)	20	3.3	8.0	"	20.0	101	58-148	4	30
4,4,5,5,6,6,6-Heptafluorohexanoic Acid (3:3 FTCA)	16	2.3	5.0	п	20.0	81	40-145	13	30
2H,2H,3H,3H-Perfluorooctanoic acid (5:3 FTCA)	18	4.1	8.0	н	20.0	92	70-130	7	30
2H,2H,3H,3H-Perfluorodecanoic acid (7:3 FTCA)	18	4.2	8.0	"	20.0	91	70-130	4	30
Hexafluoropropylene oxide dimer acid (HFPO-DA)	21	1.9	5.0	"	20.0	107	65-135	1	30
4,8-dioxa-3H-perfluorononanoic Acid (ADONA)	20	2.9	5.0	"	20.0	102	70-130	1	30
9-chlorohexadecafluoro-3-oxanone-1-su Ifonic Acid	20	0.86	5.0	"	20.0	101	70-130	2	30
11-chloroeicosafluoro 3oxaundecane-1-sulfonic Acid	18	1.4	5.0	"	20.0	92	70-130	5	30

Babcock Laboratories, Inc. - Riverside

Estimated value

Babcock Laboratories, Inc. - Riverside 6100 Quail Valley Court Riverside, CA 92507-0704 (951) 653-3351

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

Notes and Definitions

N Filt Sample filtered from unpreserved container at laboratory. N noH Sample was non-homogeneous. N RLd The reporting limit has been raised due to sample dilution. The dilution was required to get one or more target analytes within the calibration range of the instrument. Due to sample matrix, the reporting limit has been raised. N RLm Laboratory noted that the dissolved result is higher than the total. The difference between the two results is within the precision of the N TD method. NCEVE In an acidified sample, this compound degrades and is not detectable as 2-Chloroethylvinyl ether. Its degradation product is 2-Chloroethanol, which is not an analyte of this method. Result(s) confirmed by re-analysis. Nconf Nfilt This sample was filtered prior to analysis. Nhdsp Sample analyzed with headspace. NISm Due to matrix interference, the internal standard recovery for this analyte did not meet laboratory acceptance criteria. **NMint** Due to matrix interference, the matrix spike and/or matrix spike duplicate performed on this sample did not meet laboratory acceptance NRPDo The RPD/precision of replicate analyses performed on this sample did not meet laboratory acceptance criteria. QBLK The method blank did not meet laboratory acceptance criteria. **QCEVE** In an acidified sample, this compound degrades and is not detectable as 2-Chloroethylvinyl ether. Its degradation product is 2-Chloroethanol, which is not an analyte of this method. **OFini** Follow-up result also did not meet laboratory acceptance criteria. QFnoH Sample was non-homogeneous. The referenced sample did not require this QC analyte, so a follow-up is not needed. QFnt QMint Due to matrix interference, the MS and/or MSD did not meet laboratory acceptance criteria. QMout MS and/or MSD recovery did not meet laboratory acceptance criteria. QMS(D) Matrix spike recovery was out of acceptance criteria. Precision and accuracy demonstrated by remaining matrix spike results. QRPDh Due to non-homogeneity of the referenced sample, the replicate analysis did not meet laboratory acceptance criteria QRPDI Analyte concentration was below range for valid RPD determination.

Babcock Laboratories, Inc. - Riverside

QRPDo

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

The RPD value for the sample duplicate or MS/MSD did not meet laboratory acceptance criteria.

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013

Project Number: Wildfire Response 2025

Project: RWB4_WildFireResponse_2025

Reported: Project Manager: John Salguero 05/12/25 22:24

DET Analyte DETECTED

Analyte NOT DETECTED at or above the Reporting Limit (or Method Detection Limit when listed) ND

NR

Dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

Babcock Laboratories, Inc. - Riverside

Babcock Laboratories, Inc. - Riverside 6100 Quail Valley Court Riverside, CA 92507-0704 (951) 653-3351

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025

Project Number: Wildfire Response 2025 Reported:
Project Manager: John Salguero 05/12/25 22:24

Babcock Laboratories, Inc. - Riverside - Certification(s) List

Cert. ID Description Cert. Number Expires

Babcock Laboratories, Inc. - Riverside

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6100 Quail Valley Court Riverside, CA 92507 T: (951) 653-3351

Non-SWAMP/CEDEN Projects

Chain of Custody Record &

*This COC is for Non-CEDEN Projects only, results are not required to be in SWAMP 2.5 EDD Template

. —		Sam	ple	Info	rmation
-----	--	-----	-----	------	---------

'age ____3___ of ___12___

Sample Collection Age	ncy: eles RWQCB		Agreement N	o.: 22-005-270)			0 = Other)	Other)				N/E				Analyse	s Reques	sted				
Sample Collection Age 320 W. 4th Street,	ncy Address:	90013	Project Code:		Response_2025		(wo	nposite; 0 =	Glass; O =	ss Below)		OP, NO3N,			ď,	Ε		4.1					
			Project Name GeoTracker G		fire Response 2	2025	Sample Matrix (see Codes Below)	Sample Type (G = Grab; C = Composite;	= Plastic; G =	Preservation Code (See Codes Below)		SO4, OP			Total Metals, Beryllium Ca, Hardness	Beryllium		VOC suite EPA method 624.	-				
Project Lead:	office and		Field Lead:				See (See	= Gra	<u>a</u>	ode				. Par	eryl			met					-
Name: Emily Duncan			Name:				Ţ.	e (6	Type (P	o u	l ers	TDS, Alk, NO2N,	SIM		s, B	1eta	-	PA.		-			
Phone: (213) 576-6679			Phone:				Σ	₹.	e.	atio	ıtai	5 S	E S		etal	2	TN, NH3	te E					
Email: emily.duncan@	waterboards.ca	.gov	Email:				음	ple	ä	erv	5	SS, N+N	PA (I M	olve	ž	sui	៦				1
Sample ID		Date	Time	len a au	Location	Nakazi 1	Sam	Sam	Container	Pres	# of Containers	SS, TSS, TDS, A NO3N+NO2N,	8270 PAH	PFAS	Fota Hard	Dissolved Metals,	T, T	700	Hex Cr	PCBs	75		Notes
1) DPH 107	7B	5/1/2025		Venice City	Beach, 50 yds sou	th of SD	ssw	G	Р	1	4	X											L Plastic HDPE
2) DPH 107	7B	5/1/2025		Venice City	Beach, 50 yds sou	th of SD	ssw	G	G	1	4		х							x		(4X) 1	L Amber Glass
3) DPH 107	7B	5/1/2025			Beach, 50 yds sou		ssw	G	Р	2	1	-			×							250 mL Pl	astic HDPE (Nitric)
4) DPH 107	7B	5/1/2025			Beach, 50 yds sou		ssw	G	P	1	1					х			-				250 mL Plastic HDPE
5) DPH 107		5/1/2025	N:V		Beach, 50 yds sou		ssw	G	P	4	1						x		-				stic HDPE (Sulfuric)
6) DPH 103		5/1/2025	V		Beach, 50 yds sou		ssw	G	G	4	3				-		_ ^		-		x		er Vial x3 (Sulfuric)
		5/1/2025	D/	<u> </u>	The second secon		-				-				-				-		^		nber Vial x4 (HCI)
							SSW	G	G	3	4		-					Х	-				No.
							SSW	G	Р	1	2			Х			-			_			250mL HDPE
DPH 107B 5/1/2025 Venice City Beach, 50 yd						ith of SD	SSW	G	Р	12	1								X			12	5 mL HDPE
Samples Relinquished	D	SOCIEST OFFICE AND	ESCRIPTION AND ADDRESS OF THE PARTY OF THE P					C	l l		d D.	- Olarisa I-san	e07727F1136			No. of Contract of		TO AND THE REAL PROPERTY.			ATTICE SHOW		
Name (Print)			Signature	CONTRACTOR CONTRACTOR	Date	Tir		Sam	ples R Na			nd Agenc	,		Signa	ture			E-Almes		D	ate	Time
1) Finz 6. D.	1000	En		_	5/1/25	1:52		7	17		1 .	. /		5)	11	1						
2) Kicaro le	fera	12	und Cet.	agrin.	5/1/25	2:	2.	1	100	200	20	ento	Sus	1	58/2	10	Saco				51	1	1829
3)		,			, ,	(82	9																
4)	h																						
Sample Matrix	Preserv	ation Codes	Sample Rece	ipt - Completed	by Laboratory	personnel:					Labo	ratory N	otes:						Specia	al Instruc	ctions:	State	
SFW = Surface Fresh Water; 1. Cool, ≤ 6 °C SSW = Surface Salt Water; 2. HNO3 Total Number of Sample Containers Received DW = Drinking Water; 3. HCl								Babco	ck - Car	n you a	analyze	PFOS/PFO	DA if possi	ble - Russ C	Colby			Evi	idence sa	ample ha	andling r	equired?	
GW = Groundwater; SW = Stormwater;	Samı	ole(s) Properly Co	ooled: y/ N / NA Temperature:	9 .				_		127]				Ret	urn Ship	ping Cor	ntainers?			
WW = Wastewater; OL = Other Liquids; SO = Soil / Sediment;	nAcetate		Sample(s) Ir	ntact V N / NA					Rc'd: I	05/01	/2025 1 Auto	8:28 spool	製作							F	Routine		
SL = Sludge / Slurry; OS = Other Solids; O = Other	9. Filtered 10. Freeze, 11. None r			Custody Seal(s) Ir	ntact: Y / N / NA		-		Jenu	OIMA	4-Help	desk@wa	aterboard	ls.ca.gov					Turn A	round T	ime:	3-5 Day (Rush)	X
	12. Other			Sample(s)	Accepted: Y / N			K	to:	emily	y.dunc	an@wate	erboards.	ca.gov								*48-Hr (Rush)	

