





Tackling air pollution at school

# Indoor air quality in schools: from knowledge to actions

# Feedback from the French IAQ Observatory

Corinne Mandin
Scientific and Technical Building Centre (CSTB) / French Observatory of Indoor Air Quality (OQAI)

TAPAS Lunchtime Seminar, June 10<sup>th</sup>, 2021



#### **Outline**

- 1. A few words about the French IAQ Observatory
- 2. The School Nationwide Survey (2013-2017)
- 3. What are the solutions?
  - Reduce the sources
  - Promote ventilation
  - Regulate
  - Raise awareness



# The French IAQ Observatory



# The French IAQ Observatory

- Created in 2001
- Objective: To coordinate and develop indoor air research activities at a national scale
  - To improve knowledge on IAQ in buildings
  - To provide support for public policies
  - To publish recommendations for professionals and general public
- Financial support from Ministries in charge of Housing, Health, and Environment, the Agency for Energy Management (ADEME), the Agency for Food, Environmental and Occupational Health & Safety (Anses)



#### What do we do?

- Nationwide monitoring campaigns to measure indoor air pollution and collect descriptive data
- Specific studies (intervention studies) for a specific question
- Regular review of the literature and collect of IAQ measurements (worldwide)
- Dissemination: local, national and international conferences + newsletters

# Studies organized around 6 programs

- 1. Dwellings
- 2. Schools and day-care centers
- 3. Office buildings
- 4. Low-energy buildings
- 5. Hospitals and elderly homes
- 6. Communication, training, education



2 The School Nationwide Survey (2013-2017)



# Sampling design

Database of schools

French Ministry of
National Education
(2009)

Randomly selected schools

#### Stratified on:

- Schools (nursery/primary)
- Environment (urban/rural)
- Climatic zones (French thermal regulation)

**52,582** schools

**Number of schools** calculated on the basis of the target precision on the VOC concentrations

308 schools (602 classrooms)

Raking ratio adjustment (Deming and Stephan)



# Parameters (1)

One week: from Monday to Friday

#### **On-line measurements**

- $\Rightarrow$  Carbon dioxide (CO<sub>2</sub>)
- □ Temperature and relative humidity
- ⇒ Particle counting (0,3 to 20 μm)
- ⇒ Noise level (7 days, starting the Friday before the monitoring week)

#### Air samples

- ⇒ **Active sampling**: PM<sub>2,5</sub> and SVOCs
- **⇒** Passive samplers:
  - VOCs and aldehydes
  - Nitrogen dioxide (NO<sub>2</sub>)





## Parameters (2)

#### **Settled dust sampling**

- **⇒** With a wipe for lead
- ⇒ With a specific vacuum cleaner: metals and SVOCs

#### **Punctual measurements**

- ⇒ Illuminance on tables and boards (illuminance meter)
- ⇒ Lead in paint by X-Ray fluorescence
- ⇒ Electromagnetic fields









### Questionnaires

- Building and classroom description
- Occupancy and activities
- Perception of teachers



## Results at a glance

#### **Positive aspects**

- Low NO<sub>2</sub> concentrations
- Lower VOC concentrations compared to dwellings

#### **Critical issues**

- PM<sub>2,5</sub>
- Semi-volatile organic compounds
- Lack of ventilation, air stuffiness
- Lead in paint



# Particles PM<sub>2.5</sub>

Median =  $18 \mu g/m^3$ 

96% > 10 μg/m³, WHO guideline value for outdoor air applicable to indoor air (who AQGs, 2005)

PM<sub>2.5</sub> Concentration (µg/m³) Spain (2013) | 39 schools Germany (2005) | 64 schools 25 OQAI - Nationwide schools survey (2017) -Portugal (2013) | 10 schools

Greece (2003) | 7 schools

WHO (2005)

Mean concentrations of PM<sub>2.5</sub> measured in European schools since 2010



# Observațoire de la qualité de Semi-volatile organic compounds

#### **52 target SVOCs**

- 16 pesticides
- 2 synthetic musks
- 12 polycyclic aromatic hydrocarbons (PAHs)
- 9 polychlorobiphenyls (PCBs)
- 6 phthalates
- 6 brominated flame retardants (PBDEs)
- Triclosan

Air: URG cartridge



Settledt dust: vacuum cleaner + cellulose cartridge





# Semi-volatile organic compounds l'air intérieur

Median concentrations (> LOD) in the air

Median concentrations (> 10 ng/g) in settled dust





(Wei et al, Indoor Air, 2020)