6100 Quail Valley Court Riverside, CA 92507 T: (951) 653-3351

Non-SWAMP/CEDEN Projects

Chain of Custody Record & Sample Information

mple	Into	orma	atio	n
age	4	of	12	

Sam	ole Collection Agency:		Agreement N	o.: 22-005-270			O = Other)	Other)								Analyse	s Reques	ted			
Sam	ole Collection Agency 320 W. 4th Street, Los	Address:	Project Code:	WB4_WildFireRespon	nse_2025	(4	posite; 0 =	Glass; 0 =	Codes Below)		OP, NO3N,				E		11				
				: RWB4 Wildfire Re		Codes Belo	Sample Type (G = Grab; C = Composite;	Container Type (P = Plastic; G = Glass; O = Other)	See		04, OP,	-		Total Metals, Beryllium Ca, Hardness	Dissolved Metals, Beryllium		method 624.1				
Proje	ect Lead:		Field Lead:			See	- Gra	<u>a</u>	Preservation Code		TSS, TDS, AIK, SO4, 3N+NO2N,			eryl	als, E		met				
Nai	ne: Emily Duncan		Name:			trix) e (g	Z.	0	ners	IA,	Σ		ls, B	/ets	l				7	
Pho	ne: (213) 576-6679		Phone:			Σg	Ţ	l Fa	atic	ıtai	T ON	H S		eta	Pa Pa	I Z	te E				
Em	ail: emily.duncan@wat	erboards.ca.gov	Email:			Sample Matrix	ldi	tair	Serv	# of Containers	TSS,	8270 PAH SIM	S	al M	100	TP, TN, NH3	VOC suite EPA	ъ	<u>~</u>		
	Sample ID	Date	Time	Loca	ition	Sarr	San	5	Pre	# of	SS, TSS, TDS, A NO3N+NO2N,	827	PFAS	Total Met Hardness	Diss	₽,	Š	Hex Cr	PCBs	50	Notes
1)	DPH 108	5/1/2025		Venice City Bea	ach, Venice Pier	ssw	G	Р	1	4	х									(4X) 1L Plastic HDPE
2)	DPH 108	5/1/2025		Venice City Bea	ach, Venice Pier	ssw	G	G	1	4		х							x	(-	4X) 1L Amber Glass
3)	DPH 108	5/1/2025		Venice City Bea	ach, Venice Pier	ssw	G	Р	2	1				х						250 1	nL Plastic HDPE (Nitric)
4)	DPH 108	5/1/2025	197	Venice City Bea	ach, Venice Pier	ssw	G	Р	1	1					х					unfil	tered 250 mL Plastic HDPE
5)	DPH 108	5/1/2025	0	Venice City Bea	ach, Venice Pier	ssw	G	Р	4	1						×				250 r	nL Plastic HDPE (Sulfuric)
6)	DPH 108	5/1/2025	10:5	Venice City Bea	ach, Venice Pier	ssw	G	G	4	3									7	X 40mL	Amber Vial x3 (Sulfuric)
7)	DPH 108	5/1/2025	1 49 /41	Venice City Bea	ach, Venice Pier	ssw	G	G	3	4					No.		х		-	40n	nL Amber Vial x4 (HCI)
8)	DPH 108	ach, Venice Pier	ssw	G	Р	1	2			х								(2x) 250mL HDPE			
9)	DPH 108	ach, Venice Pier	ssw	G	Р	12	1	-							x			125 mL HDPE			
10)															-			1000			
	oles Relinquished By:		CHE DIVERSION				Sam	ples F	Receiv	ved B	y:	SUPPOR	S. PON			RAIL STATE	STATUS.	A SER	VE-LOCK		
	Name (Print) and		Signature		Date Tim	ne				rint) a	nd Agenc	y	0	Sign	ature			1		Date	Time
1)	Engily Dunca	in &	Jala-	_ 5/	1/25 1:52	-PM	KI	car	do (on-	trera	١	te	ent 1	Che	-					
2)	KLOW DO C	intrevas &	Quel C	noture 1:	1-25 7	*	0	Sch	7 /	1	CO(V)	KIN		-						5/1	1828
3)	3 10011 00 0	1	<i></i>	71 -1 -1 -1	1829	3	_					1									
-					10-0																
Sample Matrix Preservation Codes Sample Receipt - Completed by Laborat										Labo	oratory No	otes:						Specia	al Instruc	tions:	
SSW =	Surface Fresh Water; Surface Salt Water;	eceived:	1000	Babco	ock - Ca	in you	analyz	e PFOS/PFO	DA if poss	ble - Russ (Colby		LOCALIS DE NO	Evi	dence sa	ample hai	dling require	d?			
GW =	Drinking Water; Groundwater; Stormwater;	3. HCl 4. H2SO4 5. Na2S2O3	Sam	ple(s) Properly Cooled: Y	N/NA perature: 4 •c			(C 5]	E0	127			_				Ret	turn Shipp	ing Containe	rs?
OL = 0	Wastewater; Other Liquids; oil / Sediment;	6. NaOH 7. NaOH/ZnAcetate 8. NH4Cl		Sample(s) Intact: Y				OZ		5/01/	2025 18: Autosp		建							Routin	е 🗆
	udge / Slurry; Other Solids;	9. Filtered 10. Freeze, ≤ -10 °C 11. None required		Custody Seal(s) Intact: Y	/n (na				ОІМ	A-Help	odesk@wa	aterboard	ds.ca.gov	-				Turn A	round Tir	*3-5 Da (Rush	
3-0		12. Other	_	Sample(s) Accepte	ed: Y / N		R	esults to:	emily	y.duno	can@wate	erboards.	ca.gov							*48-H (Rush	

6100 Quail Valley Court Riverside, CA 92507 T: (951) 653-3351

Non-SWAMP/CEDEN Projects

Chain of Custody Record & Sample Information

*This COC is for Non-CEDEN Projects only, results are not required to be in SWAMP 2.5 EDD Template

age ____10____ of ____12____

Sam	ple Collection Agency: Los Angeles	RWQCB		Agreement	No.: 22-005-2	70			O = Other)	Other)								Analyse	s Reques	sted			under de la company
Sam	ple Collection Agency A 320 W. 4th Street, Los	Address:	90013	Project Coo	RWB4_WildFir	eResponse_2025		low)	mposite; 0 =	Container Type (P = Plastic; G = Glass; O = Other)	Codes Below)		, NO3N,			a,	E		624.1				
					ne: RWB4 Wil r Global ID:	dfire Response 202	!5	Sample Matrix (See Codes Below)	ab; C = Co	Plastic; G	(See Coo		SO4, OP,			Total Metals, Beryllium Ca, Hardness	Beryllium		VOC suite EPA method 6				
Proj	ect Lead:			Field Lead:				See	9	= d)	ode		k, S		-01	ery			met				
Na	me: Emily Duncan			Name:				Ţ.	9	λb	n C	Jers	A Z	Σ		S, B	lets		A				31
Pho	ne: (213) 576-6679			Phone:				Σ	Туре (G = Grab;	er T	ațio	ţaj	TDS, Alk, NO2N,	SH		etal	2	Ĭ,	te E				
En	ail: emily.duncan@wate	erboards.ca.	gov	Email:				림	ple	ain	Š	3	SS,	A		E S	N N	ž	Sui	১			
	Sample ID		Date	Time		Location	Salue	Sam	Sample	Cont	Preservation Code (see	# of Containers	SS, TSS, TDS, Al NO3N+NO2N,	8270 PAH SIM	PFAS	Total Met Hardness	Dissolved Metals,	TP, TN, NH3	δ	Ë	PCBs	5	Notes
1)	SMB 1-18		5/1/2025	1130	Topanga Count	ty Beach, Topanga Cany	on Lagoon		G	Р	1	4	х									(4	X) 1L Plastic HDPE
2)	SMB 1-18		5/1/2025	1	Topanga Count	ty Beach, Topanga Cany	on Lagoon	ssw	G	G	1	4		х							x	(4	X) 1L Amber Glass
3)	SMB 1-18		5/1/2025		Topanga Count	ty Beach, Topanga Cany	on Lagoon	ssw	G	Р	2	1				x						250 n	L Plastic HDPE (Nitric)
4)	SMB 1-18		5/1/2025			ty Beach, Topanga Cany			G	Р	1	1					х					unfil	ered 250 mL Plastic HDPE
5)	SMB 1-18		5/1/2025		Topanga Count	ty Beach, Topanga Cany	on Lagoon	ssw	G	Р	4	1						х				250 m	L Plastic HDPE (Sulfuric)
6)	SMB 1-18		5/1/2025		Topanga Coun	ty Beach, Topanga Cany	on Lagoon	ssw	G	G	4	3					1					X 40mL	Amber Vial x3 (Sulfuric)
7)	SMB 1-18		5/1/2025		Topanga Count	ty Beach, Topanga Cany	on Lagoon	ssw	G	G	3	4							×			40m	L Amber Vial x4 (HCI)
8)	SMB 1-18		5/1/2025		Topanga Count	ty Beach, Topanga Cany	on Lagoon	ssw	G	Р	1	2			×								(2x) 250mL HDPE
9)	SMB 1-18		5/1/2025	4	Topanga Count	ty Beach, Topanga Cany	on Lagoon	ssw	G	Р	12	1								x		76.	125 mL HDPE
10)																							
	ples Relinquished By:		living a series	made and	ONE SUPPLIEDING		Wheeler.	All like	Sami	oles R	eceiv	ved B	v:					ACTOR SHALL	0.00	ayu.	ALCE MANA	STEEL STATE	THE BUILDING STORY
	Name (Print) and	Agency		Signati	ure	Date	Tim						nd Agency	,		Sign	ature ,					Date	Time
1)	Emily Durco	in	En	Alm		5/1/25	1:11	Pm	7	516	ode	Con	Ares	0 /	Pac	wed	(nt	-					
2)	000	treras	P.	Of Co.	Luca	C-1-25			-	Sh	1	1	co	de/		-						5/1	18,28
3)	7 1-10 1-0	,,,,,	~~	- Cov	1, 10,11	3	1829			FS	40	>		-								1	
4)	100									1													
228	Sample Matrix	Preserva	tion Codes	Sample Re	ceipt - Complet	ed by Laboratory pe	rsonnel:					Labo	oratory No	otes:						Specia	l Instruct	ions:	
SFW = Surface Fresh Water; 1. Cool, ≤ 6 °C SSW = Surface Salt Water; 2. HNO3 Total Number of Sample Containers Received:									Babco	ck - Ca	n you	analyz	e PFOS/PFO	OA if poss	ible - Russ	Colby			Evi	idence sa	ample han	dling require	d?
DW = Drinking Water; 3. HCl GW = Groundwater; 4. H2SO4 Sample(s) Properly Cooled On Properly						Cooled: N / NA Temperature:	1 ·c			5E					□ 53					Ret	urn Shipp	ing Containe	rs?
WW = Wastewater; 6. NaOH OL = Other Liquids; 7. NaOH/ZnAcetate SO = Soil / Sediment; 8. NH4Cl					Sample(s) Intact(Y)N / NA	1		ozo		10112		18:28 tospool		_							Routin	e 🗆
SL = S OS = I	ludge / Slurry; Other Solids;	≤ -10 °C		Custody Seal(s) Intact: Y / N / NA				Send	OIMA	A-Help	odesk@wa	nterboar	ds.ca.gov					Turn A	round Tir	*3-5 Da		
0 = 0	tner	11. None re 12. Other _	quired		Sample(s) Accepted: Y / N			Re	esults to:	emily	y.duno	can@wate	rboards.	.ca.gov							*48-H (Rush	

6100 Quail Valley Court Riverside, CA 92507 T: (951) 653-3351

Non-SWAMP/CEDEN Projects

*This COC is for Non-CEDEN Projects only, results are not required to be in SWAMP 2.5 EDD Template

Chain of Custody Record & Sample Information

age 9 of 12

Sam	ple Collection Agency	<i>r</i> :	Agreement	No.: 22-005-270)											No.	Series Since					
	Los Angeles	s RWOCB					O = Other)	Other)	- 7						Α	nalyses I	Request	ed				
Sam	ple Collection Agency 320 W. 4th Street, Los	Address:	Project Code	e: RWB4_WildFireF	Response_2025	3	posite; 0 = 0	Glass; 0 = C	: Below)						<u> </u>		17					
			Project Nam GeoTracker		fire Response 2025	Codes Below)	Sample Type (G= Grab; C= Com	Plastic, G = Glass; O =	(See Codes		SO4, OP, 32N,		K	Total Metals, Beryllium Ca. Hardness	Dissolved Metals, Beryllium		VOC suite EPA method 624.1					
Proje	ect Lead:	1400 - 10	Field Lead:				= 619	(P	Code		k, S(134	ery	IS, E		met	100				
Na	me: Emily Duncan		Name:			trix	96 (6	, be	Ü	ners	IA ,	Σ		s, B	/eta		PA					
Pho	one: (213) 576-6679		Phone:			ğ	7	F	atio	ıtai	T SON	8270 PAH SIM		etal	P P	TP, TN, NH3	te					
Em	nail: emily.duncan@wa	terboards.ca.gov	Email:			ple	ple	tain	5	S	rss,	0 P/	ر ا	M P	olve	Z.	Sui	ъ	S			
NAT.	Sample ID	Date	Time		Location	Sample Matrix (see	Sarr	Container Type	Preservation	# of Containers	SS, TSS, TDS, AIK, SO4 NO3N, NO3N+NO2N,	827	PFAS	Total Meta Hardness	Diss	₽,	Ņ	Hex Cr	PCBs	70		Notes
1)	SMB 3-4	5/1/2025		Santa Monica	State Beach, Pico-Kenter SD	ssw	G	Р	1	4	х										(4X)	1L Plastic HDPE
2)	SMB 3-4	5/1/2025		Santa Monica	State Beach, Pico-Kenter SD	ssw	G	G	1	4		х					- 1		х		(4X)	1L Amber Glass
3)	SMB 3-4	5/1/2025		Santa Monica	State Beach, Pico-Kenter SD	ssw	G	Р	2	1				х							250 mL P	lastic HDPE (Nitric)
4)	SMB 3-4	5/1/2025		Santa Monica	State Beach, Pico-Kenter SD	ssw	G	Р	1	1					X						unfiltere	d 250 mL Plastic HDPE
5)	SMB 3-4	5/1/2025	(Santa Monica	State Beach, Pico-Kenter SD	ssw	G	Р	4	1						х					250 mL P	lastic HDPE (Sulfuric)
6)	SMB 3-4	5/1/2025	- 15	Santa Monica	State Beach, Pico-Kenter SD	ssw	G	G	4	3	-					- 19				х	40mL Am	ber Vial x3 (Sulfuric)
7)	SMB 3-4	5/1/2025	3.4.	Santa Monica	State Beach, Pico-Kenter SD	ssw	G	G	3	4	71 4					1	х				40mL A	mber Vial x4 (HCI)
8)	SMB 3-4	5/1/2025	000	Santa Monica	State Beach, Pico-Kenter SD	ssw	G	Р	1	2			х								(2x)	250mL HDPE
9)	SMB 3-4	5/1/2025		Santa Monica	State Beach, Pico-Kenter SD	ssw	G	Р	12	1								x			1	25 mL HDPE
10)											4							-				William .
Sam	ples Relinquished By:					1000	Sam	ples F	Receiv	ved B	y:		A 14 14 150			e di bis		ARUS.	Tarrier (18 1/2	Special Soft	ENGLISH SEE
	Name (Print) and	d Agency	Signatu	re	Date Tin		-	Na	ame (P	rint) a	nd Agenc	у	-	Signa	ature						Date	Time
1)	Pmily Dur	ran Inl	2hr	~	5/1/25 1:5	PM	H	Ice	rdo	Co	of rev	ray,	1/2	cardo la	thes	-	- W			_	,	
2)	Ricardo Con	Atreras Rd	Sendo C	Acra	5-1-25 2	fue	10	SU	1991	(Sal	olli/	1				9			\$/	/	1828
3)					182	8			12	(4	>	- /							1			
4)	all state									-												19
	Sample Matrix	Preservation Codes	Sample Red	ceipt - Completed	d by Laboratory personnel:					Labo	oratory No	otes:						Special	Instru	ctions	:	
ssw =	= Surface Fresh Water; = Surface Salt Water;	1. Cool, ≤ 6 °C 2. HNO3	Total Numb	er of Sample Conta	iners Received:		Babco	ck - Ca	n you	analyz	e PFOS/PFO	OA if possi	ble - Russ	Colby			Eviden	e samp	le hand	dling r	equired?	
GW =	Drinking Water; Groundwater; Stormwater;	3. HCI 4. H2SO4 5. Na2S2O3	Sar	mple(s) Properly Co	poleg: Y // N / NA Temperature:			100000	100000	01	100	回(9 :约(k	缇				, , , ,	Return	Shippi	ng Coi	ntainers?	
OL = 0	= Wastewater; Other Liquids; Soil / Sediment;	6. NaOH 7. NaOH/ZnAcetate 8. NH4CI		Sample(s) Ir	ntactr N / NA			OZO	1: 05/0	01/20	25 18:28 Autospool		9								Routine	
1000	ludge / Slurry; Other Solids;	9. Filtered 10. Freeze, ≤ -10 °C 11. None required		Custody Seal(s) Ir	ntact: Y / N / NA			Send	ОІМА	A-Help	desk@wa	aterboard	ls.ca.gov				1	urn Arc	ound Ti	ime:	*3-5 Day (Rush)	X
0-0	anei	12. Other	a Chapter	Sample(s)	Accepted: Y / N		R	esults to:		y.dunc	can@wate	erboards.	ca.gov								*48-Hr (Rush)	

6100 Quail Valley Court Riverside, CA 92507 T: (951) 653-3351

Non-SWAMP/CEDEN Projects

alyses I	Requeste	ed			
TP, TN, NH3	VOC suite EPA method 624.1	Asbestos	TOC		Notes
		×		(5X)	1L Plastic HDPE
					1L Amber Glass
- 4					Plastic HDPE (Nitric)
	44		-		O mL Plastic HDPE (Nitric)
X					lastic HDPE (Sulfuric)
<u> </u>	Cartie I		X		ber Vial x3 (Sulfuric mber Vial x4 (HCI)
	X		-		250mL HDPE
				Date	Time
30			51	1/28	1828
		Special In	structi	ons:	
	Evidenc	e sample	handli	ng required?	
M		Return Si	hipping	Containers?	
		-		Routine	
	Turn	Around 1	rima.	*3-5 Day	V

Sam	ple Collection Agenc Los Angeles	Control of the Control		Agreement	No.: 22-005-270)			= Other)	Other)		- 3					A	nalyses I	Request	ed			
Sam	ple Collection Agenc 320 W. 4th Street, Los	y Address:			RWB4_WildFireR ne: RWB4 Wild	Control of the Contro	025	Codes Below)	Grab; C = Composite; O =	Container Type (P = Plastic, G = Glass; O = Other)	Preservation Code (See Codes Below)		SO4, OP, 32N,			Ca, Hardness			VOC suite EPA method 624.1				
Proj	ect Lead:		17498	Field Lead:		New Year		(See		= d)	ode		SS, TSS, TDS, AIK, SO4 NO3N, NO3N+NO2N,		I , and I	a, H	sis		met		a de la companya de l	thin's	
Na	me: Emily Duncan			Name:				Matrix	Sample Type (6=	ype	D L	# of Containers	N+I	Σ			Dissolved Metals	m	PA				
Ph	one: (213) 576-6679			Phone:				Σ	Typ	F	atio	ntai	D S	8270 PAH SIM		Total Metals,	Pa	TP, TN, NH3	ite E	S			
Er	nail: emily.duncan@wa	terboards.ca.	gov	Email:		L. Walk-		l ple	ple	tain	serv	Š	TSS,	7d 0	ν	<u>S</u>	solv	Z.	Son	esto	()		
	Sample ID		Date	Time		Location		Sample	Sam	Co	Pre	#	SS,	827	PFAS	Tot	Diss	TP,	Š	Asbestos	700		Notes
1)	DPH-002		5/1/25	9.00	Surfrie	ter beau	h	ssw	G	Р	1	4	х							×		(5X)	1L Plastic HDPE
2)	1		1	1		1		ssw	G	G	1	2		Х								(2X)	LL Amber Glass
3)	ARTHUR DE	1900	1 100		176			ssw	G	Р	2	1				×					The state of	250 mL P	lastic HDPE (Nitric)
4)	of the latest and the	3 170 14	The state of		Colonia Colonia			ssw	G	Р	2, 9	1	148	TE V			×		A.J. Jak			Filtered 250	omL Plastic HDPE (Nitric)
5)				1 - 1				ssw	G	Р	4	1						x				250 mL PI	astic HDPE (Sulfuric)
6)				2010				ssw	G	G	4	3	100	Maria di	8	1			Vigue !		Х	40mL Ami	ber Vial x3 (Sulfuric)
7)	BWW BANK					A Property of	F 4 451	ssw	G	G	3	4	1000	TO SEE	Texa I	1 8	100	1-72	Х		100	40mL A	mber Vial x4 (HCI)
8)		1000					23310	ssw	G	G	1	2		17.73	Х				1 1/			(2x)	250mL HDPE
9)	4		1	1			111111								5.75	1 2 6	7					1 72	
10)	STATE OF THE PARTY	Bert William				V		100	000				No. 1	14 700	17.0	1 ()	100	1 1 2					
170700.53	ples Relinquished By								Sam			ved E											
	Name (Print) an	d Agency		Signatu	re	Date	Tim		1				nd Agend		0		ature				1	Date	Time
1)	Emily Pun	can	Ent	カンー		5/1/25	1:11	pm	7	516	040	b (ontr.	RIONS	Ku	erd	Cry	nge			=1	10	1230
2)	Emily pun Picardo Co	ntieros	Ru	erl. C.F	wyen	5-1-25	182		0	K	-6	7	lac	de/		7					51	1/28	(800
4)								0		-				-									
	Sample Matrix	Preservat	ion Codes	Sample Reco	eipt - Completed	i by Laboratory (personnel:					Labo	oratory N	otes:						Special In	structio	ns:	
ssw	= Surface Fresh Water; = Surface Salt Water;	1. Cool, ≤ 6 ° 2. HNO3 3. HCI	'C	Total Numbe	r of Sample Contai	ners Received:		E	abcoc	k - Car	n you	analyz	e PFOS/PF	OA if poss	ible - Russ	Colby			Eviden	ce sample	handling	required?	
GW	= Drinking Water; = Groundwater; = Stormwater;		Sam	ple(s) Properly Co	oleg: Y/ N / NA Temperature:	4 .0					15 T	E012	7 [-168E	1		M		Return Sh	ipping C	ontainers?		
OL =	= Wastewater; Other Liquids; Soil / Sediment;	Acetate		Sample(s) In	itact: Y N / NA						'd: 05	/01/2025	18:28						Y		Routine		
SL = OS =	Sludge / Slurry; Other Solids;	8. NH4Cl 9. Filtered 10. Freeze, s			Custody Seal(s) In	ntact: Y / N/NA				Send	ОІМ		pdesk@w	_		,			Turn	Around T	ime:	*3-5 Day (Rush)	X
0=0	Other	11. None red 12. Other	quired		Sample(s) A	Accepted: Y / N			R	esults to:	1	y.dun	can@wat	erboards	.ca.gov							*48-Hr (Rush)	