#### Ventilation

**25%** of schools have a mechanical ventilation system

Windows are not regularly open

**40%** of schools have at least one classroom with a very high ICONE index (≥ 4)



(Canha et al, Indoor Air, 2016)





# **Lead in paint**

15% of schools have at least one classroom with deteriorated paint containing more than 1 mg/cm<sup>2</sup> of lead







n=28,487 measurements

Furniture (cupboards and shelves)

Shutters

Walls, baseboards, molding, chair rails Radiators, heating pipes

Windows (frames, casement)

]][[ Pillan

Doors (frames, opening frame)

Black boards



# Volatile organic compounds and aldehydes





# Compared to dwelllings?

Comparison with IAQ Observatory nationwide study in dwellings (2003-2005)

# Concentrations Schools < Dwellings (p-value<0.05)

Except for formaldehyde, hexaldehyde and PM<sub>2,5</sub>



- 21% of classrooms with higher concentrations of pollutants in both air and dust
- 19% with higher concentrations
   in air
- 24% with higher concentrations in dust
- 17% with higher phthalate concentrations only
- 19% with lower concentrations in both air and dust





## **Next steps**

#### Data analysis still in process...

- Comfort parameters: thermal comfort, noise, light
- Determinants of indoor pollutants: lindane, formaldehyde



## What are the solutions?



# Source control: mandatory labelling

Mandatory labelling system in place since September 2013 for all building materials and decoration products

Based on 10 VOC emissions + TVOC

| Classes                | С     | В     | Α     | A+    |
|------------------------|-------|-------|-------|-------|
| Formaldéhyde           | >120  | <120  | <60   | <10   |
| Acétaldéhyde           | >400  | <400  | <300  | <200  |
| Toluène                | >600  | <600  | <450  | <300  |
| Tétrachloroéthylène    | >500  | <500  | <350  | <250  |
| Xylène                 | >400  | <400  | <300  | <200  |
| 1,2,4-Triméthylbenzène | >2000 | <2000 | <1500 | <1000 |
| 1,4-Dichlorobenzène    | >120  | <120  | <90   | <60   |
| Éthylbenzène           | >1500 | <1500 | <1000 | <750  |
| 2-Butoxyéthanol        | >2000 | <2000 | <1500 | <1000 |
| Styrène                | >500  | <500  | <350  | <250  |
| COVT                   | >2000 | <2000 | <1500 | <1000 |







## Focus on cleaning products

- Building audit: pictures and commercial references of cleaning products used in 310 schools and day-care centers
- 584 different cleaning products were listed. From 1 to 7 per building; 3 or 4 on average
- Only 218 safety data sheets available (37%)
- In these SDS, 152 different substances
- Among these substances:
  - 49% classified as irritant according to EU classification system
  - 1 classified as carcinogen Group 1 by the IARC
  - 2 considered as endocrine disruptors according to EC proposal



# Traffic light indicator to help occupants in managing window-opening

#### CLASS'AIR®





Windows need to be opened

Back to green: Windows can be closed







# Tested in classrooms without mechanical ventilation



Strategy = traffic light indicator, n=21 classrooms



# A simple planning is also efficient



Strategy = window opening schedule, n=48 classrooms



#### 2 options

- 1. Periodic monitoring every 7 years:
- Formaldehyde
- Benzene
- Carbon dioxide
- (Tetrachloroethylene)
- 2. Mandatory evaluation of ventilation

1. Walkthrough survey with a dedicated checklist

2. Mandatory evaluation of ventilation



#### Calendar:

January 2018: buildings hosting children <6 years + kindergartens + elementary schools

January 2020: high schools

January 2023: other buildings with vulnerable populations



### 2 sets of guideline values



- 1. Guidelines for the one-week measurements
- Formaldehyde: 100 μg/m³
- Benzene: 10 μg/m<sup>3</sup>
- Carbon dioxide: ICONE = 5
- (Tetrachloroethylene: 250 μg/m³)
- → If exceeded, source identification and remediation within one month

- 1. Guidelines for the summer + winter average
- Formaldehyde: 30 μg/m<sup>3</sup>
- Benzene: 2 μg/m<sup>3</sup>

→ If exceeded, occupant information + emission source limitation + improvement of ventilation



# **Next ISIAQ Conferences**



**Bridging the Gap Between Research & Practice** 

In the Age of COVID-19 and Beyond



### **Next ISIAQ Conferences**









Tackling air pollution at school

# Thank you for your attention!

corinne.mandin@cstb.fr