Non-SWAMP/CEDEN Projects

Chain of Custody Record

6100 Quail Valley Court Riverside, CA 92507 T: (951) 653-3351

Silaili Oi	Cus	touy necoru
& Sam	ple	Information

Sam	ple Collection Agency: Los Angeles			Agreement	No.: 22-005-270	0			Other)	Other)							,	Analyses	Request	ed				
Sam	ple Collection Agency a 320 W. 4th Street, Los		90013	Project Code	e: RWB4_WildFire	Response_2025		(wo)	Composite; 0 = Other)	Container Type (P = Plastic; G = Glass; 0 = Other)	Preservation Code (See codes Below)					e)	E		624.1					
						fire Response 202	.5	Codes Below)		stic, G	pe Cod		, OP,			Beryllium Ca,	Beryllium		od 62					
Proi	ect Lead:			GeoTracker Field Lead:	Global ID:		_		Grab;	P = Pla	Je (s	10	S04, D2N,			Jij	, Be		etho					
1	me: Emily Duncan			Name:				ž	9) ad	Š	ers	AR,	5		Bei	etals		A m					
	one: (213) 576-6679			Phone:				Mat	ype	Ę	tion	tai	.DS,	l is		tals	Š	TN, NH3	e EP		4			
	nail: emily.duncan@wate	erboards.ca.	gov	Email:			9	le l	Ple	aine	erva	Ö	SS, J	PA		Me	lvec	ž	suit	ర				
	Sample ID		Date	Time		Location		Sample Matrix (See	Sample Type	Sont	rese	# of Containers	SS, TSS, TDS, Alk, SO4 NO3N, NO3N+NO2N,	8270 PAH SIM	PFAS	Total Metals, Hardness	Dissolved Metals,	TP, T	VOC suite EPA method	Hex	PCBs	T0C		Notes
1)	DPH 103		5/1/2025	8:55 am	Will Rogers Sta	te Beach, Temescal Ca	anyon SD	ssw		P	1	4	X		L					1	<u> </u>		(4X)	1L Plastic HDPE
2)	DPH 103		5/1/2025	1	Will Rogers Sta	te Beach, Temescal Ca	anyon SD	ssw	G	G	1	4		х							x		(4X)	1L Amber Glass
3)	DPH 103	114.	5/1/2025	100	Will Rogers Sta	te Beach, Temescal Ca	anyon SD	ssw	G	Р	2	1				×							250 mL P	lastic HDPE (Nitric)
4)	DPH 103		5/1/2025		Will Rogers Sta	te Beach, Temescal Ca	anyon SD	ssw	G	Р	1	1					х						unfiltere	d 250 mL Plastic HDPE
5)	DPH 103		5/1/2025		Will Rogers Sta	te Beach, Temescal Ca	anyon SD	ssw	G	Р	4	1						х					250 mL P	lastic HDPE (Sulfuric)
6)	DPH 103		5/1/2025		Will Rogers Sta	te Beach, Temescal Ca	anyon SD	ssw	G	G	4	3			la la				1	100		X	40mL Am	ber Vial x3 (Sulfuric)
7)	DPH 103	th 1957	5/1/2025	144	Will Rogers Sta	te Beach, Temescal Ca	anyon SD	ssw	G	G	3	4						. 7	Х				40mL A	mber Vial x4 (HCl)
8)	DPH 103	14	5/1/2025		Will Rogers Sta	te Beach, Temescal Ca	anyon SD	ssw	G	Р	1	2			х								(2x)	250mL HDPE
9)	DPH 103		5/1/2025	1	Will Rogers Sta	te Beach, Temescal Ca	anyon SD	ssw	G	Р	12	1								х			1	25 mL HDPE
10)																								
Sam	ples Relinquished By:	oles Relinquished By:							Sam	iples F							in the fire				jedin:	- Piles	Andrew Miles	
	Name (Print) and		0 -	Signatu	re	Date	Tim		T			Print) a	nd Agenc	у	0	Sign	ature		-				Date	Time
1)	Emily Dun	ar	Eni	and a		5/1/25	1:0		K	Lear	00	(org			Hu	cople	640					_	1. for	1025
3)	Kicaydo Con	treras	Ri	inle Co.	from	5-1-20	182		-(50	5		See	der/								5/	114	1846
	1910					,		0		100	_				1									
	4) Sample Matrix Preservation Codes Sample Receipt - Completed by Laboratory personal Codes Preservation Codes Sample Receipt - Completed by Laboratory personal Codes Sample Receipt - Cod						rsonnel:					Lab	oratory N	otes:						Special	Instruc	ctions	:	
SFW = Surface Fresh Water; 1. Cool, ≤ 6 °C SSW = Surface Salt Water; 2. HNO3 Total Number of Sample Containers Receive						ainers Received:			Babco	ock - Ca	ın you	analyz	e PFOS/PF	OA if poss	ible - Russ	Colby			Evide	nce sam	ple han	dling	required?	
						ooled: Y N / NA Temperature:	1			34.5		E01	27 025 18:28							Retur	n Shippi	ing Cc	ntainers?	
OL =	= Wastewater; Other Liquids; Soil / Sediment;	6. NaOH 7. NaOH/Zi 8. NH4CI	nAcetate		Sample(s) I	ntact: Y N / NA				OZ	20		Autospool		목 :								Routine	
	ludge / Slurry; Other Solids; ther	9. Filtered 10. Freeze, 11. None re			Custody Seal(s) I	ntact: Y / N (NA)						A-Help	desk@wa	aterboard	ds.ca.gov					Turn Ar	ound T	ime:	*3-5 Day (Rush)	Χ
		12. Other _			Sample(s)	Accepted: Y / N			F	Results to:	1	y.duno	:an@wate	erboards.	ca.gov								*48-Hr (Rush)	

6100 Quail Valley Court Riverside, CA 92507 T: (951) 653-3351

Non-SWAMP/CEDEN Projects

Chain of Custody Record

	٠.	Cus	•••	~,			
& 5	am	ple	In	for	ma	ation	
		100	11		of	12	

Sam	ple Collection Agency Los Angele			Agreement N	lo.: 22-005-27	0			O = Other)	Other)								Analyses	Request	ted				
Sam	ple Collection Agency 320 W. 4th Street, Los		90013		RWB4_WildFire	Response_2025	25	elow)	posite;	Container Type (P = Plastic; G = Glass; O = Other)	Preservation Code (See Codes Below)		0,			Ca,	E		VOC suite EPA method 624.1					
				GeoTracker (lfire Response 20	25	(See Codes Below)	Sample Type (G = Grab; C = Con	astic,	See Co		4, OP,			E S	Dissolved Metals, Beryllium		9 po					5
Proj	ect Lead:			Field Lead:				See Co	Grab	(P = P)	ope (SS, TSS, TDS, AIK, SO4, NO3N, NO3N+NO2N,			Total Metals, Beryllium Hardness	ls, Be		neth					
Na	me: Emily Duncan			Name:					e (6	уре	o u	# of Containers	N+N	Σ		s, Be	leta		PA					
Pho	one: (213) 576-6679			Phone:				Sample Matrix	Ϋ́	ler T	atio	Itair	20 S	8270 PAH SIM		etal SS	ρ	TP, TN, NH3	te E					
Er	nail: emily.duncan@wa	terboards.ca	.gov	Email:				l eld	Jple	tair	Serv	3	TSS,	0 P/	ν	Total Met Hardness	olve	Ž,	Sui	្	SS	6		
1	Sample ID		Date	Time		Location		San	San	S	Pre	#	SS, NO	827	PFAS	Tot	Dise	TP,	Š	Fex	PCBs	700		Notes
1)	SMB 2-4		5/1/2025	8:17 am	Will Roge	ers State Beach, Pulg	a SD	ssw	G	Р	1	4	х										(4X)	1L Plastic HDPE
2)	SMB 2-4		5/1/2025	1	Will Roge	ers State Beach, Pulg	a SD	ssw	G	G	1	4		х							х		(4X)	1L Amber Glass
3)	SMB 2-4	2,12	5/1/2025		Will Roge	ers State Beach, Pulg	a SD	ssw	G	Р	2	1				x		1					250 mL F	Plastic HDPE (Nitric)
4)	SMB 2-4		5/1/2025		Will Roge	ers State Beach, Pulg	a SD	ssw	G	P	1	1					х						unfiltere	d 250 mL Plastic HDPE
5)	SMB 2-4		5/1/2025		Will Roge	ers State Beach, Pulg	a SD	ssw	G	P	4	1						Х					250 mL P	lastic HDPE (Sulfuric)
6)	SMB 2-4		5/1/2025		Will Roge	ers State Beach, Pulg	a SD	ssw	G	G	4	3	100	Contract.							. / 0	Х	40mL Am	ber Vial x3 (Sulfuric)
7)	SMB 2-4		5/1/2025		Will Rog	ers State Beach, Pulg	a SD	ssw	G	G	3	4							Х				40mL A	mber Vial x4 (HCI)
8)	SMB 2-4		5/1/2025		Will Roge	ers State Beach, Pulg	a SD	ssw	G	Р	1	2			Х								(2x	250mL HDPE
9)	SMB 2-4		5/1/2025	V	Will Roge	ers State Beach, Pulg	a SD	ssw	G	P	12	1								х			1	25 mL HDPE
10)		400																					1	
Sam	ples Relinquished By: Name (Print) an		ENGINEER CONT.	Signatur	0	Date	Tir	no	Sam	ples F			y: and Agend	v		Sign	aţure					16.00	Date	Time
1)	Brily Dun		Eni	1	~	5/1/25	1:05		1	7	rdo	. /	1		A	7	1/						Date	Hille
2)	Front C	entrera		and C	Luga	5-1-25		gn		0	Col	4	-	eli)	2	- Contr						5/1	128	1828
4)											WHO I WHO	- 4 - 1			TO BROWN CO.		-	exercise to the second		Para de Au				
	Sample Matrix	Preserv	ation Codes	Sample Rec	eipt - Complete	d by Laboratory pe	ersonnel:					Lab	oratory N	otes:						Specia	l Instru	ictions		
ssw	= Surface Fresh Water; = Surface Salt Water; = Drinking Water;	1. Cool, ≤ 6 2. HNO3 3. HCl	5°C	Total Numbe	r of Sample Cont	ainers Received:			Babco	ock - Ca	n you	analyz	e PFOS/PF	OA if poss	ible - Russ	Colby			Evide	nce san	nple ha	ndling	required?	
GW =	Groundwater; Stormwater;	3	Sam	ple(s) Properly C	ooled(Y)N / NA Temperature:	1	c					012			<u> </u>				Retu	rn Shipp	oing Co	ontainers?		
OL = SO =	= Wastewater; Other Liquids; Soil / Sediment;	nAcetate		Sample(s)	Intact: Y / N / NA					OZO	1: 05/0	01/2025 Au			[] 							Routine		
os =	Sludge / Slurry; Other Solids; Other	9. Filtered 10. Freeze 11. None r	, ≤ -10 °C		Custody Seal(s)	Intact: Y / N / NA				Send	ОІМ	A-Help	odesk@w	aterboard	ds.ca.gov				1	Turn Aı	round T	ime:	*3-5 Day (Rush)	X
		12. Other			Sample(s)	Accepted: Y / N					emil	y.dun	can@wate	erboards.	ca.gov		160						*48-Hr (Rush)	

6100 Quail Valley Court Riverside, CA 92507

Non-SWAMP/CEDEN Projects

Chain of Custody Record & Sample Information

ige ____12____ of ____12___

Riverside, CA 92507
T: (951) 653-3351
*This COC is for Non-CEDEN Projects only, results are not required to be in SWAMP 2.5 EDD Template

Sam	ple Collection Agency: Los Angeles			Agreement N	No.: 22-005-27	0			Other)	Other)								Analys	es Req	juested	d			
Sam	ple Collection Agency 320 W. 4th Street, Los	Address:	90013		RWB4_WildFire e: RWB4 Wild	Response_2025 fire Response 20)25	Codes Below)	Sample Type (G = Grab; C = Composite; O =	Plastic; G = Glass; O =	(See Codes Below)		04, 0P, N,			Total Metals, Beryllium Ca, Hardness	Dissolved Metals, Beryllium		VOC suite EPA method 624.1					
Proje	ect Lead:	F = 5		Field Lead:		1.2			- Gra	4	Code		k, S(eryl	ıls, E		met					
Na	me: Emily Duncan			Name:				Ţ.) e (6	Ž	O L	ner	IA, A	Σ		ls, B	Aeta		PA					
Pho	one: (213) 576-6679			Phone:				Sample Matrix (see	1	Container Type	Preservation	of Containers	SS, TSS, TDS, AIK, SO4, NO3N, NO3N+NO2N,	8270 PAH SIM		leta SS	Pa V	NH3	te	-				
Em	nail: emily.duncan@wat	erboards.ca.g	gov	Email:] aldr	l dr	tair	Serv	S	TSS,	0 P/	Ŋ	Total Met Hardness	Nos	Z.	ns 3	۲	S			
	Sample ID		Date	Time		Location		San	San	9	Pre	#	SS,	827	PFAS	Tot	Dis	TP,	ŏ,	Hex Cr	PCBs	700		Notes
1)	SMB 2-7	- 0	5/1/2025	10 am	Will Rogers Sta	te Beach, Santa Monica (Canyon SD	ssw	G	P	1	4	x										(4X)	LL Plastic HDPE
2)	SMB 2-7	-	5/1/2025	1	Will Rogers Sta	te Beach, Santa Monica (Canyon SD	ssw	G	G	1	4		х							×		(4X) 1	1L Amber Glass
3)	SMB 2-7		5/1/2025		Will Rogers Sta	te Beach, Santa Monica (Canyon SD	ssw	G	Р	2	1				х							250 mL P	lastic HDPE (Nitric)
4)	SMB 2-7		5/1/2025		Will Rogers Sta	te Beach, Santa Monica (Canyon SD	ssw	G	Р	1	1					X					1	unfiltered	250 mL Plastic HDPE
5)	SMB 2-7		5/1/2025	- 11	Will Rogers Sta	te Beach, Santa Monica (Canyon SD	ssw	G	Р	4	1		-				х			in the		250 mL Pl	astic HDPE (Sulfuric)
6)	SMB 2-7	5/1/2025		Will Rogers Sta	te Beach, Santa Monica (Canyon SD	ssw	G	G	4	3									138	X	40mL Ami	ber Vial x3 (Sulfuric)	
7)	SMB 2-7	5/1/2025		Will Rogers Sta	te Beach, Santa Monica (Canyon SD	ssw	G	G	3	4	17000						х	7			40mL A	mber Vial x4 (HCl)	
8)	SMB 2-7	5/1/2025		Will Rogers Sta	te Beach, Santa Monica (Canyon SD	ssw	G	Р	1	2	- 1	1	х	1				1			(2x)	250mL HDPE	
9)	SMB 2-7		5/1/2025		Will Rogers Sta	te Beach, Santa Monica (Canyon SD	ssw	G	Р	12	1				7 9				х			12	25 mL HDPE
10)								17 14												1				
	ples Relinquished By:								Sam	ples I	Recei	ved B	y:					6569/	0.80%			PAG.	MA-107	40.0
	Name (Print) and			Signatur	e	Date	Tin		an an		me (Pr	int) a	nd Agency			Sign	ature /						Date	Time
1)	Egify Duna	can	En	412		5/1/25	1:0;	Sym	R	CEN	ado	(0)	t, ero	5	9	ust (atro						1	100
2)	Kurdo	Contrar	as A.	earl C	r.en	5-125	192	0.	-(Jrl.	3	0	Set	W_		-						9/	1/25	1928
4)	The structure of the						(80	9			27	5/												
	Sample Matrix	Preserva	tion Codes	Sample Rec	eipt - Complete	d by Laboratory p	ersonnel:				ι	abora	itory Note	es:						Spe	cial Inst	tructio	ons:	
SSW =	= Surface Fresh Water; = Surface Salt Water; Drinking Water;	C	Total Numbe	r of Sample Conta	ainers Received:		Ва	bcock ·	- Can y	ou an	alyze P	PFOS/PFOA	if possil	ole - Ru	ss Colby			Evide	nce san	nple har	ndling	required?		
GW = SW =	Groundwater; Stormwater;		Sam	ple(s) Properly Co	ooled: Y N / NA Temperature:	4 .						127 2025 18:	28		<u> </u>				Retu	rn Shipp	oing Co	ontainers?	. 🗆	
OL = 0 SO = 9	= Wastewater; Other Liquids; Soil / Sediment;	Acetate		Sample(s) I	ntact: Y / N / NA				OZ			Autosp	_	l\3	4 :							Routine		
	ludge / Slurry; Other Solids; ther	9. Filtered 10. Freeze, : 11. None re			Custody Seal(s) I	ntact: Y / N NA				Send esults		A-Help	odesk@w	aterboa	rds.ca	.gov				Turn A	round T	lime:	*3-5 Day (Rush)	X
		12. Other _			Sample(s)	Accepted: Y / N			K		1	y.dun	can@wate	erboard	s.ca.go	ov							*48-Hr (Rush)	

6100 Quail Valley Court Riverside, CA 92507 T: (951) 653-3351

Non-SWAMP/CEDEN Projects

Chain of Custody Record & Sample Information

anipic			C.O.
	2	-6	12

Sam	ple Collection Agency Los Angeles			Agreement	No.: 22-005-27	70			Other)	Other)								Analyse	s Reques	ted				
Sam	ple Collection Agency 320 W. 4th Street, Los	Address:	0013		RWB4_WildFire ne: RWB4 Wile	eResponse_2025 dfire Response 20	025	Codes Below)	b; C = Composite; O = Other)	Container Type (P = Plastic; G = Glass; O = Other)	Code (See Codes Below)		SO4, OP, NO3N,			Total Metals, Beryllium Ca, Hardness	Beryllium		VOC suite EPA method 624.1					
Proje	ect Lead:			Field Lead:					Sample Type (G = Grab;	<u></u>	ode		k, S(-	ery	ls, E	15.	met					
Na	me: Emily Duncan		6-014	Name:	**	4 1		Matrix (See	9 e (e	Z Z	o u	# of Containers	TSS, TDS, Alk, 3N+NO2N,	Σ		S, B	Dissolved Metals,		PA					
Pho	one: (213) 576-6679			Phone:				Σ̈́	7	ie.	atic	ntai	T ON	NH S		leta SS	- Pa	F	ite					
En	nail: emily.duncan@wa	terboards.ca.g	ov	Email:				Sample	lg l	ţ	Preservation	3	SS, TSS, TDS, # NO3N+NO2N,	8270 PAH SIM	S	Total Met	Solv	TN, NH3	C Su	უ	SS			
	Sample ID		Date	Time		Location		San	San	Ö	Pre	#	SS, NO	827	PFAS	Tot Har	Dis	д <u>,</u>	ŏ>	Tex	PCBs	700		Notes
1)	DPH 105B	u I	5/1/2025	11:10am	Santa Monica	a State Beach, 50 yds	east of SD	ssw	G	Р	1	4	х										(4X)	1L Plastic HDPE
2)	DPH 105B		5/1/2025			a State Beach, 50 yds	east of SD	ssw	G	G	1	4		х							x		(4X)	1L Amber Glass
3)	DPH 105B	Mal al	5/1/2025		Santa Monica	a State Beach, 50 yds	east of SD	ssw	G	Р	2	1	11 04			×							250 mL P	lastic HDPE (Nitric)
4)	DPH 105B	· · · · · · · · · · · · · · · · · · ·					east of SD	ssw	G	Р	1	1	-in		1.		х						unfiltered	l 250 mL Plastic HDPE
5)	DPH 105B	DPH 105B 5/1/2025 Santa Monica State Beach, 5					east of SD	ssw	G	P	4	1						х					250 mL P	lastic HDPE (Sulfuric)
6)						a State Beach, 50 yds	east of SD	ssw	G	G	4	3	Carrier St.	den de la		arders		N. T. R.		1111	1004	х	40mL Am	ber Vial x3 (Sulfuric)
7)						a State Beach, 50 yds	east of SD	ssw	G	G	3	4			10 6-5				×				40mL A	mber Vial x4 (HCl)
8)	DPH 105B		5/1/2025		Santa Monica	a State Beach, 50 yds	east of SD	ssw	G	Р	1	2			х								(2x)	250mL HDPE
9)	DPH 105B	135	5/1/2025	V	Santa Monica	a State Beach, 50 yds	east of SD	ssw	G	Р	12	1							Э	х			12	25 mL HDPE
10)	THE PARTY NAMED IN	THE STATE OF								1														
Sam	ples Relinquished By:		Name of		State of State				Sam	ples F							gave.							
	Name (Print) and			Signatu	re	Date	Tin		-	Na	ame (F	Print) a	nd Agenc	у	0		ature		-			Da	ite	Time
1)	Enily Dun	can	- gin	gh,		5/1/25	Inte	non	1	Tuc	910	10 (antro	res	Ku	urch	Cof.	m-				11		103-
3)	Kreards Con	trecas	Ru	uswel	Cestur	5-1-25	182	8	(Or	1/20	30	Lea	dif	6	re						5/1/	175	1828
4)				11.1																				
Res	Sample Matrix	Preservat	tion Codes	Sample Re	ceipt - Complet	ed by Laboratory p	ersonnel:					Labo	oratory N	otes:						Specia	al Instruc	tions:		
SSW =	Surface Fresh Water; Surface Salt Water;	С	Total Numb	er of Sample Con	ntainers Received:			Babco	ock - Ca	an you	analyz	e PFOS/PF0	OA if possi	ble - Russ	Colby			Evid	dence sa	imple hai	ndling re	equired?		
GW = SW =	Drinking Water; Groundwater; Stormwater;		Sa	mple(s) Properly	Cooled: Y N / NA Temperature:	9 .						C5E		i i					Ret	urn Shipp	ing Con	tainers?		
OL = 0	= Wastewater; Other Liquids; Soil / Sediment;	Acetate	9	Sample(s) Intact: Y/ N / NA							ZO									R	outine		
SL = S	lludge / Slurry; Other Solids;	9. Filtered 10. Freeze, ≤ 11. None red			Custody Seal(s) Intact: Y / N /NA			_	Send	1	A-Help	odesk@wa	aterboard	ds.ca.gov					Turn A	round Ti	me:l	3-5 Day Rush)	Χ
		12. Other			Sample(s) Accepted: Y / N			R	tesults to:	1	y.dun	can@wate	erboards.	ca.gov							1	48-Hr Rush)	

6100 Quail Valley Court Riverside, CA 92507 T: (951) 653-3351

Non-SWAMP/CEDEN Projects

Chain of Custody Record & Sample Information

*This COC is for Non-CEDEN Projects only, results are not required to be in SWAMP 2.5 EDD Template

age ____8___ of ____12____

Sam	ample Collection Agency: Los Angeles RWQCB ample Collection Agency Address: 320 W. 4th Street, Los Angeles, CA 900			Agreement N	o.: 22-005-270)			O = Other)	Other)								Analyses	Request	ted				
Sam	ple Collection Agency	Address:	3		WB4_WildFirel	Response_2025 fire Response 202	5	Codes Below)	Sample Type (G = Grab; C = Composite; O = 0	Container Type (P = Plastic; G = Glass; 0 = Other)	Preservation Code (see codes Below)		SO4, OP, NO3N,			Total Metals, Beryllium Ca, Hardness	Beryllium		EPA method 624.1					
Proj	ect Lead:			Field Lead:					= Gra	(P	age .					eryl			met					
Na	me: Emily Duncan			Name:				ř	e (G	ype	ŭ	lers	TDS, AIK, NO2N,	Σ		s, B	leta		PA					
Pho	one: (213) 576-6679	P. 87		Phone:				Σ	Τγ	e. T	랿	tai	TDS VO2	E S		etal	2	呈	te E					
En	nail: emily.duncan@wat	erboards.ca.gov		Email:				림	ple	tain	e _Z	Š	TSS, 3N+F	PA C		I M	olve	ž	suite	៦	ر ا			
	Sample ID		ate	Time		Location		Sample Matrix (see	am	l io	res	# of Containers	SS, TSS, TDS, A NO3N+NO2N,	8270 PAH SIM	PFAS	Total Met Hardness	Dissolved Metals,	TP, TN, NH3	000	Fex	PCBs	700		Notes
1)	SMB 1-16	5/1	/2025	σξού	Las Tur	nas Beach, Pena Creek	k	ssw	G	Р	1	4	×			<u> </u>		·		_				L Plastic HDPE
2)	SMB 1-16		/2025	(0)0		nas Beach, Pena Creek		ssw	G	G	1	4		х							×		(4X) 1	L Amber Glass
3)	SMB 1-16		/2025	77.0		nas Beach, Pena Creek		ssw	G	Р	2	1				×					_^	720	250 mt Pl	astic HDPE (Nitric)
4)	SMB 1-16		/2025		The second second	nas Beach, Pena Creel		-	G	P	1	1			-	<u> </u>	×			-				250 mL Plastic HDPE
-								SSW		P								×		-				astic HDPE (Sulfuric)
5)	SMB 1-16	/2025			nas Beach, Pena Creel		SSW	G		4	1							-			-	Total Control of the Control	per Vial x3 (Sulfuric)	
6)	SMB 1-16	/2025	1055	1000000	nas Beach, Pena Creel		SSW	G	G	4	3								-		Х			
7)	SMB 1-16	/2025		Las Tu	nas Beach, Pena Creel	k	SSW	G	G	3	4		Z K	Park.				X			- 9		nber Vial x4 (HCI)	
8)	SMB 1-16	5/1	/2025		Las Tur	nas Beach, Pena Creel	k	SSW	G	Р	1	2			х					46		4 10	(2x)	250mL HDPE
9)	SMB 1-16	5/1	/2025	V	Las Tur	nas Beach, Pena Creel	k	SSW	G	Р	12	1	1 1 1 1	1						Х			12	5 mL HDPE
10)																								9139-
Sam	ples Relinquished By:						(graftesta)	Na Calif	Sam	ples F									early are					\$25 m 1525 / 642
	Name (Print) and		-	Signature	9	Date	Tim		-	Na	me (P	rint) a	nd Agenc	У	-		ature		-				Date	Time
2)	Ricardo Co	ntrerus	Ru	Stor Co	inter	5/1/25	1;/(Pm	K	econ V	150 (EC	Cov	Les	es)	Re	ento (ut ~	~				5/	1/25	1878
4)	Sample Matrix	Preservation	Codes	Sample Rece	eipt - Complete	d by Laboratory pe	rsonnel:					Labo	oratory N	otes:						Specia	al Instru	ictions	:	Carlo San
ssw	= Surface Fresh Water; = Surface Salt Water;		Total Number	r of Sample Conta	ainers Received:			Babco	ock - Ca	n you	analyz	e PFOS/PF	OA if poss	ible - Russ	Colby	. 1	CONTRACTOR OF THE CONTRACTOR O	Evide	ence sai	mple ha	ndling	required?		
GW = SW =	Drinking Water; Groundwater; Stormwater;		Sam	ple(s) Properly Co	ooled Y N / NA Temperature:	1 °c			C5]	_ ~		7 18:28	驟				-10		Retu	ırn Ship	ping Co	ontainers?		
OL = SO =	VW = Wastewater; 6. NaOH DL = Other Liquids; 7. NaOH/ZnAcetate O = Soil / Sediment; 8. NH4Cl				Sample(s) I	ntact(Y) N / NA			0	zo		A	utospool	国际	器"			*			_		Routine	
os=	Contract to the Contract of th		100		Custody Seal(s) I	ntact: Y / N/NA				Send		A-Help	desk@wa	aterboar	ds.ca.gov					Turn A	round 1	Time:	*3-5 Day (Rush)	X
	S = Other Solids; 10. Freeze, ≤ -10 °C 11. None required 12. Other				Sample(s)	Accepted: Y / N			*			y.duno	an@wate	erboards	.ca.gov								*48-Hr (Rush)	

6100 Quail Valley Court Riverside, CA 92507 T: (951) 653-3351

Non-SWAMP/CEDEN Projects

Chain of Custody Record & Sample Information

libie	IIIIC	חוווכ	LIOII	
age	6	of	12	_

Sam	ple Collection Agency: Los Angeles I	RWQCB		Agreement N	No.: 22-005-27	0			O = Other)	Other)							А	nalyses F	Request	ed				
Sam	ple Collection Agency A 320 W. 4th Street, Los A		90013	Project Nam	RWB4_WildFire e: RWB4 Wild	Response_2025 fire Response 202	5	Codes Below)	C = Composite; O =	Container Type (P = Plastic; G = Glass; O = Other)	Preservation Code (See Codes Below)		. OP,			m Ca,	Dissolved Metals, Beryllium		VOC suite EPA method 624.1					
Desi				GeoTracker	Global ID:		-	(See Code	Grab; C	= Plast	le (Ser		SO4,			Total Metals, Beryllium Hardness	, Ber		etho					
	ect Lead:	-		Field Lead:		The Addition of Lands		i ×	= 9)	be (i	S	ers	Alk,	5		Ber	stals		E A					
	me: Emily Duncan one: (213) 576-6679			Name: Phone:				Mati	ype	Ļ	tion	aj.	.DS,	1SI		tals	ž	至	ᇤ					
	nail: emily.duncan@wate	rhoards ca	70V	Email:				e e	Je T	aine	- N	out	N, N	PA		Me	lvec	ž	suit	៦				
EII	Sample ID	i boai us.ca.	Date	Time		Location		Sample Matrix	Sample Type (G = Grab;	Cont	rese	# of Containers	SS, TSS, TDS, AIK, SO4 NO3N, NO3N+NO2N,	8270 PAH SIM	PFAS	Total Met Hardness	Disso	TP, TN, NH3	ő	Hex	PCBs	707		Notes
1)	SMB 2-10		5/1/2025		Dockweiler St	tate Beach, Culver Bou	levard	ssw	G	Р	1	4	X		-	-				1	-	_	(4X) 1	L Plastic HDPE
2)	SMB 2-10		5/1/2025		Dockweiler St	tate Beach, Culver Bou	levard	ssw	G	G	1	4		х						1.	x		(4X) 1	L Amber Glass
3)	SMB 2-10		5/1/2025	0	Dockweiler St	tate Beach, Culver Bou	levard	ssw	G	Р	2	1				x					^		250 mL Pl	astic HDPE (Nitric)
4)	SMB 2-10	- 1	5/1/2025		Dockweiler St	tate Beach, Culver Bou	levard	ssw	G	Р	1	1					X						unfiltered	250 mL Plastic HDPE
5)	SMB 2-10	1000	5/1/2025	1.0	Dockweiler St	tate Beach, Culver Bou	levard	ssw	G	Р	4	1						Х					250 mL Pl	astic HDPE (Sulfuric)
6)	SMB 2-10		5/1/2025	12.	Dockweiler S	tate Beach, Culver Bou	levard	ssw	G	G	4	3				100					-	×	40mL Amb	er Vial x3 (Sulfuric)
7)	SMB 2-10	9- 10	5/1/2025	OA,	Dockweiler S	tate Beach, Culver Bou	levard	ssw	G	G	3	4				1-1-740		1 201	х			9745	40mL Ar	mber Vial x4 (HCI)
8)	SMB 2-10		5/1/2025	-	Dockweiler St	tate Beach, Culver Bou	levard	ssw	G	Р	1	2	N. W.		х	1 186							(2x)	250mL HDPE
9)	SMB 2-10	1949	5/1/2025		Dockweiler St	tate Beach, Culver Bou	levard	ssw	G	Р	12	1			130					x	10	100	12	5 mL HDPE
10)			- 1-15-11																			12		
Sam	ples Relinquished By:						1975	97/15	Sam	ples F	Receiv	ved B	<i>y</i> :					150000	SSI SEL	(S)				And the Section
	Name (Print) and		-	Signatur	e	Date	Tin		-	Na	ame (P	Print) a	nd Agenc	Υ	W	Signa	ature						Date	Time
1)	Espily Dunco	in	m	ex Du	7	5/1/25	1:52	pm	K	1con	10	Cont	5010		Nu	cole	Coste	ne				1	1/-	An 2-
2)	Kicardo Con	treras	Ku	unds Co	stores	2-1- 27	192		- (20	186	0	Se E	260/								5//	128	[828]
4)	appearance of the second					or or other		1. 1	TO IT		1		19.50		- Clari							Li Ji		
	Sample Matrix	Preserva	tion Codes	Sample Rec	eipt - Complete	d by Laboratory per	sonnel:					Labo	ratory No	otes:						Specia	l Instri	uctions	: July	
SSW	= Surface Fresh Water; = Surface Salt Water;	°C	Total Numbe	r of Sample Conta	siners Received:			Babco	ock - Ca	n you	analyz	PFOS/PF	OA if poss	ible - Russ	Colby		2	Eviden	ice sam	ple ha	ndling	required?		
GW = SW =	Drinking Water; Groundwater; Stormwater;		Sam	ple(s) Properly Co	ooled: Y/ N / NA Temperature:	U .			C5				郻	皩				1.8	Retur	n Shipp	oing Co	ntainers?		
OL =	= Wastewater; Other Liquids; Soil / Sediment;	6. NaOH 7. NaOH/Zn 8. NH4Cl	Acetate		Sample(s) I	ntact: Y N / NA	1			zo ozo	05/01		5 18:28 Autospool	司	县								Routine	
	Sludge / Slurry; Other Solids; Other	≤ -10 °C quired		Custody Seal(s) I	ntact: Y / N (NA)				Send		A-Help	desk@wa	aterboard	ds.ca.gov				т	Гurn Ar	ound 1	Time:	*3-5 Day (Rush)	X	
	Andrews and	12. Other _	7-11-0-		Sample(s)	Accepted: Y / N			R	esults to:	:	y.duno	an@wate	erboards.	ca.gov								*48-Hr (Rush)	

6100 Quail Valley Court Riverside, CA 92507 T: (951) 653-3351

Non-SWAMP/CEDEN Projects

alyses	Requeste	ed			
TP, TN, NH3	VOC suite EPA method 624.1	Asbestos	TOC		Notes
		х		-	1L Plastic HDPE
	0.0		-		1L Amber Glass
738			No.		Plastic HDPE (Nitric)
х					Plastic HDPE (Sulfuric)
^			×		iber Vial x3 (Sulfurio
-	Х		-	AND DESCRIPTION OF	Amber Vial x4 (HCI)
) 250mL HDPE
				Date 1/26	Time
			7/	1/25	1828
	S	ipecial In	structi	ons:	
	Evidenc	e sample	handlir	ng required?	
		Return S	hipping	Containers?	
4	d	K		Routine	
	Turn	Around 7	. [*3-5 Day	V

Sam	oject Lead: Name: Emily Duncan Phone: (213) 576-6679 Email: emily.duncan@waterboards.ca. Sample ID SMB 2-ID DUPL: CHE				Agreement	No.: 22-005-27	0			Other	Other)							A	nalyses	Request	ed			
Sam	Los Angeles KWQLB ample Collection Agency Address: 320 W. 4th Street, Los Angeles, CA 90				Project Cod	le:			1	e; 0 =	0 %	(w)	T				1,000						T	
				A 90013		RWB4 WildFire	Response 2025		(M.	posite	Glass	s Belo		W. X		LITT'S	10			4.1	- 32			
	- 10313				Project Nar GeoTracker		dfire Response 2	025	Codes Below)	ıb; C = Com	Container Type (P = Plastic; G = Glass; 0 = Other)	Code (See Codes Below)		SO4, OP, D2N,			Ca, Hardness			EPA method 624.				
Proj	ect Lead:				Field Lead:				(See	= Grab;	= d)	ode		SS, TSS, TDS, AIK, SO4 NO3N, NO3N+NO2N,		1	T n	S		met	1			
Na	me: Emily	Duncan			Name:				Sample Matrix	9 e	уре	ŭ	# of Containers	N+N	Σ		S,	Dissolved Metals		PA				
Pho	one: (213)	576-6679			Phone:			160	Σ	Туре	er T	Preservation	ţaj	SON SON	8270 PAH SIM		Total Metals,	2	TP, TN, NH3	9	S			
	Parameters.	STATE OF THE STATE	terboards.c	a.gov	Email:				e e	ple	ain	ervi	3	TSS,	PA	10	ž	olve	ž	sui	sto			
	1011111111111111111		VARIABLE	Date	Time		Location		am	Sample	ont	res	4	S, T	3270	PFAS	ota	Disse	٠, ۲	VOC suite	Asbestos	700		Notes
1)				5/1/25		Dackung	ler Beac	la.	SSW	G	Р	1	4	X	- 00	-		-	-		X		(5X)	LL Plastic HDPE
2)	DU	DI-CATA		2/112)		DOCCORE	in Beac	41	SSW	G	G	1	2		X					7 9 9	^			LL Amber Glass
3)	20	PI, COR	•				1	-	SSW	G	Р	2	1				X			-				lastic HDPE (Nitric)
4)		1			-				SSW	G	P	2, 9	1			-	^	x	- 22			Own Assista		mL Plastic HDPE (Nitric)
5)	TANKS INC.				(0)				-		Р	4	1			1		^	x			1 1 19		astic HDPE (Sulfuric)
-					0		1		SSW	G		-	-				100000						-	per Vial x3 (Sulfuric)
6)					1.7		1		SSW	G	G	4	3	- TO 100	- NAME				100			Х		
7)							C. C. C. C. C. C. C. C.		SSW	G	G	3	4	1000	2.00			1338.5		X	1000	E-10.23		mber Vial x4 (HCI)
8)					6MV				SSW	G	G	1	2	300000	35-67	X		3000	25 15	22.00			(2x)	250mL HDPE
9)				V	1	1	V	0/21/07							100					53107				
10)						1							10000						13				30,35	
Sam					Clanate	uro.	Date	Tim		Sam			ved E	y: nd Agenc		T	Sign	ature					ate	Time
1)				6	-C ()	ire	5/1/25	1:52	20	1						10	Jigit	11					ate	Time
-	Smil	guna	an	an	30 V	1		1.32			cos	49	Co	ntge	109	the	crdo	Cotos	so	-		11	DE	1070
2)	1414	over (ontre	ras K	Signatu S D June	Confer	5-1-25	130	v		0	de	n	Op	au		-			8		7/1/	(7	1000
3)	100			100				180	8			25	67					12		7				100
4)																1					47.00			
	Sample	Matrix	Preserv	ation Codes	Sample Rec	eipt - Complete	d by Laboratory p	ersonnel:					Labo	ratory N	otes:						Special Ins	truction	ıs:	
ssw	FW = Surface Fresh Water; 1. Cool, ≤ 6 °C SSW = Surface Salt Water; 2. HNO3				Total Numbe	er of Sample Conta	niners Received:		1	Babcoc	k - Car	n you a	analyz	e PFOS/PF	OA if poss	ible - Russ	Colby			Evidenc	e sample l	nandling	required?	
GW =	DW = Drinking Water; 3. HCI GW = Groundwater; 4. H2SO4 SW = Stormwater; 5. Na2S2O3				San	nple(s) Properly Co	ooled: Y/ N / NA Temperature:	1 .0						127	■		- 31				Return Shi	ipping Co	ontainers?	
OL=	N = Stormwater; S. NaZSZOS NaZSZOS Na Na Na Na Na Na Na N				5	Sample(s) I	ntact(Y) N / NA				OZI		5/01/	2025 18 Autos						1			Routine	
SL = S OS =	Sludge / Slur Other Solids	ту;	9. Filtered 10. Freeze	e, ≤ -10 °C		Custody Seal(s) I	ntact: Y / N/NA					1	A-Heli	odesk@w	aterboar	rds.ca.gov				Turn	Around Ti	meil	3-5 Day (Rush)	X
0=0	Sample Matrix V = Surface Fresh Water; V = Surface Salt Water; V = Groundwater; V = Groundwater; V = Groundwater; V = Wastewater; V = Other Liquids; V = Other Liquids; V = Other Liquids; V = Other Liquids;				Sample(s)	Accepted: Y / N			Ri	esults to:	1	y.dun	can@wat	erboards	s.ca.gov							*48-Hr (Rush)		

Non-SWAMP/CEDEN Projects

Chain of Custody Record & Sample Information

6100 Quail Valley Court Riverside, CA 92507

	T: (951) 653-3351			*This COC is fo	r Non-CEDEN Pro	jects only, result	s are not requ	uired to	be in	SWAN	MP 2.5	EDD 1	Template								а	ge	6	_ of12_	
San	nple Collection Agency:			Agreement N	No.: 22-005-270)			Other)	her)							А	nalyses I	Requeste	ed					
San	Los Angeles R nple Collection Agency A 320 W. 4th Street, Los A	ddress:			: RWB4_WildFireF e: RWB4 Wildf		2025	s Below)	= Composite; O = O	Container Type (P = Plastic; G = Glass; O = Other	Codes Below)		OP,			n Ca,	Beryllium		1 624.1						
				GeoTracker (Global ID:			e Code	rab; C	= Plast	Code (See		s, TDS, AIK, SO4, , NO3N+NO2N,			Total Metals, Beryllium Hardness			VOC suite EPA method						
	ject Lead:			Field Lead:				X (Se	5 = 5	e (P	Ç	rs	AIK, S FNO			Bery	tals,		, me				l		
	ame: Emily Duncan			Name:				latri	уре	Ţ	io	aine)S, ∤)3N·	SIM		als,	Ğ.	<u>e</u>	EP/				l		
	ione: (213) 576-6679			Phone:				_e ≥	le T	iner	rvat	ont	S, TI I, NC	РАН		Met	ved	Ž	uite	بـر			1		
E	mail: emily.duncan@water Sample ID		Date	Email: Time		Location		Sample Matrix	Sample Type (G	onta	Preservation	# of Containers	SS, TSS, ' NO3N, N	8270 PAH	PFAS	Total Met Hardness	Dissolved Metals,	TP, TN, NH3	OC s	Hex Cr	PCBs	T0C	1		
1)	SMB 2-10		/1/2025	Time	Dockwoiler St	ate Beach, Culver	Poulovard	SSW	G	P	1	4	χz x	8	۵	řΙ	Δ	F	>	エ	۵	Ĕ	(4)	Notes 1L Plastic HDPE	_
2)	SMB 2-10		/1/2025			ate Beach, Culver		SSW	G	G	1	4	^	Х							\vdash			IL Amber Glass	_
3)	SMB 2-10		/1/2025			ate Beach, Culver		SSW	G	Р	2	1		^		Х					Х			lastic HDPE (Nitr	ic)
4)	SMB 2-10		/1/2025			ate Beach, Culver		SSW	G	Р	1	1				Α	Х				\vdash			250 mL Plastic HDP	
5)	SMB 2-10		/1/2025			ate Beach, Culver		SSW	G	Р	4	1						Х			\vdash			astic HDPE (Sulfur	
6)	SMB 2-10		/1/2025			ate Beach, Culver		SSW	G	G	4	3						^			\vdash	Х		per Vial x3 (Sulfu	_
7)	SMB 2-10		/1/2025			ate Beach, Culver		SSW	G	G	3	4							Х		\vdash			mber Vial x4 (HC	
8)	SMB 2-10		/1/2025			ate Beach, Culver		SSW	G	Р	1	2			Х				^		\vdash	-		250mL HDPE	
9)	SMB 2-10		/1/2025			ate Beach, Culver		SSW	G	Р	12	1			,,					Х	\vdash	-		25 mL HDPE	
10)			, _,					33.1	Ü	•		-								^	\vdash				
	nples Relinquished By:								Sam	ples R	Receiv	red By	/ :					1							
	Name (Print) and A	Agency		Signatur	е	Date	Tim	ie		Na	ame (P	rint) a	nd Agency	1		Sign	ature					Γ	Date	Time	
1)																									
2)																									
3)																									
4)																									
	Sample Matrix Preservation Code			Sample Rec	eipt - Completed	by Laboratory	personnel:					Labo	ratory No	otes:					:	Specia	l Instruc	ctions	; :		
SW	' = Surface Fresh Water; ' = Surface Salt Water; = Drinking Water;		Total Numbe	r of Sample Contai	ners Received:			RE	VIS	SED) AN	NALY:	SES	7				Evidenc	e sam	ple hand	dling r	required?			
W W:	= Groundwater; = Stormwater;		Sam	ple(s) Properly Co	oled: Y / N / NA Temperature:	°C			R S plic	SME	3 2-	10							Returr	ı Shippi	ng Co	ntainers?			
DL =	' = Wastewater; : Other Liquids; : Soil / Sediment;	etate		Sample(s) Ir	itact: Y / N / NA					2/2	025	5										Routine			
L =)S =	Sludge / Slurry; Other Solids; Other	9. Filtered 10. Freeze, ≤ -1 11. None requi			Custody Seal(s) In	ntact: Y / N / NA				Send	OIMA	\-Help	desk@wa	terboards	s.ca.gov		•		Tı	urn Ard	ound Tir	me:	*3-5 Day (Rush)	X	
. – ۱		12. Other			Sample(s)	Accepted: Y / N			Re	esults to:	emily	dunc.	an@wate	rboards.c	a.gov								*48-Hr (Rush)		_

6100 Quail Valley Court Riverside, CA 92507 T: (951) 653-3351

Sample Collection Agency:

Non-SWAMP/CEDEN Projects

*This COC is for Non-CEDEN Projects only, results are not required to be in SWAMP 2.5 EDD Template

Agreement No.: 22-005-270

					e Info	y Record rmation
Analys	ses Req	uested				
TP, TN, NH3	VOC suite EPA method 624.1	Hex Cr (8082)	PCBs	TOC		Notes
			(4X)	1L Plastic HDPE		
			-	1L Amber Glass		
						Plastic HDPE (Nitric)
						d 250 mL Plastic HDPE
Х						lastic HDPE (Sulfuric)
				Х		ber Vial x3 (Sulfuric)
	Х					mber Vial x4 (HCl)
						25 mL HDPE
		Х			-	232
					Date	Time
		Spec	ial Ins	tructi	ions:	
	Evider	nce sam	ple hai	ndling	g required?	
		Retur	n Shipp	ing C	ontainers?	
					Routine	
					*3-5 Dav	V

	Los Angeles F	RWQCB					O = Othe	0 = Othe														
Sampl	e Collection Agency A	Address:	Project Code	:			=0 (a	0 :	(w													
3	320 W. 4th Street, Los A	Angeles, CA 90013	F	RWB4_WildFireF	Response_2025	3	posite	Glass	s Belo					æ`	٦		1.1					
			Project Name GeoTracker (fire Response 20	25 (woled Selow)	b; C = Com	Container Type (P = Plastic; G = Glass;	Code (See Codes Below)		SO4, OP, 32N,			Beryllium, Ca	Beryllium		10d 624.1					
Projec	t Lead:		Field Lead:			(See	= Grab;	(P = I	ode		k, SC			eryll			method					
Nam	e: Emily Duncan		Name:			trix	9	ype		Jers	N+N	Σ		s, Bo	leta		PAr	2)				
Phon	e: (213) 576-6679		Phone:			Ma	Τ̈́	erT	atio	ıtaiı	TDS, AIK, SO4 NO3N+NO2N	PAH SIM		etal	Νpa	NH3	te E	Cr (8082)				
Ema	il: emily.duncan@wate	rboards.ca.gov	Email:			Sample Matrix	Sample Type	tain	Preservation	# of Containers	TSS, 3N, I	0 P.A	S	Total Metals, Hardness	Dissolved Metals,	TP, TN, NH3	VOC suite EPA	c.	S			
	Sample ID	Date	Time		Location	San	San	Co	Pre	# of	SS, TSS, NO3N,	8270	PFAS	Tota	Diss	TP,	00	Hex	PCBs	тос		Notes
1)		5/1/2025				SSW	G	Р	1	4	х										(4X) 1	LL Plastic HDPE
2)		5/1/2025				SSW	G	G	1	4		Х							Х		(4X) 1	L Amber Glass
3)		5/1/2025				SSW	/ G	Р	2	1				х							250 mL P	lastic HDPE (Nitric)
4)		5/1/2025				SSW	/ G	Р	1	1					Х						unfiltered	250 mL Plastic HDPE
5)		5/1/2025				SSW	/ G	Р	4	1						Х					250 mL Pl	astic HDPE (Sulfuric)
6)		5/1/2025				SSW	/ G	G	4	3										Х	40mL Ami	per Vial x3 (Sulfuric)
7)		5/1/2025				SSW	G	G	3	4							Х				40mL Aı	mber Vial x4 (HCl)
8)		5/1/2025				SSW	G	Р	1	2			Х								(2x)	250mL HDPE
9)		5/1/2025				SSW	G	Р	12	1								Х			12	5 mL HDPE
10)																						
Sampl	es Relinquished By:						Sam	-		ved B												
4)	Name (Print) and	Agency	Signatur	e	Date	Time		Na	me (Pr	int) ar	nd Agency			Signat	ure					[Date	Time
1)																						
2)																						
3)																						
4)																						
	Sample Matrix	Preservation Codes	Sample Rece	eipt - Completed	d by Laboratory p	ersonnel:			l	Labora	atory Not	es:						Spec	cial Inst	tructio	ns:	
SSW = S	Surface Fresh Water; Surface Salt Water; rinking Water;	1. Cool, ≤ 6 °C 2. HNO3 3. HCl	Total Number	of Sample Conta	iners Received:						NALY	SES	3				Evide	nce sam	ple har	ndling	required?	
GW = G	roundwater; ormwater;	4. H2SO4 5. Na2S2O3	Sam	ple(s) Properly Co	ooled: Y / N / NA Temperature:	°C				H-0 202								Retur	n Shipp	ing Co	ntainers?	
OL = Ot	Vastewater; her Liquids; il / Sediment;	6. NaOH 7. NaOH/ZnAcetate 8. NH4Cl		Sample(s) Ir	ntact: Y / N / NA																Routine	П
SL = Slu OS = Ot	dge / Slurry; her Solids;	9. Filtered 10. Freeze, ≤ -10 °C		Custody Seal(s) Ir	ntact: Y / N / NA			Send	OIM	4-Help	odesk@wa	aterboa	rds.ca.g	gov			1	Turn Ard	ound Ti	ime:	*3-5 Day (Rush)	X
O = Oth	er	11. None required 12. Other		Sample(s)	Accepted: Y / N		R	esults to:	emily	/.dunc	can@wate	erboards	s.ca.gov	,							*48-Hr (Rush)	
Di	stribution: Original con	ies accompany sample s	hipment to lab	oratory: Electron	nic copy emailed t	o aguerra@hah	cocklal	bs.cor	n & O	МА-Н	lelpdesk@	waterh	oards	a.gov	1						v5.2.SWAMI	210 2022 06 30